
111

A Model-Driven Framework for Composition-Based
Quantum Circuit Design

FELIX GEMEINHARDT, Johannes Kepler University Linz, Institute of Business Informatics - Software
Engineering, CDL-MINT, Austria
ANTONIO GARMENDIA, Johannes Kepler University Linz, Institute of Business Informatics - Software
Engineering, Austria
MANUEL WIMMER, Johannes Kepler University Linz, Institute of Business Informatics - Software
Engineering, CDL-MINT, Austria
ROBERT WILLE, Technical University of Munich, Chair for Design Automation, Germany

Quantum programming languages support the design of quantum applications. However, to create such
programs, one needs to understand the fundamental characteristics of quantum computing and quantum
information theory. Furthermore, quantum algorithms frequently make use of abstract operations with a
hidden low-level realization (e.g., Quantum Fourier Transform). Thus, turning from elementary quantum
operations to a higher-level view of quantum circuit design not only reduces the development effort but also
lowers the entry barriers for non-quantum computing experts.

To this end, this paper proposes a modeling language and design framework for quantum circuits. This
allows the definition of composite operators to advocate a higher-level quantum algorithm design, together
with automated code generation for the circuit execution. To demonstrate the benefits of the proposed
approach, coined Composition-Based Quantum Circuit Designer, we applied it for realizing the Quantum
Counting algorithm and the Quantum Approximate Optimization Algorithm. Our evaluation results show
that, compared to an existing state-of-the-art editor, the proposed approach allows for the realization of
both quantum algorithms on a high level with a substantially reduced development effort. In particular, the
proposed approach shows constant scaling when increasing the size of the investigated quantum circuits and
a lower change criticality when evolving existing quantum circuits.

CCS Concepts: • Computer systems organization → Quantum computing; • Software and its engi-
neering→ Abstraction, modeling and modularity.

Additional Key Words and Phrases: Quantum Computing, Quantum Software Engineering, Quantum Circuits,
Model-Driven Engineering, Quantum Software Languages

ACM Reference Format:
Felix Gemeinhardt, Antonio Garmendia, Manuel Wimmer, and Robert Wille. 2018. A Model-Driven Framework
for Composition-Based Quantum Circuit Design.ACM Trans. Quantum Comput. 37, 4, Article 111 (August 2018),
36 pages. https://doi.org/10.1145/1122445.1122456

Authors’ addresses: Felix Gemeinhardt, felix.gemeinhardt@jku.at, Johannes Kepler University Linz, Institute of Business
Informatics - Software Engineering, CDL-MINT, Linz, Austria; Antonio Garmendia, antonio.garmendia@jku.at, Johannes
Kepler University Linz, Institute of Business Informatics - Software Engineering, Linz, Austria; Manuel Wimmer, manuel.
wimmer@jku.at, Johannes Kepler University Linz, Institute of Business Informatics - Software Engineering, CDL-MINT,
Linz, Austria; Robert Wille, robert.wille@tum.de, Technical University of Munich, Chair for Design Automation, Munich,
Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
2643-6817/2018/8-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

111:2 Gemeinhardt, et al.

1 INTRODUCTION
Quantum Computing (QC) is an interdisciplinary field which relies on quantum mechanical phe-
nomena to process information. Continuous developments in the field justify to expect near-term
superiority compared to classical means of computation at least for certain applications such as
simulations in chemistry, optimization problems, or machine learning approaches [10, 22, 45].

Computations performed on a quantum computer are implemented with operations in terms of
quantum gates, in analogy to classical gates for conventional computation [15]. Such reversible
quantum gates, together with irreversible operations and concurrent classical computation, applied
on quantum data (e.g., qubits) in an ordered manner represent a quantum circuit. This so-called
quantum circuit model of QC is regarded as the most commonly used realistic model to run quantum
programs [62].
A universal fault-tolerant quantum computer would require millions of qubits of highest qual-

ity [27]. Whereas experimental realizations of such computers will potentially still take decades of
research, so-called Noisy Intermediate-Scale Quantum (NISQ) computers already exist today and,
therefore, may enable the bespoke near-term superiority of QC with respect to classical computa-
tion [70]. Hybrid quantum-classical algorithms, called Variational Quantum Algorithms (VQAs),
have been proposed to cope with the limitations given in the NISQ era [10], where the parameters
of the quantum circuit are optimized with classical means of computation. Therefore, quantum
algorithms are considered and developed which utilise either perfect or noisy qubits [8].

Nowadays, quantum programming languages, such as IBM’s Qiskit1, Google’s Cirq2, Microsoft’s
Q#3, or Amazon’s Braket4 offer the possibility to efficiently program and access quantum computers
provided by Cloud services. Furthermore, the programs can be executed on quantum simulators
locally or also via Cloud access. The field of Quantum Software Engineering (QSE) is emerging and
new tools are published on a regular basis as, e.g., recent pen-based programming solutions [4].
However, code is usually written at the qubit level and requires to understand basic fundamental
concepts of quantum physics, such as entanglement and superposition. Exceptions are represented
by emerging libraries and software development kits (e.g., IBM Qiskit) which offer higher-level
functionalities.

Such functionalities allow to raise the level of abstraction by using higher-level quantum opera-
tions (e.g., Quantum Fourier Transform (QFT) [62]) which occur frequently in quantum algorithms.
One example is the Quantum Phase Estimation (QPE) [62], which is depicted in Figure 1. The
illustration highlights the use of higher-level quantum operations and iterative patterns for the
definition of quantum algorithms. The QPE algorithm determines the eigenphase of a given quan-
tum operation (U -gate). This quantum operation is usually a higher-level gate, i.e., it is composed
of lower-level quantum gates. A controlled version of the U -gate is iteratively applied a certain
number of times (twice for 𝑈 2, three times for 𝑈 3, etc.) for each control qubit. Thereafter, the
bespoke QFT is another example of a higher-level, composite operation which is applied to the
circuit, before the quantum state is measured.
Therefore, utilizing high-level design concepts and composite operations enables to hide the

low-level realization and also promotes flexibility and complexity reduction. Furthermore, turning
from elementary quantum operations to such a higher-level design perspective also lowers the
entry barriers for non-quantum computing experts. The current lack of abstraction and reuse of

1https://qiskit.org
2https://quantumai.google/cirq
3https://docs.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-and-qdk
4https://aws.amazon.com/braket/?nc1=h_ls

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://qiskit.org
https://quantumai.google/cirq
https://docs.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-and-qdk
https://aws.amazon.com/braket/?nc1=h_ls

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:3

ȁ ۧ0

ȁ ۧ0

ȁ ۧ0

ȁ ۧ0

H

H

H

H

QFT

ȁ ۧΨ0 U2U U3 U4 ȁ ۧΨ𝑓

Legend

H Hadamard Gate

Controlled

U

QFT

Measurement Gate

Input Quantum Operation

Quantum Fourier Transform

Fig. 1. Quantum circuit for QPE based on [6]

code based on components has been pointed out in [73, 74] as major problems of current tools and
platforms.

Within the process towards higher abstraction and automation in the design of quantum software,
it seems reasonable to apply the lessons learned from decades of research on classical software
engineering to the field of quantum computing. Furthermore, due to its nascent character, the
field is widely lacking commonly accepted standards which calls for high levels of flexibility and
extensibility of the designed software artifacts.

In this work, we build on existing knowledge from the foundations of Model-Driven Engineering
(MDE) [12], and Software Language Engineering (SLE) [18] and transfer it to QSE. We go beyond
recent proposals of applying means of MDE to quantum circuit design (e.g., [2]) and present an
extensible language for creating quantum circuits which goes beyond the basic concepts at the qubit
level and an according modeling framework which we term Composition-Based Quantum Circuit
Designer (CoQuaDe). The proposed approach allows to generate modeling environments which
support a high-level quantum circuit design by the use of composite operations. These composite
operations may represent specific oracles, but also more general, frequently occurring operations
such as amplitude amplification and QFT. The latter kind can be defined dynamically promoting
reusability and variation.

The level of abstraction and automation is further increased by accounting for iterative patterns
in quantum algorithms as well as automated generation of quantum operations from classical data.
Moreover, the proposed approach clearly separates the semantics concerning the quantum circuit
itself and the specific quantum operations, which allows to add novel quantum operations without
the need of conducting changes on the language level. Therefore, we present two declarative
modeling languages to account for this separation of concerns. Note, that the proposed framework
is by design modular concerning the utilized backends, the target quantum programming language
for lower-level code generation, and the editor that is built on top as a front-end. Therefore, it
allows for future extensions of the rapidly evolving field of QC.
Our contributions can be summarized as follows: (𝑖) We provide modelling languages and an

according framework for the generation of modelling environments; (𝑖𝑖) we provide a framework
that allows for quantum circuit design on a higher level of abstraction and supported automated code
generation; (𝑖𝑖𝑖) we demonstrate the proposed approach for two well-known quantum algorithms;
(𝑖𝑣) we compare the resulting framework with a state-of-the-art editor for quantum circuits
regarding the development effort. We find that the proposed approach allows circuit design with
substantially reduced development effort. Furthermore, it shows constant scaling when increasing
the size of the investigated quantum circuits and a reduced change criticality when evolving existing
programs to larger sizes.

The remainder of this paper is structured as follows. Section 2 presents the related work. Section 3
presents an overview of the proposed framework. Details on its prototypical implementation are
provided in Section 4 and Section 5. In Section 6, we demonstrate and evaluate the proposed approach
using the realization of the Quantum Counting algorithm [62] and the Quantum Approximate

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:4 Gemeinhardt, et al.

Optimization Algorithm (QAOA) [26]. We conclude the paper and provide future research directions
in Section 7.

2 RELATEDWORK
Many vendors of quantum computing provide quantum programming languages and software
development kits (e.g., IBM’s Qiskit, Google’s Cirq, Microsoft’s Q#, Amazon’s Braket). Further-
more, vendor-agnostic tools have emerged for higher portability (e.g., XACC [58], Project Q [77],
QuantumPath [44]) with an steadily increasing number of upcoming tools.
Current quantum software technologies have been classified in [73], ranging from quantum

programming languages to software optimizers and quantum error correction tools. Based on the
presented quantum software layers [73], our proposed approach addresses the quantum application
layer. The latter is characterized by (𝑖) the combination of the used design tool as well as (𝑖𝑖)
the underlying programming language. The most useful quantum simulators and design tools
have been found to be the ones of major quantum computing manufacturers, such as IBM, along
with some exceptions such as the web-based Quirk5 quantum circuit editor [73]. The quantum
programming languages can be classified as imperative, functional, and other (e.g., circuit-based
and declarative) programming languages. Our approach represents a circuit design tool providing a
declarative modelling language, which supports domain-specific concepts for developing quantum
circuits. This language is categorised as an external language because we create a dedicated custom
syntax and an independent parser [28] for the domain-specific concepts. Instead of embedding these
domain-specific concepts in an already available general-purpose language (as done by Qiskit, Cirq,
etc.), external languages are designed to solely provide domain-specific concepts to shield the user
from the complexity of general-purpose programming languages. Usually, this is accomplished by
providing powerful concepts and an intuitive syntax suitable for domain experts. The combination
of external declarative languages with design environments and simulators allows for a visual
design of quantum circuits. The latter has been highlighted in the Talavera Manifesto [68, 74] as a
requirement for agnostic quantum software development, together with hiding implementation and
platform details from the user. This is also the goal of low-code development platforms, that aim to
reduce the development effort and the amount of code required to implement the system [11, 24],
and thus, allow the inclusion of domain experts who are not highly skilled in programming. Thus,
our approach focuses on the quantum application layer by proposing a combination of an external
declarative language with a quantum circuit design environment and, thereby, allows for visual
representation of circuits. This class of quantum circuit editors is discussed in detail in the following.

The IBM Quantum Composer6 provides a set of customizable tools that allow to build, visualize,
and run quantum circuits, where a direct code generation to OpenQASM 2.0 and Qiskit is supported.
Similar features are offered within the QI Editor in Quantum Inspire [56], and the QPS quantum
circuit modeler which supports circuit execution on multiple platforms7. The Quirk8 graphical
modeler on the other hand comes with a large set of applicable gates and also allows to create
composite operations, but does not provide automatic code generation from the built circuit. The
QuAntiL9 circuit transformer enables the translation of a given circuit into different languages as
well as modifications on a qubit and gate level of abstraction. Available graphical quantum circuit
editors are summarized and evaluated in Table 1 regarding their features of

• automatically generating code from quantum circuits (Automation),
5https://algassert.com/quirk
6https://quantum-computing.ibm.com/composer/files/new
7https://quantum-circuit.com/docs
8https://algassert.com/quirk
9https://quantil.readthedocs.io/en/latest/user-guide/circuit-transformer

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://algassert.com/quirk
https://quantum-computing.ibm.com/composer/files/new
https://quantum-circuit.com/docs
https://algassert.com/quirk
https://quantil.readthedocs.io/en/latest/user-guide/circuit-transformer

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:5

• grouping quantum gates to composite gates (Grouping), and
• defining abstract composite gates which require further configuration before execution
(Configuration).

The latter feature allows the definition of reusable quantum software components. For example,
considering Figure 1, the QFT represents a composite gate the implementation of which can be
defined in a flexible manner by keeping the number of qubits as an unspecified parameter. Thus, the
abstract composite gate shows a higher level of reusability and has to be configured by providing
the number of qubits before its application and execution.

