F. Gemeinhardt, S. Klikovits, M. Wimmer: Hybrid Multi-Objective Genetic Programming for Parameterized Quantum Operator Discovery, The Genetic and Evolutionary Computation Conference (GECCO ’23@Lisbon), Lisbon, Portugal, July 15–19, 2023, hybrid. ACM ISBN 979-8-4007-0120-7/ 23/07. Doi: 10.1145/3583133.3590696, pdf


The processing of quantum information is defined by quantum circuits. For applications on current quantum devices, these are usually parameterized, i.e., they contain operations with variable parameters. The design of such quantum circuits and aggregated higher-level quantum operators is a challenging task which requires significant knowledge in quantum information theory, provided a polynomial-sized solution can be found analytically at all. Moreover, finding an accurate solution with low computational cost represents a significant trade-off, particularly for the current generation of quantum computers. To tackle these challenges, we propose a multi-objective genetic programming approach-hybridized with a numerical parameter optimizer – to automate the synthesis of parameterized quantum operators. To demonstrate the benefits of the proposed approach, it is applied to a quantum circuit of a hybrid quantum-classical algorithm, and then compared to an analytical solution as well as a non-hybrid version. The results show that, compared to the non-hybrid version, our method produces more diverse solutions and more accurate quantum operators which even reach the quality of the analytical baseline.

Hybrid Multi-Objective Genetic Programming for Parameterized Quantum Operator Discovery