Hybrid Multi-Objective Genetic Programming for
Parameterized Quantum Operator Discovery

Felix Gemeinhardt
Johannes Kepler University
Institute for Business Informatics -
Software Engineering, CDL-MINT
Linz, Austria
felix.gemeinhardt@jku.at

ABSTRACT

The processing of quantum information is defined by quantum
circuits. For applications on current quantum devices, these are
usually parameterized, i.e., they contain operations with variable
parameters. The design of such quantum circuits and aggregated
higher-level quantum operators is a challenging task which requires
significant knowledge in quantum information theory, provided a
polynomial-sized solution can be found analytically at all. Moreover,
finding an accurate solution with low computational cost repre-
sents a significant trade-off, particularly for the current generation
of quantum computers. To tackle these challenges, we propose a
multi-objective genetic programming approach—hybridized with a
numerical parameter optimizer—to automate the synthesis of pa-
rameterized quantum operators. To demonstrate the benefits of the
proposed approach, it is applied to a quantum circuit of a hybrid
quantum-classical algorithm, and then compared to an analytical
solution as well as a non-hybrid version. The results show that,
compared to the non-hybrid version, our method produces more
diverse solutions and more accurate quantum operators which even
reach the quality of the analytical baseline.

CCS CONCEPTS

» Computer systems organization — Quantum computing; «
Mathematics of computing — Evolutionary algorithms.

KEYWORDS

Quantum Circuit Synthesis, Genetic Programming, Hybrid Search,
Search-Based Quantum Software Engineering

ACM Reference Format:

Felix Gemeinhardt, Stefan Klikovits, and Manuel Wimmer. 2023. Hybrid
Multi-Objective Genetic Programming for Parameterized Quantum Opera-
tor Discovery. In Genetic and Evolutionary Computation Conference Com-
panion (GECCO °23 Companion), July 15-19, 2023, Lisbon, Portugal. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3583133.3590696

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’23 Companion, July 15-19, 2023, Lisbon, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0120-7/ 23/07.

https://doi.org/10.1145/3583133.3590696

Stefan Klikovits
Johannes Kepler University
Institute for Business Informatics -
Software Engineering, CDL-MINT
Linz, Austria
stefan klikovits@jku.at

Manuel Wimmer
Johannes Kepler University
Institute for Business Informatics -
Software Engineering, CDL-MINT
Linz, Austria
manuel. wimmer@jku.at

1 INTRODUCTION

Quantum Computing. The current era of Quantum Computing (QC)
is referred to as the Noisy Intermediate-Scale Quantum (NISQ) era,
where the limitations of quantum hardware are mitigated by sig-
nificant means of classical computation [16]. Analogously to logic
gates for classical computation, in QC, quantum information is
processed with operations called quantum gates. The most com-
monly used realistic model of QC is the so-called quantum circuit
model [14]. Quantum gates can be parameterized, where the use of
parameterized quantum circuits is common in the NISQ-era. This
is because classical optimization of the parameters, which consti-
tutes an NP-hard problem, allows to cope with the noise present in
current quantum hardware [3]. For this reason, numerical parame-
ter optimizers constitute a central element of NISQ-era quantum
algorithms [3-5]. There is ongoing research on quantum-aware
optimizers, which are particularly capable of coping with specific
requirements of parameterized quantum circuits [3-5, 12].

Within the circuit model of QC, quantum gates are sequentially
applied to qubits—the elementary quantum information carrier.

A simple example of a parameterized quantum circuit is depicted
in Figure 1, which shows parts of the four-qubit circuit for the
hybrid quantum classical GM-QAOA algorithm [2]. In general, the
parameters (e.g., B, y) are float-type rotation angles that specify the
concrete action of the quantum gates. As illustrated in Figure 1,
any number of quantum gates in a circuit can be composed to
quantum operators which serve a certain higher-level functionality
(e.g., Oracle) and result in a certain quantum state.