Table 1. Supported features of current graphical editors (yes (✓), no (✗))

Graphical Editor Automation Grouping Configuration

IBM Quantum Composer [06.11.2023] ✓ ✓ ✗

QI editor [v1.0] ✓ ✗ ✗

QPS modeler [0.9.53] ✓ ✗ ✗

Quirk [v2.3] ✗ ✓ ✗

QuAntiL [v1.0.1] ✓ ✗ ✗

In Table 1, Automation has been evaluated as ✓if at least one code generator is provided. The
support of pure static definitions (Grouping) would be sufficient for a certain fully specified
oracle but not, e.g., for the general QFT. In contrast, the support of abstract composite gates
(Configuration) has to comprise the possibility of defining such gates in a manner which is
not specific to a certain application in a quantum circuit, but rather offers further configuration
possibilities (e.g., the unspecified number of qubits) to raise the level of reusability. Note, that the
number of qubits represents just one example for the configuration of abstract composite gates.
The latter may also comprise, a.o., (potentially many) control qubits, building the inverse of an
operation, or the definition of iterative patterns (e.g., the controlled U -gates in Figure 1). Table 1
illustrates that the majority of available graphical editors do not support composite gate definitions,
particularly for configurable definitions. Particularly, when it comes to such convenient definitions
of custom blocks, and other higher-level functionalities of quantum algorithm design, graphical
editors are inferior to available textual solutions.

Above, we have argued for the class of graphical editors to be the design tools for comparison of
our proposed approach and figured out the IBM Quantum Composer to be the most advanced tool
when it comes to abstraction and automation features.

For completeness, we want to note that there are even higher-level quantum software devel-
opment platforms available which allow to design quantum software above the circuit level, i.e.,
design and run whole quantum applications and workflows in a unique environment [73]. These
platforms usually integrate classical as well as quantum resources and consider not only gate-based
quantum computing but also other models like quantum annealing. Thus, these platforms utilize
and integrate existing design tools for the respective quantum hardware, i.e., are located on top
of the layer that is addressed with the proposed approach. Related challenges for such platforms
are the integration of these heterogeneous approaches [29] as well as the lack of quality quantum
software development [79]. Prominent examples for these higher-level platforms are Orchestra from
Zapata10, the Quantum Algorithm Design (QAD) platform from Classiq11, and the QPath software
tool12 [44]. Zapata Orchestra focuses on the definition and execution of hybrid quantum-classical
10https://www.zapatacomputing.com/orquestra-platform
11https://www.classiq.io
12https://www.quantumpath.es

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://www.zapatacomputing.com/orquestra-platform
https://www.classiq.io
https://www.quantumpath.es

111:6 Gemeinhardt, et al.

workflows. For the composition of the latter, quantum-specific (e.g., Qiskit) as well as classical
domain-specific open-source libraries (e.g., Psi413, Tensorflow14, Quantlib15) are integrated into
a unified environment. The Quantum Algorithm Design (QAD) platform of Classiq focuses on
the automatic synthesis of complete quantum circuits from high-level textual inputs. Thus, whole
quantum algorithms are created automatically from ideas without coding at the quantum gate
level. The QPath platform implements a complete quantum software lifecycle. It integrates tools
for quantum and classical software development for gate-based and quantum annealing based
approaches. For example, the Quirk software tool (cf. Table 1) represents the integrated circuit
editor to allow for the graphical design of quantum circuits.
The application of software engineering methods and principles from MDE to the field of QC

has been discussed several times in the literature. In this regard, modeling approaches for the
design of quantum software have been suggested, e.g., by Pérez-Delgado et al. [66] who proposed
a Unified Modeling Language (UML) [63] extension to allow for the addition of basic quantum
elements. Furthermore, the use of UML-profiles has been suggested by Pérez-Castillo et al. [64]. In
contrast, Ali et al. [1] developed a conceptual model of quantum programs, whereas in previous
work we presented a domain-specific language for the development of hybrid algorithms [33].
A model-based approach to quantum circuit design comprising code generation features and a
meta-model for modeling quantum circuits has been proposed in [2]. However, in contrast to our
work the proposed method does neither provide abstraction in terms of gate composition, nor does
it allow to add novel quantum operations without changing the underlying meta-model. Finally, the
role of MDE for software modernization towards quantum software has been investigated [47, 65],
and it has also been discussed and envisioned in the context of Model-Driven Architecture [59].
Finally, we would like to mention reviews on quantum programming frameworks (e.g., [30, 55, 76])
and quantum software engineering in general [85].

Overall, there exists a variety of graphical as well as non-graphical solutions for the manipulation
of quantum circuits where currently only the latter kind promotes high-level design features and
automation. Furthermore, first attempts have been made to apply the principles of MDE to the field
of QC. In this work, we continue this line of research and provide an extensible modeling language
together with a modeling framework which (𝑖) allows for a flexible and convenient definition and
application of abstract composite operations, and (𝑖𝑖) provides automated code generation. Besides
that, the proposed approach also comes with a clear separation between the quantum circuit syntax
and the definitions of the quantum operations which allows to build and use customized libraries.

3 COMPOSITION-BASED QUANTUM CIRCUIT DESIGNER
In the following, we provide a condensed overview of the proposed approach for composition-based
quantum circuit design (Section 3.1) and discuss our long-term vision for abstract quantum circuit
design based on software libraries of reusable components (Section 3.2).

3.1 Overview
This section describes the proposed approach to develop modelling environments for quantum
circuits. Figure 2 provides a corresponding overview on the basic setting. The approach allows the
quantum language designer to extend the language with a set of quantum operations with code
generation facilities (label 1), such as elementary quantum gates (e.g., Hadamard and RZ), state
preparation operations (e.g., reset gates), measurement (e.g., in computational basis), composite

13https://psicode.org/
14https://www.tensorflow.org/
15https://www.quantlib.org/

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://psicode.org/
https://www.tensorflow.org/
https://www.quantlib.org/

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:7

quantum
language
designer

quantum
language
user

Quantum Operations

Elementary Quantum Gates
State Preparation

Measurement
Composite Quantum Gates

Loop Operations

1 Definition of
Quantum

Operations Library

2 Automatic generation

Code
Generation
Template

3 Modelling of
Quantum Circuits

Quantum Circuit Project

q0

q1

H RZ

H RZ

4 Automatic generation

Quantum Language

quantum
platform
provider

5 Quantum
Circuit Execution

Hadamard (0)
Hadamard (1)
RZ (0)
RZ (1)

Modeling
Environment for

Quantum
Operations

Modeling
Environment for

Quantum Circuits

Executable
Code

Fig. 2. Overview of the proposed process to build custom quantum operations, model quantum circuits, and
generate executable code

quantum gates (e.g., amplitude amplification and oracles), and iterative quantum operations. These
quantum operations may be provided within specific libraries, e.g., for quantum chemistry, opti-
mization, or machine learning. The quantum language designer can extend the quantum modelling
language with as many quantum operations as required.
After the customization of the quantum operations, the framework is able to automatically

synthesize a custom modelling environment for quantum circuits (label 2). In this way, the quantum
language users can design quantum circuits with the quantum operations defined by the designer
of the quantum language (label 3).
When the user has completed designing the quantum circuits, the framework will be able to

automatically generate the artifacts (label 4), to execute these circuits on a specific quantum
platform (label 5). Note, that the target languages for circuit execution may come with various
levels of abstraction. For example, Qiskit shows abstraction levels ranging from individual pulses
to whole quantum algorithms, i.e., even above the circuit level. However, our approach builds on
the circuit-level abstractions of these target languages. Thus it represents a declarative manner
to model quantum circuits and provides automated code generation to the target languages for
execution of these circuits. Thereby, it harnesses concepts of the low-code paradigm to modelling
quantum circuits, which shields the user from the complexity of general-purpose programming
languages. This feature is in contrast to most of the current quantum programming languages,
which as internal languages, require knowledge of general-purpose programming languages used
as host language (e.g., Python). At the same time, quantum circuit designers need scalable modelling
concepts to build realistic circuits. Thus, our approach addresses different target users, i.e., domain
experts who are not necessarily also highly skilled in programming. However, our tool allows
automated code generation to general-purpose programming languages, which can be used as the
basis for further development by expert programmers.

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:8 Gemeinhardt, et al.

We describe the proposed language (Section 4), as well as the tool support (Section 5) to realize
the overall framework structured in Figure 2 in more detail in the upcoming sections.

3.2 Perspectives and potential impact
With the proposed composition based circuit designer, we lay the foundation for our envisioned
quantum software reuse system. Alternative reuse schemes are either unsystematic copying, pasting
& modifying, as well as systematic reuse approaches, such as universal modules, templates, libraries,
or design patterns [61].

For classical software systems, libraries are advocated for abstracting, selecting, specializing and
integrating software artifacts [53]. Furthermore, first attempts already exist for vendor-specific
quantum software libraries (e.g., Qiskit Circuit Library16), and software libraries have been demon-
strated to be highly successful for managing complexity of reuse intensive software for automated
production systems [80, 81]. Similarly as for quantum software, the latter require flexible, reusable
control software that can be easily maintained and evolved [81].

As with our proposed approach, to enhance scalability to large library systems, classical library-
based software reuse systems usually foresee a role separation regarding the definition, creation,
and use of software libraries [61, 80]. Furthermore, techniques from MDE are extensively used due
to the required high degree of abstraction [81].

Thus, we envision purpose-specific library-based quantum software reuse systems which account
for all related issues regarding, e.g., system structure, management, categorization, component
selection, and library release. For a reuse system to be effective, the intellectual effort for the
user to select, specify, and implement a certain software component has to be minimal [53]. This
requirement is particularly fulfilled for application generators [53], i.e., the language category of
our proposed approach, since domain-specific abstractions and automated code generation for
executing the programs are provided and, thus, many of the required design and implementation
steps are eliminated.

4 QUANTUM CIRCUIT MODELLING LANGUAGE
The proposed approach, comes with the separation of the quantum operation definitions, from the
quantum circuit syntax. Therefore, first the meta-model for the quantum circuit design is introduced
(Section 4.1), before we continue with a description of the quantum library which comprises
the bespoke definitions of quantum operations (Section 4.2). Then, we provide information on
certain implemented quantum operations (Section 4.3) and we show how quantum circuits can be
represented using the proposed framework with a simple example (Section 4.4). Finally, we discuss
extension aspects of the proposed approach (Section 4.5).

4.1 Quantum circuit meta-model
The meta-model for the proposed language is depicted in Figure 3, by using an object-oriented
meta-modelling language. The representation of the language is structured into (i) classes which
regard definitions of the quantum circuit itself, i.e., excluding the quantum gates, and (ii) classes
regarding the quantum operations which are applied to the circuit. The language for the quantum
circuit design is inspired by current functionalities of state-of-the-art software development kits
for quantum computing (e.g., Qiskit), fundamental quantum information theory [62], as well as
identified patterns in quantum computing17.

16https://qiskit.org/documentation/apidoc/circuit_library.html
17https://patterns.platform.planqk.de/pattern-languages/af7780d5-1f97-4536-8da7-4194b093ab1d

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://qiskit.org/documentation/apidoc/circuit_library.html
https://patterns.platform.planqk.de/pattern-languages/af7780d5-1f97-4536-8da7-4194b093ab1d

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:9

The QuantumCircuit may contain Registers, either of QuantumRegister or ClassicRegister type.
Indeed, the quantum circuit should contain at least one QuantumRegister. This restriction is defined
through an OCL constraint [14]. However, the quantum register object does not have to be created
explicitly by the user. Our approach would automatically create a default register transparently
by just specifying the number of qubits. The possibility of having multiple QuantumRegisters in a
QuantumCircuit allows a conceptual separation of qubits according to their function, and should
simplify the procedure of merging and partitioning of quantum circuits.
Furthermore, a QuantumCircuit consists of multiple Layers, reflecting the sequenced nature of

quantum computation. One Layer may include QuantumOperations, which may take controlQubits
but take at least one targetQubit. Thus, the concept of Layers ensures that gates are not simultane-
ously applied to the same qubit, i.e., within one layer, each qubit can only be addressed once as a
target or control qubit. The selection of qubits happens via the Selector class with a combination of
ElementSelector, referring to single qubits, and RangeSelector, referring to a range of qubits (e.g.,
from 0 to 5). Moreover, it can be observed that all containment references that allow objects of
type Selector, except classicSelector, may contain many selector objects, i.e., RangeSelector and El-
ementSelector. In this way, it is possible to address different selector objects, because it could be
that several qubits are not in range or not even in the same register. The reference to the abstract
Register class allows to address different QuantumRegisters.

Quantum Circuit Design

QuantumCircuit

ClassicRegister

numberOfBits: Int

QuantumRegister

numberOfQubits: Int

<<abstract>>

Register

<<abstract>>

NamedElement

name: String

LayerSelector

RangeSelector
begin: Int
end: Int

ElementSelector

index: Int

1..*

Quantum Operations

<<abstract>>

QuantumOperation
inverseForm: Boolean

StatePreparation MeasurementCompositeQuantumOperation ElementaryQuantumGate

CompositeLoopQuantumOperation

iterations: Int [0..1]
incrementalTargetQubits: Boolean [0..1]
incrementalControlQubits: Boolean [0..1]
targetQubitsBlockSize: Int [0..1]
controlQubitsBlockSize: Int [0..1]
controlQubitsIterationType: ITERATION_TYPE [0..1]
targetQubitsIterationType: ITERATION_TYPE [0..1]
incrementalBlockTargetQubits: Boolean [0..1]
incrementalBlockControlQubits: Boolean [0..1]
incrementBy: Int [0..1]
loop: ConcreteLoopOperation [0..1]

ITERATION_TYPE
<<enumeration>>

NONE
SHIFT
CHANGE_BLOCK

theta: Double [0..1]
phi: Double [0..1]
lambda: Double [0..1]

loopTargetQubits

loopControlQubits

fixedControlQubits

fixedTargetQubits

OperationRealization

qubo: Qubo [0..1]
operation: ConcreteQuantumOperation

1..*

ClassicControl

value: Int
0..1

<<merge>>

Selector

Layer

1..1

*

1..*

*

1..*

* * * *

classicBits

controlQubits

targetQubits

classicSelector

1..*

1..* 1..*

Fig. 3. Meta-model for quantum circuit design

Regarding the QuantumOperation, stating one controlQubit means that the respective gate is
converted to its single-controlled version, whereas a size of controlQubits, which is greater than 1,
results in a multi-controlled gate. Furthermore, this class takes the inverseForm attribute, which

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:10 Gemeinhardt, et al.

causes a transformation to the inversed form of a given quantum operation if set to True. A
QuantumOperation may be further conditioned on a ClassicControl object, which in turn has a
reference to the binary value of a selected single classical bit, or the binary encoded value of a
selected ClassicRegister. Furthermore, the relation to the OperationRealization class serves as the link
to the definition of the concrete quantum operation as described in Section 4.2, as well as classical
information inputs in Quadratic Unconstrained Binary Optimization (QUBO) form as described in
Section 4.5.
We made a distinction of different kind of QuantumOperations such as ElementaryQuantum-

Gate, Measurement, StatePreparation, and CompositeQuantumOperation.
The ElementaryQuantumGate class represents the elementary quantum operations, i.e., single-

qubit gates, which may also be parameterized. The three angles theta, phi, and lambda are sufficient
to define any elementary qubit rotation in this regard [62]. Specifyingmultiple targetQubits results in
an iterative application of the respective ElementaryQuantumGate to the qubits given by targetQubits.
This definition should ease the design of frequently occurring layers, where the same gate is applied
to each qubit. Such patterns may be used, e.g., to avoid repeated parameter specification, and for
initializing the quantum state to the state of equal superposition [57].

The quantum operations which are irreversible quantum gates by definition are StatePreparation
and Measurement operations. These classes may not only comprise common instructions, e.g.,
resetting qubits to |0⟩ or measuring in the computational basis, but also more general irreversible
operations. Examples include the preparation of a certain state which is taken to be given at
the beginning of a particular quantum algorithm, or the measurement in a basis other than the
computational basis.
The Measurement type of gates additionally require classicBits to save the qubits information.

The reference to Register allows for a proper assignment to the specific QuantumRegister and
ClassicRegister, respectively. Stating multiple targetQubits and classicBits results in the same iterative
application as for the ElementaryQuantumGate.

QuantumOperationLibrary

<<abstract>>

NamedElement

name: String

1..*

reversible: Boolean
type: Class
targetQubits: Int
controlQubits: Int

reverse

0..1

ConcreteQuantumOperation

allowsQubo: Boolean
classicBits: Int
theta: Boolean
phi: Boolean
lambda: Boolean

ConcreteLoopOperation
allowsFixedControlQubits: Boolean
allowsFixedTargetQubits: Boolean
allowsControlQubitsIterationType: Boolean
allowsTargetQubitsIterationType: Boolean
allowsControlQubitBlockSize: Boolean
allowsTargetQubitBlockSize: Boolean
allowsIncrementControlQubits: Boolean
allowsIncrementTargetQubits: Boolean
allowsIterations: Boolean
allowsMultipleOperations: Boolean
allowsIncrementBy: Boolean
loopTargetQubits: Int
loopControlQubits: Int
fixedTargetQubits: Int
fixedControlQubits: Int

<<abstract>>

QuantumOperationDefinition

Fig. 4. Meta-model for the quantum library

The CompositeQuantumOperation is a composite gate to aggregate arbitrary elements in its
composition. This gate may consist of multiple Layers, representing its decomposed form. These

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:11

Layers in turn comprise QuantumOperations, which closes the cycle. Note that to avoid infinite
loops, a constraint is defined that an operation cannot admit a layer that contains an operation
equal to any of the parent operations.

The CompositeLoopQuantumOperations enables to represent iterative patterns as a single compos-
ite quantum operation. Such iterative patterns occur frequently, e.g., in VQAs [10, 26, 67], Quantum
Arithmetics [49], Shor’s Algorithm [7], or QPE and QFT [62]. The CompositeLoopQuantumOpera-
tion requires some additional references to Selector for specification. The fixedTargetQubits and
fixedControlQubits specify the qubits which serve as target and control qubits of the loop operation,
but do not change between the iterations of the loop. The loopTargetQubits and loopControlQubit
describe the overall target- and control qubits for the gate which is iteratively applied within
the CompositeLoopQuantumOperation. They must not be confused with the targetQubits and con-
trolQubits of the CompositeLoopQuantumOperation itself. In order to ensure high flexibility of the
realized concrete CompositeLoopQuantumOperations, the class in the meta-model of the quantum
circuit has several attributes. Depending on the required functionality of the respective concrete
CompositeLoopQuantumOperation, these attributes are internally handled in different ways and are
therefore further illustrated in Section 4.3.
Additional restrictions to prohibit errors when using the proposed framework are introduced

with OCL constraints [14]. Constraints of this kind ensure (𝑖) that QuantumRegisters do not overlap,
and (𝑖𝑖) within a single operation, a targetQubit must not be a controlQubit at the same time. The
latter does not hold true for CompositeLoopQuantumOperations where the bespoke constraint is
only required for each iteration but not for the whole CompositeLoopQuantumOperation itself.

Note that this meta-model does not contain the concrete definition of any quantum gate. This is
because we promote a flexible approach to dynamically add QuantumOperations. This requirement
is due to the large number of quantum operations and the possibility of working with quantum
libraries which may be specifically tailored for certain purposes. Obviously, the use of inheritance
to extend the quantum circuit meta-model may be a solution, but this involves the frequent
modification of the quantum circuit meta-model. In order to avoid this issue, there are several
solutions, such as: the application of the type object pattern [48], multi-level modeling [54], among
others. The proposed solution is based on the type object pattern by the use of a library meta-model
to define quantum operations dynamically [31].

4.2 Quantum library meta-model
Figure 4 shows the meta-model that describes how to define the concrete quantum operations. The
root of this meta-model is the QuantumOperationLibrary which may include several Quantum-
OperationDefinitions. The latter class takes the Boolean attribute reversible. This attribute ensures
that manipulations which are unique to reversible gates, like reversing or controlling, only act on
reversible quantum operations. To introduce the required restrictions, we use OCL constraints. The
reference to the class itself (reverse) allows to easily define the inversed form of a certain quantum
operation. Setting certain values for targetQubits or controlQubits allows to fix the number of qubits
in the gate definition. Therefore, the proposed language allows to define QuantumOperations either
for an arbitrary or fixed number of qubits. The former is preferable in terms of reusability because
the defined operation is independent of the number of qubits it should act on. The latter on the
other hand is required for specific quantum operations, e.g., oracles, which are defined only for a
certain application.
A QuantumOperationDefinition may be either a ConcreteLoopOperation or a ConcreteQuantu-

mOperation. The ConcreteLoopOperations within the QuantumOperationLibrary may make use
of several attributes, which are specified by the according allows*-Booleans (cf. Figure 4). These
attributes have been chosen to allow a high degree of expressiveness concerning the possible

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:12 Gemeinhardt, et al.

specific operations. However, to avoid an extensive list of sparsely used attributes, these may be
internally handled in different ways by the different ConcreteLoopOperations. Examples hereof
are shown in Subsection 4.3. Furthermore, the number of loopTargetQuibts, loopControlQubits,
fixedTargetQubits, and fixedControlQubits can be fixed to certain integer values in the definition of
the ConcreteLoopOperation.
The ConcreteQuantumOperation takes a Boolean which denotes whether a classical input in

QUBO-form is allowed for the creation of the respective ConcreteQuantumOperation. Furthermore,
for Measurement operations, the number of classicBits may be fixed analogously to the targetQubits
and controlQubits for the QuantumOperationDefintion. The restriction, that classicBits must not be
stated for operations other than Measurements, is again realized with an OCL constraint. Finally, a
ConcreteQuantumOperationwhich represents a parameterized gate, can take three angle parameters
(theta, phi, lambda) for its definition.

4.3 Implemented CompositeLoopQuantumOperations
In the following, the three currently implemented concrete CompositeLoopQuantumOperations
are described. Whereas two of them (StaticLoop, Power2Loop) allow for a high-level realization of
frequently occurring patterns in quantum circuits, the third one (GeneralLoop) is designed to be
more expressive in order to realize also highly specific loop patterns. The description of their usage
and the implemented CompositeQuantumOperations will follow in Section 6 as the latter are more
specific to the provided use cases compared to the CompositeLoopQuantumOperations.

The first operation is the StaticLoop which represents an iterative application of certain Quantu-
mOperations where the targetQubits and controlQubits for the applied gates do not change between
iterations. It allows iterations, i.e., the number of times the gates are appended to theQuantumCircuit.
It shall be further noted, that the StaticLoop is the only implemented CompositeLoopQuantumOper-
ations that allows multiple QuantumOperations as input (allowsMultipleOperations=True). All other
CompositeLoopQuantumOperations-specific parameters (allows*) are False.
The second CompositeLoopQuantumOperations is the Power2Loop, which is useful to realize

loop patterns as they occur, e.g., within QPE, QFT, Quantum Arithmetics, and Shor’s Algorithm.
Here, the respective gate is applied 2𝑥 times, with 𝑥𝜖N0, to fixed targetQubits and the controlQubit
changes in each iteration. Within each iteration of the Power2Loop, the StaticLoop is utilized for
the repeated applications to unchanged qubits. The following additional parameters specify the
Power2Loop:

• incrementControlQubits: A Boolean which specifies whether the controlQubit is incremented
or decremented between successive iterations.

• incrementTargetQubits: A Boolean which specifies the number of gate applications for each
iteration. Here, True results in an increasing number of gate applications for each controlQubit,
i.e., in the first iteration the single controlled gate is appended 20 times and in the last (z-th)
iteration 2𝑧−1 times, where 𝑧 is given by the number of stated controlQubits. Analogously,
False reverses the number of applications starting with 2𝑧−1 for the first and 20 for the last
iteration and controlQubit, respectively.

The StaticLoop and Power2Loop already cover iterative patterns of quantum algorithms, as they
occur, e.g., within VQAs [10, 26, 67], or QPE and QFT [10]. However, to facilitate and provide higher
expressiveness, we implemented a third, more exhaustive CompositeLoopQuantumOperations, called
GeneralLoop. This operation allows to realize less well specified loops as they occur, e.g., in ansätze
for VQAs or Quantum Arithmetics. To avoid an excessive amount of parameters, those are internally
handled in different ways even within distinct forms of the GeneralLoop as described in detail in
Appendix A. The set of minimum required parameters has been distilled by investigating various

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:13

Fig. 5. Quantum Circuit for the generation of a 5-qubit GHZ-state (taken from [20])

loop patterns (e.g., from [49], [62], the PlanQK Pattern Atlas18, the Qiskit Textbook19). Instead of
going into the details of those parameters, the use of the GeneralLoop is subsequently discussed
based on an illustrative example.

4.4 Representation of quantum circuits
The chosen example to demonstrate the application of the proposed approach is the standard
circuit to generate the GHZ-state [38]. This fully entangled state is important, e.g., for distributed
quantum information processing and quantum communication [23]. Taking the quantum circuit
for generating the GHZ-state for 5 qubits (Figure 5), the required quantum operations comprise a
Hadamard gate on the first qubit, followed by a series of single-controlled Pauli-X gates (CNOTs).
Therefore, this minimal example comprises elementary quantum gates (Hadamard), as well as
iterative components (CNOTs).

The according instructions to implement this circuit with the proposed framework are given in
Listing 1. The QuantumCircuit contains one QuantumRegister with five qubits, and two Layers. The
first Layer contains an ElementaryQuantumGate, specifically the Hadamard gate (ConcreteQuantu-
mOperation) which acts on the first qubit (targetQubits [0]). In the second layer, the CNOT gates are
implemented using the concrete GeneralLoop operation, which acts on the whole quantum circuit
(targetQubits [(0-4)]). Basically, within the GeneralLoop arbitrary blocks of control and target qubits
can be iteratively applied according to some defined pattern with potentially varying sizes of the
qubit blocks and potentially non-varying qubit indices between iterations.

The required parameters for the loop of the present example result from its definition as a Loop
along with the allows* statements, where only non-default values for these parameters have to be
stated by the user. The CNOTs inside theGeneralLoop have control qubits 0-3 (loopControlQubits) and
target qubits 1-4 (loopTargetQubits). Whereas the latter parameters are equally required for all loop
operations, the following are specifically used in the GeneralLoop. Because the CNOT only takes
one control qubit and target qubit, blocks of targetQubitsBlockSize=1 and controlQubitsBlockSize=1
are applied, where the selected qubits are SHIFTed in each iteration (targetQubitsIterationType,
controlQubitsIterationType). Here, the incrementTargetQubits and incrementControlQubits statements
result in an ascending shift of qubits with each of the four iterations.
Note that the chosen example solely serves to demonstrate the application of the proposed

framework to a very minimal example. Some of the given instructions would not be necessary
for a full specification but have been stated to explain the parameters of the GeneralLoop (cf.

18https://patterns.platform.planqk.de/pattern-languages/af7780d5-1f97-4536-8da7-4194b093ab1d
19https://qiskit.org/textbook/preface.html

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://patterns.platform.planqk.de/pattern-languages/af7780d5-1f97-4536-8da7-4194b093ab1d
https://qiskit.org/textbook/preface.html

111:14 Gemeinhardt, et al.