Quantum Circuit Synthesis. Designing suitable quantum opera-
tors and quantum circuits for a desired computational task requires
significant amounts of expert knowledge in quantum physics, quan-
tum information theory, and linear algebra. This motivates the
use of intelligent search approaches to automatically synthesise
quantum circuits and quantum operators, where, additionally, the
complex, vast and unknown search spaces make genetic program-
ming (GP) favourable over traditional search techniques [10]. Early
work on automated non-parameterized quantum circuit synthesis
has already been conducted in the late 1990s. These early attempts
can be understood as an answer to a lack of invention after promis-
ing quantum algorithms have been developed. A review on such
approaches can be found in [10]. In contrast to our work, those
approaches do not allow treating parameterized quantum circuits.

Particularly the given hardware limitations of the NISQ-era call
for multi-objective search methods to account for existing trade-offs.
The arguably most important metrics in this regard are the accuracy
and computational cost of the solutions. Accuracy, which represents
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Figure 1: 4-qubit circuit for state preparation operator of GM-QAOA; dashed line: position of prepared quantum state

the functionality of a quantum operation—i.e., the extent to which
the produced output resembles an expected target output—, is typi-
cally the most important objective in quantum algorithm design.
However, excessive computational cost may deteriorate any theo-
retically given accuracy in practical settings. As NISQ-era gates are
fragile, long sequences of quantum gates increase the cumulative
error and, thereby, make possible advantages in terms of theoretical
accuracy obsolete. Therefore, a computationally inexpensive quan-
tum circuit of imperfect accuracy might be favoured over a perfect
but infeasible circuit. Additionally, for many tasks, the existence of a
polynomial-sized quantum circuit is not guaranteed, and in certain
cases non-existence can even be proved mathematically [2]. Exist-
ing multi-objective approaches allow in principle for a treatment of
parameterized quantum circuits using a global optimization of the
parameters within the GP itself [15]. However, to the best of our
knowledge, the potentially beneficial combination of evolutionary
algorithms with quantum-aware numerical parameter optimizers
has not been studied yet.

Contribution. The main contribution of our work is the com-
bination of multi-objective GP with a quantum-aware parameter
optimizer to a hybrid approach. Thereby, we provide quantum al-
gorithm developers with a tool to automatically synthesise and
explore suitable quantum operators on representative instances of
quantum circuits. We evaluate the proposed approach and compare
the obtained results with an analytical solution [2] as well as a
non-hybridized version where the parameters are optimized by the
evolutionary algorithm.

We find that the hybridization with a quantum-aware optimizer
yields (i) Pareto-fronts of higher diversity compared to the non-
hybrid version, (ii) quantum operators of higher accuracy com-
pared to the non-hybrid version, and (iii) solutions which are
similar to the analytical solution.

2 APPROACH

Encoding and Search Space. Within the proposed genetic program-
ming approach, we represent an individual—i.e., a quantum operator—
as a list of genes, which resembles a stackless linear representa-
tion [18]. Each gene holds information regarding (i) an individ-
ual quantum gate, (ii) the qubits on which an individual gate is
applied, and (iii) the parameters of the individual gate if appli-
cable. A quantum operator can comprise a variable number of
individual gates. We define two sets of gates. First, the set of non-
parameterized gates NP = {H,X,Y,Z,CX,CY,CZ,SWAP}, and
second, the set of parameterized gates with variable parameters
Pyar = {RXQ, RYQ, RZQ, CUQ’/L(/J))),, RXXQ, RYYQ, RZZQ}. Based on
these two sets, we define the gateset as NP U Pyqr.

Search Process. The proposed hybrid genetic programming frame-
work takes as input a user-defined overall quantum circuit as, e.g.,

Position of target state —*

Z(l) Z: Oracle i
& H T Oracle :
e

Figure 2: Scope of operator search; Oracles: searched quantum
operator; dashed line: position of target quantum state

the one shown in Figure 2. The search aims to find a computation-
ally inexpensive implementation for the Oracle with high accuracy,
meaning that the observed output quantum state matches a user-
defined target quantum state.

Our genetic programming framework utilizes the NSGA-III al-
gorithm [7]. In each fitness evaluation, a numerical optimizer is
applied to find those parameters of the individual that maximize
the similarity between observed output and expected target quan-
tum state. Hereby, we build on existing knowledge on numerical
optimizers for parameterized quantum circuits [4, 5]. Note, that the
quantum states are always accessible as our approach is based on
quantum simulation. Further user configurations allow to customize
the search process'.