Listing 1. Implementation of 5-qubit GHZ-state quantum circuit
1 QuantumCircuit GHZ {
2 QuantumRegister qr {
3 NumberOfQubits 5
4 }
5 Layer L1 {
6 ElementaryQuantumGate {
7 operation Hadamard
8 targetQubits [(0)]
9 }

10 }
11 Layer L2 {
12 Loop {
13 loop GeneralLoop
14 targetQubits [(0-4)]
15 operations (Pauli -X)
16 loopTargetQubits [(1-4)]
17 loopControlQubits [(0-3)]
18 incrementTargetQubits
19 incrementControlQubits
20 targetQubitsBlockSize 1 -- default: 1
21 controlQubitsBlockSize 1 -- default: 1
22 targetQubitsIterationType SHIFT
23 controlQubitsIterationType SHIFT
24 iterations 4 -- default: maximum possible number of iterations
25 }
26 }
27 }

Listing 1). Thus, for example, in the GeneralLoop the number of iterations of the loop would
default to the maximum possible number in a circuit, i.e., leveraging all available qubits. Overall,
the GeneralLoop may be specified by 11 parameters, seven of which have been discussed in the
presented example. The remaining four parameters would allow to specify (𝑖) the change of target
and control qubit blocks and (𝑖𝑖) target and control qubits indices which should vary between
iterations (cf. Appendix A). Thus, the GeneralLoop with its 11 parameters is notably more complex
to specify than, e.g., the Power2Loop (two parameters). However, once the parameters are mastered,
it is expressive enough to be applied to the majority of existing iterative patterns in quantum circuits
as they are encountered, e.g., in [49], [62], the PlanQK Pattern Atlas20, the Qiskit Textbook21.

4.5 Extension aspects
Extensibility by separation of syntax: As outlined in Section 3.2, the aim of this paper is to provide

a model-driven approach as the basis for a potentially large library system for quantum software
reuse. Particularly in this context, only modeling languages that encourage modularity can be
considered for organizing reusable elements in large libraries [37]. Thus, in other domains that
have to deal with extensive complexity and large libraries of reuse-intensive software, such as
in automated production systems, the roles of library developers and application developers are
usually separated [61, 80]. Usually, the application developer can not only reuse provided software
components, but is also able to define and store new components according to the rules defined by
the library extension mechanism. This enables scaling to thousands of software components stored
within well-managed library systems. To realize this kind of scalability, it is required to customize
existing and define new quantum operations and store them in the library system without the need
to change the underlying meta-model. We realize this by separating the quantum circuit syntax

20https://patterns.platform.planqk.de/pattern-languages/af7780d5-1f97-4536-8da7-4194b093ab1d
21https://qiskit.org/textbook/preface.html

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://patterns.platform.planqk.de/pattern-languages/af7780d5-1f97-4536-8da7-4194b093ab1d
https://qiskit.org/textbook/preface.html

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:15

Listing 2. Addition of the Hadamard gate to CoQuaDe
1 {
2 "name": "Hadamard",
3 "reversible": true,
4 "type": "ElementaryQuantumGate",
5 "allowsQubo": false,
6 "theta": false,
7 "phi": false,
8 "lambda": false
9 }

from the concrete quantum operation syntax (cf. Section 4.1 and 4.2). Thus, our language does not
define any specific quantum operation as, for example, the approach proposed in [2].

An example of gate addition may be seen in Listing 2. In this example, we add the features of the
Hadamard gate conforming to the language defined in Figure 4. Likewise, elementary gates like
Pauli-X, and Pauli-Y may be defined as well. Notice in line 4, that the type is ElementaryQuantum-
Gate, but besides this type, our language supports the addition of CompositeQuantumOperation,
CompositeLoopQuantumOperation, StatePreparation and Measurement (see Figure 3). Thus, in our
approach novel quantum operations can be easily added to the quantum software library without
touching the underlying language. Note, that we provide a detailed description regarding the
technical implementation of the syntax separation and extension by novel quantum operators in
our repository22.

Language extension for QUBO-inputs. The features of the proposed approach described above
allow for the design of quantum circuits that may be parameterized. Therefore, in principle,
circuits for VQAs can be implemented. However, the ansatz of a VQA may not be fixed, as for
example the hardware-efficient ansatz of VQE [51], but rather be defined by problem-specific
information like, e.g., the cost function in the case of QAOA [26]. In order to automate the creation
of ConcreteQuantumOperations based on this problem-specific input, the framework is extended at
the meta-model level with the Operation class (cf. Figure 3) and the additional allowsQubo parameter
for ConcreteQuantumOperations (cf. Figure 4). The Operation class serves as the link for the cost
function input in QUBO-form,i.e., a matrix where the entries represent the coefficients of the cost
function. Because this matrix is symmetric, the framework requires an upper triangle matrix as
input to avoid redundant information and input errors.
Note that the described extension is rather specific to QAOA and combinatorial optimization

problems, whereas the features of the proposed framework described in the previous sections are
more generally applicable. Nevertheless, the former is included in the framework to allow the
creation of parameterized quantum circuit for QAOA, which represents a prominent VQA [10], at a
high level of automation and abstraction. It should be highlighted that VQAs, which do not require
problem-specific information in their ansatz definition, can be represented with the proposed
framework without the described extension for QUBO-inputs.

Feature Summary: Overall, we propose a framework for quantum circuit modeling that allows for
building dedicated libraries for reusable quantum software components as envisioned in Section 3.2.
We go beyond mere aggregation of lower-level target code since the proposed approach promotes
(𝑖) abstraction by hiding low-level gates, (𝑖𝑖) variation due to the possibility of a flexible definition
of CompositeQuantumOperations and of having multiple targetQubits and controlQubits, (𝑖𝑖𝑖) com-
position with the concept of CompositeQuantumOperations and CompositeLoopQuantumOperations,
and (𝑖𝑣) library support by the use of the type object pattern.
22https://github.com/jku-win-se/composition-quantum-circuit

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://github.com/jku-win-se/composition-quantum-circuit

111:16 Gemeinhardt, et al.

Furthermore, the proposed approach introduces the loop concept for implementing iterative
patterns of quantum circuits and integrates automated code generation features for lower-level
target quantum programming languages. Our declarative approach and the language-agnostic
definitions of quantum circuits and quantum operations at a model level additionally allow for
graphical user interfaces and error-checking at a higher design level. The separation of the operator
and circuit syntax allows for sufficient extensibility of libraries to account for novel quantum
subroutines, thus, laying the fundamentals regarding our envisioned system for quantum software
component reuse.

5 TOOL SUPPORT
We implemented the proposed approach, called CoQuaDe, atop of the Eclipse Modeling Framework
(EMF) [78] as an Eclipse plug-in available at: https://github.com/jku-win-se/composition-quantum-
circuit. The meta-models introduced above are implemented in Ecore, which is the meta-modeling
language provided by EMF. In addition, we also built a textual editor for quantum circuits atop of
Xtext [9], which is a framework compatible with EMF to develop programming languages.

As explained in Section 4, the main objective of designing the library meta-model is due to the
fact that the quantum operations can be added dynamically. To do this, we implemented an Eclipse
Extension Point23 in which the developer is able to add ElementaryQuantumGates, CompositeQuan-
tumOperations, StatePreparation, and Measurement operations. Of course, the developer should
provide all the data related in order to add a ConcreteQuantumOperation or ConcreteLoopOperation.
To demonstrate the feasibility of the approach, we implemented the following operations: Reset
(StatePreparation); Measurement in computational basis; Hadamard, Pauli-Z, Pauli-X, Swap, and
RZ as ElementaryQuantumGates; a Grover unitary, a general cost unitary and mixing unitary, a
QFT gate, as well as two QFT-element gates as CompositeQuantumOperations; and a StaticLoop,
Power2Loop, and GeneralLoop as CompositeLoopQuantumOperations.
We demonstrate the feasibility of the resulting tool by implementing two uses cases, namely

the Quantum Counting algorithm and QAOA, which will be explained in the next section. In both
cases, we were able to directly generate Qiskit code from each designed circuit. It should be further
highlighted at this point that the proposed approach is agnostic concerning the lower-level quantum
programming language. However, for demonstration purposes, we rely on the Python-based Qiskit
SDK [3] as described bellow. The tool architecture as well as an example for the procedure of the
automated code generation to the Qiskit target language is provided in the the repository.

6 DEMONSTRATION AND EVALUATION
In the following, we will demonstrate and assess the potential of the proposed composition-based
approach (CoQuaDe) for reducing the development effort regarding (i) non-parameterized quantum
circuits for fault-tolerant quantum computing, as well as (ii) parameterized quantum circuits for
algorithms of the NISQ era (VQAs). Therefore, the following research questions (RQs) will be
answered:

• RQ1: How are non-parameterized quantum circuits implemented using CoQuaDe?
• RQ2: How are parameterized quantum circuits for VQAs implemented using CoQuaDe?
• RQ3: What is the succinctness of the proposed approach compared to plain grouping of quantum
gates?

To assess RQ1, we apply the approach to the QPE algorithm, which is a prominent representative of
quantum algorithms for fault-tolerant quantum computation [75], and a central building block of
many other quantum algorithms (e.g., HHL algorithm [42], Shor’s algorithm [7]). Specifically, we
23https://www.eclipse.org/

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://github.com/jku-win-se/composition-quantum-circuit
https://github.com/jku-win-se/composition-quantum-circuit
https://www.eclipse.org/

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:17

will treat the Quantum Counting algorithm [62] (cf. Subsection 6.1), which represents an instance of
QPE. RQ2 will be assessed by implementing the QAOA algorithm [26] as a representative of VQAs,
where the quantum circuit is parameterized (cf. Subsection 6.2). In contrast to other VQAs (e.g.,
VQE), in QAOA the concrete form of the circuit is furthermore only specified by additional classical
input in QUBO-form. Regarding RQ1 and RQ2, we will propose two alternatives for modelling the
respective quantum circuits. Finally, we evaluate the succinctness of the proposed language for
both demonstration cases by comparing with the IBM Quantum Composer (RQ3) regarding (𝑖)
the number of required actions, (𝑖𝑖) the Halstead software metrics [41], and a metric to measure
the criticality of evolving programs. The results of our evaluation are presented and discussed in
Subsection 6.3. The IBM Quantum Composer has been preferred over other graphical editors (cf.
Section 2) as it supports composite gates and it is well documented and maintained24. However,
the IBM Composer only supports plain grouping of gates for composite gate definitions. Thus, by
comparing to the IBM Composer we assess the impact of those features of our proposed approach,
which go beyond simple gate grouping (cf. Section 4.5).

Regarding the presented demonstration case implementations, it should be noted that advancing
to higher levels of abstraction is always possible, if the according operation definitions are provided.
The latter would get arbitrarily specific though, and potential reusability options would be lost.
Therefore, we will justify the chosen level of composition for a fair comparison in Section 6.3.

6.1 Demonstration Case:Quantum Counting
The Quantum Counting algorithm outputs the approximate number of solutionsM of a given search
problem, which is generally unknown in advance. The algorithm basically represents a combination
of the Grover iteration with the phase estimation technique based upon the QFT [62]. Being an
application of the QPE procedure [62], Quantum Counting estimates the eigenphase of the Grover
unitary, with a certain accuracy, and success probability. From the eigenphase, M can be calculated
with classical means. The quantum registers for the circuit are made up by counting qubits, where
the required number depends on the desired success probability and qubits for implementing the
Grover unitary. Next, we illustrate and describe the implemented quantum circuit.

6.1.1 Overview on the Quantum Circuit. The first step in the Quantum Counting algorithm is the
state initialization, which consists of Hadamard gates applied to all qubits. The subsequent gates of
the circuit represent the QPE algorithm for Quantum Counting via several Grover unitaries which
are controlled on the counting qubits, and the inverse QFT on those qubits. One Grover unitary is
composed of (𝑖) Hadamards applied to each targetQubit, (𝑖𝑖) a problem-specific oracle, and (𝑖𝑖𝑖) an
amplitude amplification operation. The repeated application of controlled Grover unitaries with
different repeats for different control qubits encodes the phase of this unitary to the control qubits
in the Fourier basis via the phase kickback mechanism [62]. The inverse QFT is finally used to
translate this information to the computational basis before the state is being measured.

6.1.2 Implementation of the Quantum Circuit. The described demonstration case is taken from the
IBMQiskit Textbook25. Such textbook examples serve educational and demonstration purposes very
well but come with the disadvantage of using insufficiently small numbers of qubits for realistic
applications. Therefore, our evaluation is limited to a demonstration case, where we expect smaller
benefits of our approach, compared to large quantum circuits of the same kind. The generated
quantum circuit is depicted for various levels of abstraction in Figures 6-7, which are described
next.

24https://quantum-computing.ibm.com/composer/docs/iqx/new
25https://qiskit.org/textbook/ch-algorithms/quantum-counting.html

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://quantum-computing.ibm.com/composer/docs/iqx/new
https://qiskit.org/textbook/ch-algorithms/quantum-counting.html

111:18 Gemeinhardt, et al.

1 2 3 4 5

Fig. 6. High level view of generated quantum circuit for Quantum Counting (Alternative 1); visualization
conducted with [3]

1 2 3 4 5

Fig. 7. First order decomposition of generated quantum circuit for Quantum Counting (Alternative 1); visual-
ization conducted with [3]

The state initialization can be realized with a single Hadamard (ElementaryQuantumGate) which
takes all qubits from the circuit as targetQubits (label 1).
For the subsequent phase encoding via repeated applications of the controlled Grover unitary,

the Power2Loop has been utilized (label 2). Here, incrementControlQubits as well as incrementTar-
getQubits has been set to True. The Grover unitary itself has been implemented as a Concrete-
QuantumOperation with a fixed number of targetQubits= 4, where stating one controlQubit results
in a single controlled version of the respectiveCompositeQuantumOperation (Appendix C: Figure 12).

The inverse QFT has been implemented for two alternatives. Regarding the first one, the swap
and rotation part are implemented separately (Alternative 1). For this purpose, the GeneralLoop
operation has been utilized to generate the swap block (Figure 6, 7: label 3) with the Swap gate
(ElementaryQuantumGate) as the applied gate and the attributes of the CompositeLoopQuantu-
mOperations being specified as given in Listing 3. No fixedControlQubits, fixedTargetQubits, and
Iterations have been defined. Next, the GeneralLoop is again used to realize the rotations (Figure 6,
7: label 4) within the inverse QFT. The gate, which is iteratively applied four times within the loop,
is given by the implemented QFT_Element (CompositeQuantumOperation). It shall be noted, that
two versions for this composite gate are possible: first, as an object which just utilizes concepts
and methods from the Qiskit SDK [3] in its definition, and second as an object which relies on the
concepts of our proposed approach (e.g., Power2Loop) in its definition. With the required Compos-
iteQuantumOperation being specified, the rotation part of the inverse QFT is generated with the
attributes for the GeneralLoop as presented in Listing 4 (note that no controlQubits are given for the
CompositeLoopQuantumOperation). Again, no fixedControlQubits, fixedTargetQubits, and Iterations
are specified. After their creation, the swap and rotation part of QFT are applied to the counting
qubits of the quantum circuit.

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:19

Listing 3. Implementation of Layer 3 for Quantum Counting (label 3) using CoQuaDe
1 Layer L3 {
2 Loop {
3 loop GeneralLoop
4 targetQubits [(0-3)]
5 operations (Swap)
6 loopTargetQubits [(0-1)]
7 loopControlQubits [(2-3)]
8 incrementControlQubits
9 targetQubitsBlockSize 1

10 controlQubitsBlockSize 1
11 controlQubitsIterationType SHIFT
12 targetQubitsIterationType SHIFT
13 }
14 }
15 }

Listing 4. Implementation of Layer 4 for Quantum Counting (label 4) using CoQuaDe
1 Layer L4 {
2 Loop {
3 loop GeneralLoop
4 targetQubits [(0-3)]
5 operations (QFTElement)
6 loopTargetQubits [(0-3)]
7 incrementTargetQubits
8 incrementBlockTargetQubits
9 targetQubitsBlockSize 1

10 targetQubitsIterationType CHANGE_BLOCK
11 }
12 }
13 }

An alternative way of obtaining the inverse QFT is possible in case a dedicated CompositeQuan-
tumOperation is provided in the QuantumOperationLibrary, where the attribute inverseForm= 𝑇𝑟𝑢𝑒

causes a conversion of the original QFT to its inversed version (Alternative 2). The final element of
the QuantumCircuit is represented by a single Measurement (label 5) with the counting qubits of
the circuit being defined as its targetQubits.
Note that all mentioned CompositeQuantumOperations are defined for an arbitrary number of

qubits, and only fully specified when being applied to the circuit with the given targetQubits and
controlQubits. The only exception is the Grover unitary, which includes a specific oracle, and is
therefore defined as a ConcreteQuantumOperation with a fixed number of targetQubits.

Overall, we implemented a quantum circuit for the Quantum Counting algorithm as an instance
of QPE at different levels of abstraction. Within Alternative 1, the inverse QFT gate is explicitly
built using our framework, whereas in Alternative 2 we suppose to have a QFT gate provided
in the quantum library. Finally, it should be noted that the CoQuaDe is expressive enough to
realize dynamic quantum circuits, with the dynamic QPE [13, 19] as one example. However, we
refrain from going into the details of treating dynamic quantum circuits at this point, as they are
more concerned about efficient low-level implementation and compilation of circuits, rather than
high-level functionalities26.

6.2 Demonstration Case: QAOA
The application of VQAs has been shown useful for exploiting the potential of current NISQ
devices [10]. Such algorithms take a certain parameterized quantum circuit, called ansatz, where the
26https://research.ibm.com/blog/ibm-quantum-roadmap-2025

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://research.ibm.com/blog/ibm-quantum-roadmap-2025

111:20 Gemeinhardt, et al.

parameters of the circuit are classically optimized for a particular optimization function. The final
output is then obtained based on measurement results from the optimized quantum circuit. One
prominent example of VQAs is the QAOA, which has been specifically developed for combinatorial
optimization problems. Being inspired by the adiabatic evolution of the quantum system given in
quantum annealing [26], QAOA integrates information from the cost function of the optimization
problem, for the definition of its ansatz.

6.2.1 Overview on theQuantum Circuit. The parametrized quantum circuit of QAOA comprises two
unitaries: the cost unitary and the mixing unitary. The cost unitary is defined by the cost function of
the combinatorial optimization problem, which is usually stated as a QUBO problem [36], whereas
the mixing unitary does not require further information for its definition. The resulting ansatz,
which acts on the quantum system, is given by an alternating application of these two unitaries for
a certain number of times. It should be noted, that there are multiple adaptations to the original
QAOA, which may either address the cost unitary (e.g., [84]) or the mixing unitary (e.g., [39]). In
its original version, with the choice of the mixing unitary mentioned above, the initial state of the
quantum system is represented by the state of equal superposition.

6.2.2 Implementation of the Quantum Circuit. Again, the investigated demonstration case is based
on the small example provided in the IBM Qiskit Textbook27. In this particular case, the combina-
torial optimization problem takes only four variables, resulting in a quantum circuit size of four
qubits. The implemented circuits are depicted at different levels of abstraction in Figure 8-9, and
the implemented cost unitary is provided in Appendix C (Figure 13). The implementation of the
quantum circuit for QAOA is presented in Listing 5.

1 2 3

Fig. 8. High level view of generated quantum circuit for QAOA (Alternative 2); visualization conducted with
[3]

1 2 3

Fig. 9. First order decomposition of generated quantum circuit for QAOA (Alternative 2); visualization con-
ducted with [3]

27https://qiskit.org/textbook/ch-applications/qaoa.html

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://qiskit.org/textbook/ch-applications/qaoa.html

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:21

Listing 5. Implementation of QAOA quantum circuit with CoQuaDe
1 QuantumCircuit QAOA {
2 QuantumRegister qr {
3 NumberOfQubits 4
4 }
5 ClassicRegister cr {
6 NumberOfBits 4
7 }
8 Layer L1 {
9 ElementaryQuantumGate {

10 operation Hadamard
11 targetQubits [(0-3)]
12 }
13 }
14 Layer L2 {
15 Loop {
16 iterations 2
17 operations (CostUnitary(SampleMatrix),MixerUnitaryQAOA)
18 targetQubits [(0-3)]
19 loop StaticLoop
20 loopTargetQubits [(0-3)]
21 }
22 }
23 Layer L3 {
24 Measurement {
25 operation MeasurementCompBasis
26 targetQubits [(0-3)]
27 classicBits [(0-3)]
28 }
29 }
30 }

In order to realize the described circuit with our framework, the first step is to create the initial
state. This happens again by applying a Hadamard gate (Listing 5: Layer L1) with all qubits defined
as targetQubits (Figure 8-9: label 1). Thereafter, the cost and mixing unitary have to be specified. As
described above, the cost unitary can be built based on the cost function coefficients. In order to
automate this process for arbitrary coefficients, we make use of the language extension described
in Section 4.5. The output of the routine is a ConcreteQuantumOperation representing the cost
unitary that is automatically stored to the QuantumOperationLibrary. Using this routine, therefore,
relieves the user from the knowledge of how to build the respective unitary based on the problem
information. The mixing unitary for the original QAOA, due to its generality, is supposed to be
readily available as a CompositeQuantumOperation in the used library. At this point, it is possible
to proceed in different ways. First, the new cost unitary and the mixing unitary can be applied
to a QuantumCircuit, which is subsequently stored. This QuantumCircuit can now be used like a
ConcreteQuantumOperation within the StaticLoop to be iterated for a specified number of times
(Alternative 1). Alternatively, one can pass a list of QuantumOperations to the StaticLoop (label 2) and
thereby circumvent the additional step of creating an intermediate Quantum Circuit (Alternative 2).
The latter alternative is represented in Layer L2 of Listing 5. Finally, the measurement is conducted
by a single Measurement gate (Listing 5: Layer L3) with multiple targetQubits (label 3).

In summary, a quantum circuit for QAOA can be implemented in two alternative ways. Within
the first, an intermediate QuantumCircuit is created, stored, and subsequently iteratively applied to
the main circuit. The second alternative does not require this intermediate step and allows for a
direct application of the respective unitaries.

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:22 Gemeinhardt, et al.

6.3 Comparison Study
6.3.1 Experimental Setup. We compare the proposed approach to the IBM Quantum Composer.
The latter has been identified in Section 2 as the most powerful framework in the peer group of
our proposed approach, i.e., quantum circuit designers based on external declarative programming
languages. The IBM Composer has been identified as the only quantum circuit designer, which
supports code generation as well as gate composition features. We evaluate the development effort
to design quantum circuits for QPE and QAOA. The comparison of textual and graphical declarative
languages requires the application of according metrics. Thus, we evaluate the approaches in terms
of (𝑖) the number of actions taken by the user, (𝑖𝑖) the Halstead software metrics [41], and (𝑖𝑖𝑖) the
MICOSE4aPS metric [80]. Therefore, we evaluate the effort of creating novel quantum circuits using
well-known quantitative software quality metrics (Halstead) and a newly defined metric (number
of actions), as well as measures to assess the criticality of evolving existing circuits (MICOSE4aPS).
Note, that the chosen metrics allow for a direct comparison of text-based (CoQuaDe) and graphical
(IBM Composer) editors that are built on top of an external declarative programming approach.
Whereas a basic explanation of these metrics and their application is provided in the following, we
refer the interested reader to Appendix B for a detailed description.

Regarding the number of actions, we interpret the declaration of a quantum circuit as an attributed
typed graph [43]. Based on this representation, the required number of actions is defined as the sum
of (i) created objects (nodes of the graph), (ii) user-specified non-default attributes (attributes of the
nodes), and (iii) links between objects (edges of the graph). The Halstead metrics [41] represent
a family of common software metrics to assess the program quality by quantitative means and
have also been proposed by [86] to be applied in the context of quantum programs. These metrics
are based on the assumption, that each program can be viewed as a collection of tokens where
each token may be either an operator or an operand. Based on the given unique operators and
operands as well as overall operators and operands of a given program, the following metrics can
be computed: vocabulary, length, volume, difficulty of understanding and writing the program,
implementation effort, and implementation time. The MICOSE4aPS metric [80] has been proposed
to measure the modularity, i.e., the ease of software reuse, specifically in the context of automated
production systems. Thus, in contrast to the number of actions and the Halstead metrics, which
are based on a static analysis of a single program, the MICOSE4aPS metric assesses the effort and
criticality of changing and evolving existing programs related to software reuse. The MICOSE4aPS
metric has been specifically designed to remove the insufficiency of other metrics, such as Source
Lines Of Code (SLOC), for deriving the criticality of implementation changes [80]. Furthermore,
we perceive the application of this metric particularly appropriate since we envision a quantum
software reuse system based on software libraries similar to the available systems for the classical
reuse-intensive software of automated production systems (cf. Section 3.2).
Having defined the metrics to be applied, sound composition levels of the circuits have to be

chosen to allow for a fair comparison between CoQuaDe and the IBM Quantum Composer. It
should be noted that advancing to higher levels of abstraction is always possible if the according
operation definitions are provided. The latter would get arbitrarily specific though, and reusability
would be lost. Regarding the quantum circuit for QPE, we have chosen a level of composition
where still only (i) unspecified and generally applicable CompositeLoopQuantumOperations, and
(ii) frequently occurring composite gates are utilized. One example of the latter is the QFT gate,
which is an integral part of the HHL algorithm [42], Shor’s algorithm [7], and QPE [62]. The
problem-specific, non-reusable Grover unitary represents the only necessary exception to the
statement above. Therefore, we analogously build this unitary in advance with the IBM Quantum
Composer and view its generation and application just as two actions to ensure a fair comparison.

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:23

Table 2. Metrics regarding number of actions regarding the QPE and QAOA use case for different number of
qubits (Alt. 2 each); CoQuaDe / IBMQuantum Composer

QPE8 QPE16 QPE32 QAOA4 QAOA16 QAOA56
objects 19/43 19/323 19/65731 14/70 14/826 14/9586
links 5/107 5/2391 5/1114415 6/100 6/1360 6/15960
non-default parameters 32/13 32/35 32/127 21/37 21/313 21/3313
actions 56/163 56/2749 56/1180273 41/207 41/2499 41/28859

We conducted analogously with elementary quantum gates that are not supported by the IBM
Quantum Composer to avoid an artificially high number of actions in its evaluation. We want to
highlight at this point, that the creation of controlled composite gates is currently not supported by
the IBM Quantum Composer. It is only feasible by utilizing OpenQASM code, which is generated
in advance with the Qiskit SDK. In contrast, the CoQuaDe allows for a very simple application of
composite gates in their controlled version. We evaluate QPE circuits of different sizes to assess the
scaling properties of the two approaches, i.e., QPE circuits of 8, 16, and 32 qubits are measured. Note
that for the evaluation, we view the Grover unitary as an opaque gate with an arbitrary number
of qubits. This is possible because we do not consider the specific implementation of the Grover
unitary in the evaluation. Thus, the QPE circuit is scalable without further redefinitions.
Concerning the quantum circuit for the QAOA algorithm, the situation is slightly different.