Mutator and Crossover Operations. The following mutation oper-
ators inspired from previous work [1, 15] have been implemented:
(M1) change of qubits to which the gate is applied, (M2-M5) inser-
tion, deletion, replacement, or movement of an individual gate in
the sequence, (M6) swap of 2 individual gates, and (M7-M9) replace-
ment, swap, or permutation of a whole subsequence of individual
gates. The implemented crossover operators are: (C1) one-point
crossover where the size of the parent individuals is preserved, (C2)
one-point crossover where the size of the children may be different
to those of the parent individuals, (C3) two-point crossover where
the size of the parent individuals is preserved, and (C4) two-point
crossover where the size of the children may be different to those
of the parent individuals. We further apply constraints to the in-
dividuals, which ensure a size between two and the user-defined
maximum size. Finally, duplicates are removed in each generation.

Fitness Evaluation. Especially in the current NISQ-era of quantum
computing, we face a trade-off between the accuracy of the obtained
solution and its size and complexity. Therefore, we implemented the
following fitness objectives: (1) the overlap—a commonly known
measure in quantum physics—evaluates the accuracy of a quantum
operation by measuring the similarity between the obtained output
quantum state and the user-defined target quantum state, based on
the scalar product of the two complex valued vectors [14]; (2) the
number of gates denotes the size of the individual; (3) the depth,
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which denotes the maximum number of gates applied to a single
qubit in the circuit; (4) the number of non-local gates denotes the
number of multi-qubit gates; (5) a low number of parameters is
supposed to speed-up the genetic programming approach and is
taken as a rough measure for the complexity of the numerical
optimization.

With the exception of the overlap, all fitness objectives should be
minimised. The latter three fitness values (depth, number of non-
local gates, number of parameters) have been identified in [17] as
the key measures for quantum circuit cost, and the overall number
of gates, the depth and the number of non-local gates have been
stated in [6] as key metrics for characterization of quantum circuits.

3 EVALUATION

We provide a quantitative comparison of the proposed framework,
coined HYBRID, with a non-hybridized version where parameters
are optimized within the evolutionary algorithm itself, referred to as
NON-HYBRID. For a quantitative comparison with NON-HYBRID, we
realized the concept of optimizing the parameters within the GP by
implementing an additional parameter mutation operator [15]. We
also compare the search-based results to an analytical solution (ANA).
The trade-off between accuracy and computational cost allows in
principle for a manifold of possible solutions, where the actual
feasibility can only be determined by using information from the
specific quantum device for execution. As this information is not
known a-priori, we view the diversity of the obtained solutions as
a crucial metric. In the rest of this section, we answer the following
research questions:

e RQ1: How does HYBRID perform regarding the diversity of
the resulting Pareto-fronts when compared to NON-HYBRID?

e RQ2: How does HYBRID perform regarding the resulting
accuracy (i.e., overlap) when compared to NON-HYBRID?

e RQ3: How do the search-based solutions perform when
compared to ANA?

3.1 Methodology

We apply HYBRID and NON-HYBRID to the state-preparation oper-
ator of the GM-QAOA algorithm [2] (cf. Oracle in Figure 1). Our
evaluation is based on the results of 30 runs for each approach using
different random seeds. We provide statistical information on the
respective quantities of interest for the last generation of the search
process. The statistical significance of the distributions is assessed
using the Wilcoxon signed-rank test [20] with a significance level of
a = 0.05. Furthermore, the effect size is measured according to [19]
and categorized according to [11], in order to provide information
on the strength of the statistical difference.

We answer RQ1 by evaluating the diversity of the whole Pareto-
fronts of the last generations using the Diversity Comparison Indica-
tor (DCI) [13]. Thereafter, we reduce the Pareto-fronts to only those
solutions with an overlap of more than 85%. It can be expected that
the cumulative error of sequential gates does not exceed the lack of
accuracy for lower overlaps. Regarding RQ2, we select the solution
with the highest overlap from the final Pareto-front to assess the
respective accuracy. For a comparison to the analytical benchmark
(RQ3), not only the overlap of the selected solutions, but all fitness
values are evaluated.
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The population size and number of generations have been chosen,
such that the maximum execution times of the two approaches are
roughly similar. Based on naive hyper-parameter tuning in form of
non-exhaustive trial & error the number of generations has been
set to 17 (HYBRID) and 700 (NON-HYBRID), and the population size
to 33 (HYBRID) and 1400 (NON-HYBRID), respectively. The maximum
size of the quantum operator individuals has been limited to 30 for
both approaches. The probabilities for mutation and crossover are
set to 1.0 (as provided in the Deap documentation?). We use the
Nelder-Mead [8] method as a common quantum-aware parameter
optimizer [3, 12].