Besides the generally applicable StaticLoop, we utilize two unitaries which are specific to the
standard version of the QAOA algorithm: the cost unitary and the mixing unitary. The former is
only specified given the QUBO-input as described in Section 4.5, whereas the latter is independent
of the optimization problem at hand. Adaptations to the original QAOA, which regard different
cost and mixer unitaries are a field of active research (e.g., [5, 40, 71, 72, 84, 87]). Therefore, we aim
to build a QuantumOperationLibrary specifically for quantum combinatorial optimization, with the
two implemented unitaries as a starting point. Further included quantum operations may comprise
adaptations to the standard QAOA, but also unitaries for other VQAs (e.g., VQE) and non-VQAs (e.g.,
Grover Adaptive Search [25, 35]). In contrast to the QPE circuit, for QAOA we counted the required
actions for the composite gate definitions in the implementation with the IBM Quantum Composer.
We evaluate the QAOA circuits for 4, 16, and 56 qubits. Note, that different circuit sizes solely
require a redefinition of the QUBO-input. Since our evaluation metrics are invariant regarding the
specific values of the QUBO input, we use random inputs of the respective circuit sizes.

6.3.2 Results. The results of the evaluation are summarized in Tables 2-4.
Table 2 shows the metrics related to the number of actions when using CoQuaDe and the IBM

Quantum Composer.
For the small QPE8, i.e., the QPE circuit with 8 qubits, except for the number of non-default

parameters, all number of actions components are smaller when using CoQuaDe compared to the
IBM Composer. Notably, the gap increases significantly when scaling the number of qubits to 16
and 32. The lowest increase is observed for the number of non-default parameters, whereas the
number of links goes up the most when scaling to larger circuits and using the IBM Composer.
Regarding the number of actions, the respective figure remains constant when scaling to larger
circuits for CoQuaDe and is increased 17-fold (QPE8-QPE16) and 429-fold (QPE16-QPE32) for the
IBM Composer.
For the QAOA use case, similar trends can be observed. Again, the number of actions remains

constant for CoQuaDe when evolving to larger circuits and increases 12-fold (QAOA4-QAOA16,
QAOA16-QAOA56) for the IBM Composer. Note, that the latter increase is less pronounced for the

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:24 Gemeinhardt, et al.

Table 3. Halstead metrics regarding the QPE and QAOA use case for different number of qubits (Alt. 2 each);
CoQuaDe / IBMQuantum Composer

QPE8 QPE16 QPE32 QAOA4 QAOA16 QAOA56
unique
operands 25/16 25/28 25/52 22/34 22/298 22/3258

overall
operands 44/120 44/2426 44/1114542 32/137 32/1673 32/19273

unique
operators 13/8 13/8 13/8 11/13 11/13 11/13

overall
operators 26/43 26/323 26/65731 19/72 19/828 19/9588

vocabulary 38/24 38/36 38/60 33/47 33/311 33/3271
length 70/163 70/2749 70/1180273 30/209 30/2501 30/28861
volume 367/747 367/14212 367/6971743 257/1161 257/20710 257/336967
difficulty 11/30 11/347 11/85734 8/26 8/36 8/38

effort 4203/22420 4203/4925516 4203/
5.977*1011 2058/30406 2058/755749 2058/

1.295*108

time 233/1246 233/273639 233/
3.206*1010 114/1689 114/41986 114/719824

Table 4. Modularity computed by MICOSE4aPS metric for circuit changes regarding number of qubits

CoQuaDe IBM Quantum Composer
QPE8-QPE16 0.58 0.30
QPE16-QPE-32 0.58 0.11
QPE4-QPE-32 0.58 0.11
QAOA4-QAOA16 0.57 0.16
QAOA16-QAOA56 0.57 0.16
QAOA4-QAOA56 0.57 0.16

QAOA use case than for the QPE use case although the number of qubits grows exponentially for
QAOA and linearly for QPE. This highlights the strong dependence of the circuit size and scaling
complexity on the respective use case.

Table 3 summarizes the obtained results for the Halstead software metrics. Since we are particu-
larly interested in the development effort, among the various Halstead metrics, we specifically focus
on the difficulty and effort in the following. Note that the time is per definition directly related to
the effort by 𝑡𝑖𝑚𝑒 =

𝑒 𝑓 𝑓 𝑜𝑟𝑡

18 as outlined in Appendix B. Regarding the difficulty and effort increase
between CoQuaDe and the IBM Composer for the QPE use case, we observe a strong increase in
difficulty and effort when using the IBM Composer, especially when going from QPE16 to QPE32.
In contrast, as with the number of actions, all Halstead metrics remain constant for CoQuaDe when
scaling to larger circuit sizes.
The observed trends for the QAOA use case are similar. Table 3 shows, that the advantages

of CoQuaDe are less pronounced for the difficulty, compared to the effort. When using the IBM
Composer, the difficulty and effort when scaling to larger circuit sizes show an 1.4-fold and 25-fold
increase, respectively. Again, with CoQuaDe, the metrics remain the same.

Finally, Table 4 shows the modularity of the programs with respect to changes related to scaling
to larger circuit sizes. For the QPE use case, CoQuaDe shows modularities that are 2-5 times higher

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:25

than those of the IBM Composer. For the QAOA use case, the respective increase is 3-fold. Note,
that the MICOSE4aPS represents a metric that is normalized, i.e., ranges from 0 to 1.

6.3.3 Discussion. In summary, by using CoQuaDe, we were able to develop quantum circuits for
QPE (RQ1) as well as QAOA (RQ2) for different alternatives.

Regarding RQ3, the succinctness of our approach is evaluated against plain grouping of quantum
gates by comparing to the IBM Quantum Composer. The succinctness is assessed by measuring
the development effort using metrics for static analyses of single programs (number of actions,
Halstead software metrics), and also for the criticality and modularity regarding the changes when
scaling circuits to larger instances using the MICOSE4aPS metric. We found a significant increase
between CoQuaDe and the IBM Composer regarding the number of actions, the difficulty, and
the effort. Furthermore, whereas using CoQuaDe comes with constant scaling due to the use of
composite gates, the scaling for the IBM Composer heavily relies on the structure of the iterative
patterns and composite gates given in the respective circuit. Considering the underlying quantities
for the Halstead metrics (cf. first four rows in Table 3), the advantages of using CoQuaDe are
particularly pronounced for the overall number of operators and operands. This indicates that
the unique entities of CoQuaDe and the IBM Composer are similar, and the reduced development
effort originates from a reduced number of calls of these entities. We attribute the advantages of
using CoQuaDe to its abstraction features which go beyond simple gate aggregation. Relating
to the features summary provided in Section 4.5, particularly the concepts of variability (i.e., the
possibility of defining configurable composite gates) and the loop concept allow to significantly
reduce the development effort of building quantum circuits.

Regarding modularity, CoQuaDe shows a significant increase, highlighting the reduced change
criticality and effort when scaling given circuits to larger instances. Here, the Selector concept
allows to scale to larger instances by just changing the qubit indices that make up the range for the
composite gate applications.
Overall, using the CoQuaDe allows for quantum circuit design on a higher level of abstraction

where we find a significantly reduced development effort, particularly for creating large quantum
circuits, and a reduced change criticality with respect to evolving existing ones.

However, we have to note that the Halstead metrics represent a common relative software quality
metric for comparative purposes. Thus, only the underlying base quantities, i.e., number operators
and operands, have an absolute meaning and the derived quantities may only be considered for a
relative comparison. Therefore, although the Halstead metrics capture the difficulty and effort of
understanding and implementing a program, these metrics do not substitute a thorough qualitative
user study in terms of measuring the learnability, understandability, or usability of the proposed
approach. Thus, dedicated exhaustive rigorous user studies are kept as future work.

6.4 Threats to validity
The following threats to validity [82] can be identified.

Construct validity. Threats to construct validity regard the extent to which the chosen evaluation
accuratelymeasures what is supposed to be assessed. First, the chosenmetricsmust be appropriate to
assess the succinctness regarding text-based (CoQuaDe) as well as graphical (IBMComposer) editors
that rely on a declarative programming approach. The Halstead metrics and the MICOSE4aPS metric
represent standard quantitative approaches to measure software quality and change criticality,
respectively, and can be applied according to the above requirement. However, we additionally
define the number of actions as a further suitable metric to assess the succinctness of both types of
editors. Second, there are no specific definitions and implementations of the chosenmetrics available
in the context of quantum software engineering. Although in [86], the use of Halstead metrics

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:26 Gemeinhardt, et al.

and definition of quantum operators and operands is proposed, no concrete implementations are
suggested. We mitigated this threat by defining and applying the chosen metrics (cf. Appendix B)
as similar as possible to the classical software domain and had intense discussions with experts
in classical software quality evaluation. The third threat regards the choice of the IBM Quantum
Composer as the state-of-the-art tool to compare our approach. Wemitigated this threat by carefully
studying existing literature on the categorization of the quantum software stack as outlined in
Section 2. We find the IBM Quantum Composer to be the most feasible choice for comparison
since it addresses the same layer of the stack and represents a declarative approach to circuit
design. Among the identified tools of this class, the IBM Composer has been found to be the most
advanced in terms of provided abstraction and automation (cf. Section 2). A final threat concerns
the subject selection, i.e., whether the QPE and QAOA algorithms are representative examples of
non-parameterized and parameterized quantum circuits. We mitigated this risk by a preceding
literature search.

Conclusion validity. Threats to conclusion validity regard the adequacy of drawn conclusions
with respect to the relationships in the observed data. First, the chosen metrics represent standard
quantitative approaches to measure software quality and change criticality. However, the metrics
only have relative meaning and do not directly assess the usability and development effort in
practical settings. Thus, it may be possible that the actual effort is different due to user interface or
tool support reasons. Thus, using quantitative methods only limited statements can be provided
regarding understandability, learnability, usability, maintainability and portability of the proposed
approach. Therefore, we plan qualitative user studies where the latter can be assessed in a method-
ologically rigorous way [69]. Second, we found that, by using sophisticated composite operators
going beyond simple grouping concepts, our proposed approach shows the advantages of (𝑖) a
reduced development effort, (𝑖𝑖) constant scaling properties when scaling up the circuits, and (𝑖𝑖𝑖)
a strong dependence on the chosen use case with respect to the scaling properties of the IBM
Composer. Thus, it is possible that for certain small use cases, using the IBM Composer reduces the
development effort. We anticipate use case dependent break-even-points between CoQuaDe and
the IBM Composer with respect to the number of qubits, which are indicated but not rigorously
assessed by our evaluation.

Internal validity. Threats to internal validity regard the question, of whether the proposed
approach or any other factor led to the observed outcome. In general, the evaluation of an approach
by the designers of this approach brings in considerable bias. Therefore, we followed a structured
approach to define, design, and conduct the evaluation study to mitigate this risk. Future work
plans are to involve external researchers and practitioners for replicating the evaluation study.
Furthermore, regarding the causal relationship between our introduced concepts and the obtained
results, the advantages compared to the IBM Composer may not necessarily be caused by our
concepts in practical settings. For example, shortcuts could have been introduced in the form of
available overly specific composite gates. We mitigated these risks as explained in Section 6.3.1,
e.g., by the chosen level of composition for the used quantum operations.

External validity. Threats to external validity comprise generalization issues of the conducted
experiments and evaluation. First, the evaluated demonstration cases represent examples of non-
parameterized as well as parameterized quantum circuits, respectively. Nevertheless, we cannot
generalize our findings regarding the implementation possibilities to arbitrary quantum circuits
of the bespoke kinds. Furthermore, the chosen circuits may represent overly simplified problems.
Thus, we not only considered small circuits of the given kind but also their up-scaled versions to
larger qubit numbers. Second, the analysed use cases do not make use of more complex operations

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:27

of CoQuaDe, such as the GeneralLoop, thus, prohibiting a generalization in this regard. Third,
we provide automated code generation facilities for Qiskit as the target language. Although our
approach is designed in a modular manner regarding the underlying target programming language,
we cannot strictly ensure feasibility for arbitrary other target languages, e.g., the Intel SDK [83],
but keep corresponding investigations as future work. Finally, we studied existing literature on the
categorization of the quantum software stack as outlined in Section 2 and defined the quantum
circuit designers based on a declarative programming approach as the class of tools to compare our
approach. However, we cannot generalize our findings to other platforms for quantum software
development.

7 CONCLUSION AND FUTUREWORK
We presented a composition-oriented modeling language for creating quantum circuits. By incorpo-
rating concepts which go beyond the qubit-level of software design and plain grouping of low-level
quantum gates, the proposal allows for configurable and reusable composite quantum operations
and automated code generation from the built quantum circuits. This allows hiding of low-level
implementation details in the design of such circuits. Furthermore, we demonstrate the feasibility
and succinctness benefits of the proposed approach via the application to the Quantum Counting
algorithm and QAOA. We found significantly reduced development and evolution efforts compared
to using existing state-of-the-art quantum circuit designers.

Future Work. The proposed approach offers several extension possibilities. First, we will further
aim to generalize our results by performing applications to more quantum circuits and provide
code generation features for other quantum programming languages besides Qiskit (e.g., the Intel
Quantum SDK [83]). Additionally, we will conduct a user study to evaluate qualitative aspects
of our proposed approach, such as usability, learnability, and understandability. Second, as the
present work represents the basis for a library system that supports the reuse of quantum software
components, wewill further explore possible architectures and library structures that support proper
management, maintenance, categorization, component selection, and library release. Third, we will
investigate how our concepts can be transferred to circuit library systems based on internal quantum
programming languages (e.g., Qiskit Circuit Library28). Fourth, we will explore frameworks like
Eclipse Sirus or JavaFX for the implementation of a graphical editor for our presented approach. In
this sense, we plan to provide a quantum blended modelling environment built atop of the presented
quantum languages [16] and, thus, further extend the low-code features of our proposed approach.
In addition, we plan to enable the import of quantum circuits and subsequent manipulation of the
circuit with our framework.
The proposed model will also be extended for higher-level circuit design and optimization. In

this regard, a first step will be to include facilities for automated quantum operator synthesis,
utilizing techniques from genetic programming and reinforcement learning. Here, the goal is to
automatically create a CompositeQuantumGate that yields a certain target output state. Regarding
the latter, we aim for an integration of existing genetic programming approaches for quantum circuit
synthesis [34] and their combination with existing model-based optimization frameworks [32].

Furthermore, the circuit synthesis may comprise model-based circuit aggregation and partition-
ing [21], and the framework may incorporate generic as well as NISQ-specific circuit optimization
procedures (e.g., [60]). Applying concepts from MDE also allows to use well-known model-based
transformation tools [50] for quantum circuit transformations to different representations. The later
are required, for example, when using the ZX-calculus [52] and the LOv-calculus [17]. Finally, as

28https://qiskit.org/documentation/apidoc/circuit_library.html

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://qiskit.org/documentation/apidoc/circuit_library.html

111:28 Gemeinhardt, et al.

the bespoke procedures may produce errors, a subsequent verification step [46] might be necessary
to guarantee that the resulting quantum circuits are correct.

ACKNOWLEDGMENTS
Financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the
National Foundation for Research, Technology and Development and by the Austrian Science Fund
(P 30525-N31) is gratefully acknowledged. Besides this, our work has been partially sponsored by
the Spanish MICINN, with projects PID2021-122270OB-I00 and TED2021-129381B-C21. This work
also received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (DA QC, grant agreement No. 101001318), was part
of the Munich Quantum Valley, which is supported by the Bavarian state government with funds
from the Hightech Agenda Bayern Plus, and has been supported by the BMWK on the basis of a
decision by the German Bundestag through project QuaST.

DATA AVAILABILITY
All code and data is available at: https://github.com/jku-win-se/composition-quantum-circuit. In
this repository, we published both explained meta-models and the implementation of the demon-
stration cases.

REFERENCES
[1] Shaukat Ali and Tao Yue. 2020. Modeling Quantum programs: challenges, initial results, and research directions. In

Proc. of the 1st ACM SIGSOFT Int. Workshop on Architectures and Paradigms for Engineering Quantum Soft. 14–21.
[2] Diego Alonso, Pedro Sánchez, and Francisco Sánchez-Rubio. 2022. Engineering the development of quantum programs:

Application to the Boolean satisfiability problem. Advances in Engineering Software 173 (2022), 103216.
[3] MD SAJID ANIS et al. 2021. Qiskit: An Open-source Framework for Quantum Computing. https://doi.org/10.5281/

zenodo.2573505
[4] Ian Arawjo, Anthony DeArmas, Michael Roberts, Shrutarshi Basu, and Tapan Parikh. 2022. Notational Programming

for Notebook Environments: A Case Study with Quantum Circuits. In Proceedings of the 35th Annual ACM Symposium
on User Interface Software and Technology. 1–20.

[5] Andreas Bärtschi and Stephan Eidenbenz. 2020. Grover mixers for QAOA: Shifting complexity from mixer design to
state preparation. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 72–82.

[6] Bela Bauer and Chetan Nayak. 2014. Analyzing many-body localization with a quantum computer. Physical Review X
4, 4 (2014), 041021.

[7] Stephane Beauregard. 2002. Circuit for Shor’s algorithm using 2n+ 3 qubits. arXiv preprint quant-ph/0205095 (2002).
[8] Koen Bertels, Aritra Sarkar, and Imran Ashraf. 2021. Quantum computing—from NISQ to PISQ. IEEE Micro 41, 5 (2021),

24–32.
[9] Lorenzo Bettini. 2016. Implementing domain-specific languages with Xtext and Xtend. Packt Publishing Ltd.
[10] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias

Degroote, Hermanni Heimonen, Jakob S Kottmann, Tim Menke, et al. 2021. Noisy intermediate-scale quantum (NISQ)
algorithms. arXiv preprint (2021).

[11] Alexander C Bock and Ulrich Frank. 2021. Low-code platform. Business & Information Systems Engineering 63 (2021),
733–740.

[12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-Driven Software Engineering in Practice, Second Edition.
Morgan & Claypool Publishers.

[13] Lukas Burgholzer and Robert Wille. 2021. Towards verification of dynamic quantum circuits. arXiv preprint
arXiv:2106.01099 (2021).

[14] Jordi Cabot and Martin Gogolla. 2012. Object Constraint Language (OCL): A Definitive Guide. In 12th Int. School on
Formal Methods for the Design of Computer, Communication, and Soft. Systems (SFM). Springer, 58–90.

[15] G Chen, DA Church, BG Englert, MS Zubairy, et al. 2003. Mathematical models of contemporary elementary quantum
computing devices. Quantum Control: Mathematical and Numerical Challenges 33 (2003), 79–117.

[16] Federico Ciccozzi, Matthias Tichy, Hans Vangheluwe, and Danny Weyns. 2019. Blended modelling-what, why and
how. In 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C). IEEE, 425–430.

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://github.com/jku-win-se/composition-quantum-circuit
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:29

[17] Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron. 2022. LOv-Calculus: A
Graphical Language for Linear Optical Quantum Circuits. arXiv preprint arXiv:2204.11787 (2022).

[18] Benoît Combemale, Ralf Lämmel, and Eric Van Wyk. 2018. SLEBOK: the software language engineering body of
knowledge (Dagstuhl Seminar 17342). In Dagstuhl Reports, Vol. 7. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[19] Antonio D Córcoles, Maika Takita, Ken Inoue, Scott Lekuch, Zlatko K Minev, Jerry M Chow, and Jay M Gambetta.
2021. Exploiting dynamic quantum circuits in a quantum algorithm with superconducting qubits. Physical Review
Letters 127, 10 (2021), 100501.

[20] Diogo Cruz, Romain Fournier, Fabien Gremion, Alix Jeannerot, Kenichi Komagata, Tara Tosic, Jarla Thiesbrummel,
Chun Lam Chan, Nicolas Macris, Marc-André Dupertuis, et al. 2019. Efficient quantum algorithms for GHZ and W
states, and implementation on the IBM quantum computer. Advanced Quantum Technologies 2, 5-6 (2019), 1900015.

[21] Omid Daei, Keivan Navi, and Mariam Zomorodi-Moghadam. 2020. Optimized Quantum Circuit Partitioning. Int.
Journal of Theoretical Physics 59, 12 (2020), 3804–3820.

[22] Franklin de Lima Marquezino, Renato Portugal, and Carlile Lavor. 2019. A primer on quantum computing. Springer.
[23] Ellie D’Hondt and Prakash Panangaden. 2004. The computational power of the W and GHZ states. arXiv preprint

quant-ph/0412177 (2004).
[24] Davide Di Ruscio, Dimitris Kolovos, Juan de Lara, Alfonso Pierantonio, Massimo Tisi, and Manuel Wimmer. 2022.

Low-code development and model-driven engineering: Two sides of the same coin? Software and Systems Modeling 21,
2 (2022), 437–446.

[25] Christoph Durr and Peter Hoyer. 1996. A quantum algorithm for finding the minimum. arXiv preprint (1996).
[26] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approximate optimization algorithm. arXiv

preprint (2014).
[27] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland. 2012. Surface codes: Towards practical

large-scale quantum computation. Physical Review A 86, 3 (2012), 032324.
[28] Martin Fowler. 2010. Domain-specific languages. Pearson Education.
[29] J. L. Hevi G. Peterssen, M. Piattini. 2022. Practical quantum computing: Challenges of quantum software development.

QuantumPath Blog. https://www.quantumpath.es/2022/01/31/practical-quantum-computing-challenges-of-quantum-
software-development/

[30] Sunita Garhwal, Maryam Ghorani, and Amir Ahmad. 2021. Quantum programming language: A systematic review of
research topic and top cited languages. Archives of Computational Methods in Engineering 28, 2 (2021), 289–310.

[31] Irene Garrigós, Manuel Wimmer, and Jose-Norberto Mazón. 2013. Weaving aspect-orientation into web modeling
languages. In Int. Conf. on Web Eng. Springer, 117–132.

[32] F Gemeinhardt, M Eisenberg, S Klikovits, and M Wimmer. 2023. Model-Driven Optimization for Quantum Program
Synthesis with MOMoT. In 5th Workshop on Artificial Intelligence and Model-driven Engineering at MODELS. ACM/IEEE.

[33] Felix Gemeinhardt, Antonio Garmendia, andManuelWimmer. 2021. TowardsModel-Driven Quantum Soft. Engineering.
In Second Int. Workshop on Quantum Soft. Engineering (Q-SE 2021) co-located with ICSE 2021.

[34] Felix Günther Gemeinhardt, Stefan Klikovits, andManuelWimmer. 2023. Hybrid Multi-Objective Genetic Programming
for Parameterized QuantumOperator Discovery. In Proceedings of the Companion Conference on Genetic and Evolutionary
Computation. 795–798.

[35] Austin Gilliam, Stefan Woerner, and Constantin Gonciulea. 2021. Grover adaptive search for constrained polynomial
binary optimization. Quantum 5 (2021), 428.

[36] Fred Glover, Gary Kochenberger, and Yu Du. 2018. A tutorial on formulating and using QUBO models. arXiv preprint
arXiv:1811.11538 (2018).

[37] Jeff Gray and Bernhard Rumpe. 2021. Modeling in the large: model libraries. Software and Systems Modeling 20, 3
(2021), 591–593.

[38] Daniel M Greenberger, Michael A Horne, and Anton Zeilinger. 1989. Going beyond Bell’s theorem. In Bell’s theorem,
quantum theory and conceptions of the universe. Springer, 69–72.

[39] Stuart Hadfield, Zhihui Wang, Bryan O’gorman, Eleanor G Rieffel, Davide Venturelli, and Rupak Biswas. 2019. From
the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 12, 2 (2019),
34.

[40] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor G Rieffel, Davide Venturelli, and Rupak Biswas. 2019. From
the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 12, 2 (2019),
34.

[41] Maurice H Halstead. 1977. Elements of Software Science (Operating and programming systems series). Elsevier Science
Inc.

[42] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum algorithm for linear systems of equations.
Physical review letters 103, 15 (2009), 150502.

[43] Reiko Heckel and Gabriele Taentzer. 2020. Graph Transformation for Software Engineers. Springer.

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://www.quantumpath.es/2022/01/31/practical-quantum-computing-challenges-of-quantum-software-development/
https://www.quantumpath.es/2022/01/31/practical-quantum-computing-challenges-of-quantum-software-development/

111:30 Gemeinhardt, et al.

[44] Jose Luis Hevia, Guido Peterssen, and Mario Piattini. 2022. QuantumPath: A quantum software development platform.
Software: Practice and Experience 52, 6 (2022), 1517–1530.

[45] Jack D Hidary. 2019. Quantum Computing: An Applied Approach. Springer.
[46] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. 2021. A verified optimizer for quantum

circuits. Proc. of the ACM on Programming Languages 5, POPL (2021), 1–29.
[47] Luis Jiménez-Navajas, Ricardo Pérez-Castillo, and Mario Piattini. 2021. KDM to UML Model Transformation for

Quantum Soft. Modernization. In Int. Conf. on the Quality of Information and Communications Technology. Springer,
211–224.

[48] Ralph Johnson and Bobby Woolf. 1997. Type Object. Addison-Wesley, 47–65.
[49] Eric R Johnston, Nic Harrigan, and Mercedes Gimeno-Segovia. 2019. Programming Quantum Computers: essential

algorithms and code samples. O’Reilly Media.
[50] Nafiseh Kahani, Mojtaba Bagherzadeh, James R Cordy, Juergen Dingel, and Daniel Varró. 2019. Survey and classification

of model transformation tools. Software & Systems Modeling 18, 4 (2019), 2361–2397.
[51] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M Chow, and Jay M

Gambetta. 2017. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets.
Nature 549, 7671 (2017), 242–246.

[52] Aleks Kissinger and John van de Wetering. 2019. Pyzx: Large scale automated diagrammatic reasoning. arXiv preprint
arXiv:1904.04735 (2019).

[53] Charles W Krueger. 1992. Software reuse. ACM Computing Surveys (CSUR) 24, 2 (1992), 131–183.
[54] Juan De Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2014. When and how to use multilevel modelling. ACM

Transactions on Soft. Eng. and Methodology (TOSEM) 24, 2 (2014), 1–46.
[55] Ryan LaRose. 2019. Overview and comparison of gate level quantum Soft. platforms. Quantum 3 (2019), 130.
[56] Thorsten Last, Nodar Samkharadze, Pieter Eendebak, Richard Versluis, Xiao Xue, Amir Sammak, Delphine Brousse,

Kelvin Loh, Henk Polinder, Giordano Scappucci, et al. 2020. Quantum Inspire: QuTech’s platform for co-development
and collaboration in quantum computing. In Novel Patterning Technologies for Semiconductors, MEMS/NEMS and
MOEMS 2020, Vol. 11324. Int. Society for Optics and Photonics, 113240J.

[57] Frank Leymann. 2019. Towards a Pattern Language for Quantum Algorithms. In Quantum Technology and Optimization
Problems (Lecture Notes in Computer Science (LNCS), Vol. 11413). Springer, 218–230.

[58] Alexander McCaskey, Eugene Dumitrescu, Dmitry Liakh, and Travis Humble. 2018. Hybrid programming for near-term
quantum computing systems. In 2018 IEEE Int. Conf. on Rebooting Computing (ICRC). IEEE, 1–12.