3.2 Results and Discussion

RQ1: How does HYBRID perform when compared to NON-HYBRID re-
garding  the diversity of the resulting Pareto-fronts?
The results on the statistical eval-
uation of DCI-values are shown
in Figure 3. The figure presents
both, the diversity of the full final
Pareto-fronts, as well as the diver-
sity of the reduced Pareto-fronts, '
i.e., those individuals that have an ] *
overlap >85%. We see that HYBRID 0.5 4
performs largely better, i.e., yields | R
a largely higher diversity, than °1T ‘ ‘ ,
NON-HYBRID in both cases. i o]t ot
RQ2: How does HYBRID perform
when compared to NON-HYBRID re-
garding the resulting accuracy (i.e.,
overlap)? Figure 4 shows the over-
lap convergence of the final solu-
tion within each generation. We
see, that HYBRID already starts
with high overlap in the very first
generation and converges rather
fast to solutions of high accuracy. NON-HYBRID converges slower
and fails to a large extent at achieving overlaps above 90%.

0.02 q
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Figure 3: Box plots for
DCI values of final
Pareto-fronts (DCI),
and final reduced (over-
lap>85%) Pareto-fronts
(DCI>0.85)
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Figure 4: Overlap of final quantum operators; bright lines:
mean values & standard deviations for HYBRID (blue) and
NON-HYBRID (red); faint lines: results of individual runs
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Figure 5: Box plots for fitness values of full final Pareto-fronts
obtained by HYBRID (blue) and NON-HYBRID (red); left y-axis:
overlaps, right y-axis: remaining objectives

RQ3: How do the search-based solutions perform when compared to
ANA? The results for the final solutions are shown in Figure 5. The an-
alytical solution ANA (cf. Figure 1) is indicated by bold, gray bars with
fitness values of overlap = 100%, number of gates = 29, depth = 17,
number of non-local gates = 19, number of parameters = 11. As
shown in Figure 5, HYBRID succeeds in reaching the analytical over-
lap limit of 100%. Whereas NON-HYBRID fails to produce quantum
operators of high accuracy, the associated fitness objectives for the
computational cost are significantly better than for ANA as well as
HYBRID, respectively. We attribute this observation to the fact that
NON-HYBRID does not find optimal solutions in the region of the
search space, where individuals show high overlaps. Note, that the
number of parameters merely represents the cost for the parameter
optimizer within the evolutionary algorithm.

Threats to validity and limitations. Evidently, the obtained results
are specific to the presented use case and may vary significantly
for different problems. To mitigate this threat we have chosen the
use case to be a representative example of parameterized quantum
circuits for hybrid quantum-classical algorithms of the NISQ-era.
Additionally, we decided not to optimize the search parameters to
show “off-the-shelve performance”. Finally, HYBRID is limited by the
capabilities of quantum simulators, because in real quantum devices
the quantum state information is not accessible. In combination
with the exploding search space when dealing with individual gates
as genes, this restricts the application of our approach to small
quantum circuits.

4 CONCLUSION

In this paper, we present a multi-objective genetic programming
approach for the automated synthesis of parameterized quantum
operators, which is hybridized with a quantum-aware parameter
optimizer and takes trade-offs regarding accuracy and computa-
tional cost of quantum operators into account. Our hybrid approach
is compared to a non-hybridized version that does not employ a
numerical optimizer, as well as an analytical benchmark solution.
The evaluation shows that first, our approach yields Pareto-fronts
of higher diversity and solutions of higher accuracy compared to
the non-hybridized version, and second, the resulting quantum
operators are comparable to the analytical solution. In future, we
aim to apply our framework to other use cases and evaluate the
effects of different search configurations.
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