[59] Armin Moin, Moharram Challenger, Atta Badii, and Stephan Günnemann. 2021. MDE4QAI: Towards Model-Driven
Engineering for Quantum Artificial Intelligence. arXiv preprint (2021).

[60] Beatrice Nash, Vlad Gheorghiu, and Michele Mosca. 2020. Quantum circuit optimizations for NISQ architectures.
Quantum Science and Technology 5, 2 (2020).

[61] Eva-Maria Neumann, Birgit Vogel-Heuser, Michael Gnadlinger, Juliane Fischer, Laura Reimoser, Sebastian Diehm,
Tobias Englert, and Michael Schwarz. 2022. Metric-based identification of target conflicts in the development of
industrial automation software libraries. In IEEE International Conference on Industrial Engineering and Engineering
Management (IEEM). IEEE, 1493–1499.

[62] Michael A Nielsen and Isaac Chuang. 2002. Quantum computation and quantum information. American Association of
Physics Teachers.

[63] OMG. 2017. UML. https://www.omg.org/spec/UML/.
[64] Ricardo Pérez-Castillo, Luis Jiménez-Navajas, and Mario Piattini. 2021. Modelling Quantum Circuits with UML. arXiv

preprint (2021).
[65] Ricardo Pérez-Castillo, Manuel A Serrano, andMario Piattini. 2021. Soft. modernization to embrace quantum technology.

Advances in Engineering Soft. 151 (2021), 102933.
[66] Carlos A Pérez-Delgado and Hector G Perez-Gonzalez. 2020. Towards a quantum Soft. modeling language. In Proc. of

the IEEE/ACM 42nd Int. Conf. on Soft. Eng. Workshops. 442–444.
[67] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik,

and Jeremy L O’brien. 2014. A variational eigenvalue solver on a photonic quantum processor. Nature communications
5, 1 (2014), 1–7.

[68] Mario Piattini, Guido Peterssen, Ricardo Pérez-Castillo, Jose Luis Hevia, Manuel A Serrano, Guillermo Hernández,
Ignacio García Rodríguez de Guzmán, Claudio Andrés Paradela, Macario Polo, Ezequiel Murina, et al. 2020. The
talavera manifesto for quantum software engineering and programming. In 1st International Workshop on the QuANtum
SoftWare Engineering & pRogramming (QANSWER).

[69] Ildevana Poltronieri Rodrigues, Márcia de Borba Campos, and Avelino F Zorzo. 2017. Usability evaluation of domain-
specific languages: a systematic literature review. In Human-Computer Interaction. User Interface Design, Development
and Multimodality: 19th International Conference, HCI International 2017. Springer, 522–534.

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://www.omg.org/spec/UML/

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:31

[70] John Preskill. 2018. Quantum computing in the NISQ era and beyond. Quantum 2 (2018), 79.
[71] Eleanor Rieffel, Jason M. Dominy, Nicholas Rubin, and Zhihui Wang. 2020. XY-mixers: analytical and numerical results

for QAOA. Phys. Rev. A 101 (2020), 012320.
[72] Yue Ruan, Samuel Marsh, Xilin Xue, Xi Li, Zhihao Liu, and Jingbo Wang. 2020. Quantum approximate algorithm for

NP optimization problems with constraints. arXiv preprint arXiv:2002.00943 (2020).
[73] Manuel A Serrano, Jose A Cruz-Lemus, Ricardo Perez-Castillo, and Mario Piattini. 2022. Quantum software components

and platforms: Overview and quality assessment. Comput. Surveys 55, 8 (2022), 1–31.
[74] Manuel A Serrano, Ricardo Perez-Castillo, and Mario Piattini. 2022. Quantum Software Engineering. Springer Nature.
[75] Peter W Shor. 1996. Fault-tolerant quantum computation. In Proceedings of 37th conference on foundations of computer

science. IEEE, 56–65.
[76] Balwinder Sodhi and Ritu Kapur. 2021. Quantum Computing Platforms: Assessing the Impact on Quality Attributes

and SDLC Activities. In 2021 IEEE 18th Int. Conf. on Soft. Architecture (ICSA). IEEE, 80–91.
[77] Damian S Steiger, Thomas Häner, and Matthias Troyer. 2018. ProjectQ: an open source Soft. framework for quantum

computing. Quantum 2 (2018), 49.
[78] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. 2008. EMF: Eclipse Modeling Framework. Addison

Wesley.
[79] Javier Verduro, Moisés Rodríguez, and Mario Piattini. 2021. Software Quality Issues in Quantum Information Systems..

In Q-SET@ QCE. 54–59.
[80] Birgit Vogel-Heuser, Eva-Maria Neumann, and Juliane Fischer. 2021. MICOSE4aPS: industrially applicable maturity

metric to improve systematic reuse of control software. ACM Transactions on Software Engineering and Methodology
(TOSEM) 31, 1 (2021), 1–24.

[81] Birgit Vogel-Heuser and Felix Ocker. 2018. Maintainability and evolvability of control software in machine and plant
manufacturing—An industrial survey. Control engineering practice 80 (2018), 157–173.

[82] ClaesWohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and AndersWesslén. 2012. Experimentation
in software engineering. Springer.

[83] Xin-Chuan Wu, Shavindra P Premaratne, and Kevin Rasch. 2023. A Comprehensive Introduction to the Intel Quantum
SDK. In Proceedings of the 2023 Introduction on Hybrid Quantum-Classical Programming Using C++ Quantum Extension.
1–2.

[84] Shixin Zhang, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao. 2021. Differentiable Quantum Architecture Search.
Bulletin of the American Physical Society 66 (2021).

[85] Jianjun Zhao. 2020. Quantum Soft. engineering: Landscapes and horizons. arXiv preprint (2020).
[86] Jianjun Zhao. 2021. Some size and structure metrics for quantum software. In 2021 IEEE/ACM 2nd International

Workshop on Quantum Software Engineering (Q-SE). IEEE, 22–27.
[87] Linghua Zhu, Ho Lun Tang, George S Barron, FA Calderon-Vargas, Nicholas J Mayhall, Edwin Barnes, and Sophia E

Economou. 2020. An adaptive quantum approximate optimization algorithm for solving combinatorial problems on a
quantum computer. arXiv preprint arXiv:2005.10258 (2020).

A GENERAL LOOP PARAMETERS
By investigating various loop patterns (e.g., from [49], [62], the PlanQK Pattern Atlas29, the Qiskit
Textbook30) we figured out the following minimum set of additional parameters:

• targetQubitsIterationType: Qubits can change according to different schemes between itera-
tions. SHIFT causes a block of targetQubits to be shifted by incrementBy after each iteration.
The size of the qubit-block and whether the shift happens in an incremental or decremental
manner is specified by parameters that are discussed bellow (targetQubitsBlockSize, increment-
TargetQubits). In the CHANGE_BLOCK method, incrementBy qubits are added or removed
from the targetQubits. Details of this change are described bellow. Lastly, NONE keeps the
targetQubits without any changes between iterations.

• controlQubitsIterationType: Same as with targetQubitIterationType but for the control qubits
of the gate applications.

• targetQubitsBlockSize: This parameter is handled differently in the SHIFT andCHANGE_BLOCK
method. In the SHIFT method, it specifies the size of the block of targetQubits that is shifted.

29https://patterns.platform.planqk.de/pattern-languages/af7780d5-1f97-4536-8da7-4194b093ab1d
30https://qiskit.org/textbook/preface.html

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://patterns.platform.planqk.de/pattern-languages/af7780d5-1f97-4536-8da7-4194b093ab1d
https://qiskit.org/textbook/preface.html

111:32 Gemeinhardt, et al.

In the CHANGE_BLOCK method, it denotes the minimal amount of targetQubits. For example,
if the stated targetQubits for the gate application are (0, 1, 2, 3, 4) and the number of qubits
should be reduced in each iteration, targetQubitsBlockSize= 2 would result in a loop of four
iterations where the targetQubits of the last iteration are (0, 1) (provided incrementBy= 1, and
incrementBlockTargetQubits= 𝐹𝑎𝑙𝑠𝑒 and incrementTargetQubits= 𝐹𝑎𝑙𝑠𝑒 as described bellow).

• controlQubitsBlockSize: Same as with targetQubitBlockSize but for the control qubits of the
gate applications.

• incrementBlockTargetQubits: A Booleanwhich specifies whether a block of targetQubits should
be incremented or decremented between iterations, i.e., whether targetQubits are added to or
removed from the block. It can only be stated for the CHANGE_BLOCK method as the block
size remains constant in the SHIFT method. Together with the Boolean incrementTargetQubits
it specifies the four possible variants of how the block of qubits is modified.

• incrementBlockControlQubits: Same as incrementBlockTargetQubits but for the control qubits
of the gate applications.

• incrementTargetQubits: A Boolean which denotes whether targetQubits are addressed in a
ascending or descending manner. Within the CHANGE_BLOCK method, together with the
Boolean incrementBlockTargetQubits it specifies the four possible variants of how the block of
qubits is modified. For example, stating targetQubits (0, 1, 2, 3, 4), incrementBlockTargetQubit=
𝑇𝑟𝑢𝑒 , and incrementTargetQubits= 𝐹𝑎𝑙𝑠𝑒 would yield the following targetQubits for the respec-
tive iterations: (4), (3, 4), (2, 3, 4), (1, 2, 3, 4), (0, 1, 2, 3, 4) (provided targetQubitsBlockSize= 1).
Within the SHIFT method this parameter simply specifies whether the targetQubits are
increased (e.g., (0, 1), (1, 2), (2, 3), (3, 4)) or decreased (e.g., (3, 4), (2, 3), (1, 2), (0, 1)).

• incrementControlQubits: Same as incrementTargetQubits but for the control qubits of the gate
applications.

• fixedTargetQubits: A subset of targetQubits for the gate applications which denote the qubits
that remain the same for each iteration. The gates are applied to those qubits but the qubits do
not change between iterations, i.e., they are not considered in the SHIFT or CHANGE_BLOCK
method.

• fixedControlQubits: Same as fixedTargetQubits but for the control qubits of the gate applica-
tions.

• iterations: The number of iterations that should be applied. In contrast to the StaticLoop,
this parameter is not mandatory. As default, our tool would automatically determine the
maximum number of iterations possible based on the stated parameters.

B EVALUATION - METRICS DEFINITION
In the following, a detailed description of our metrics definitions regarding the evaluation provided
in Section 6 is presented. The considered metrics comprise the number of actions, the Halstead
metrics, and the MICOSE4aPS metric.

Number of actions. We define the number of actions as the sum of (𝑖) objects, (𝑖𝑖) links, and (𝑖𝑖𝑖)
non-default parameters of a program. An example is shown in Figure 10 for the QAOA56 use case.
The definition is based on the quantum circuit meta-model (Figure 3 of the main text). Thus,

whenever an object of a concrete class is created, or a parameter of this object is explicitly specified,
we conduct the counting accordingly. The links are between objects related to the quantum circuit
meta-model and instances related to the quantum operations library or QUBO meta-model.
Regarding the counting of objects, links, and non-default parameters using the IBM Quantum

Composer, we arrive at the figures provided in Table 2 of the main text by applying the rules as
illustratively described for the QAOA4 use case in the following. In this specific case, each analysis

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:33

56

56

[(0-55)]

[(0-55)]

[(0-55)]
[(0-55)]

[(0-55)]

Fig. 10. Counting of objects (blue), links (green), and non-default parameters (orange) for the QAOA56 use
case

has to be conducted for (𝑖) the definition of the two cost unitaries, (𝑖𝑖) the two mixer unitaries,
and (𝑖𝑖𝑖) the overall quantum circuit. The cost and mixer unitary have to be counted twice since
the use case comprises two iterations with different angle parameters, also leading to two different
quantum operation definitions in the QASM code. Thus, the number of objects is computed as
2 ∗ (22 + 1) + 2 ∗ (4 + 1) + 14 = 70, where additional to each quantum gate, the +1 resulting from
the generation of the cost and mixer unitary, are counted as an object. The links are defined as the
qubits on which the gates are applied and are calculated as 2 ∗ 34+ 2 ∗ 4+ 24 = 100. The non-default
parameters comprise (𝑖) the angle parameters of the quantum gates, (𝑖𝑖) the names of the registers,
the circuit, and the grouped operations, and (𝑖𝑖𝑖) the number of the qubits and classical bits in each
register. They are computed as 2 ∗ (10 + 1) + 2 ∗ (4 + 1) + (2 + 2 + 1) = 37. The metrics for the larger
QAOA use cases and the Quantum Counting use cases are calculated analogously.

Halstead software metrics. From the number of unique operators (`1), the number of unique
operands (`2), the number of overall operators (𝑁1), and the number of overall operands (𝑁2), the
Halstead metrics [41] for a program can be computed as:

• length: 𝑁 = 𝑁1 + 𝑁2
• vocabulary: ` = `1 + `2
• volume: 𝑉 = 𝑁 ∗ 𝑙𝑜𝑔2`
• difficulty of writing and understanding: 𝐷 =

`1
2 ∗ 𝑁2

`2
• effort: 𝐸 = 𝐷 ∗𝑉
• implementation time: 𝑇 = 𝐸

18
The use of the Halstead metrics requires a proper definition of operators and operands specific to
the present languages. Regarding the use of CoQuaDe, an illustrative example for the QAOA56 use
case is shown in Figure 11.

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:34 Gemeinhardt, et al.

56

56

[(0-55)]

[(0-55)]

[(0-55)]
[(0-55)]

[(0-55)]

Fig. 11. Counting of operators (blue) and operands (orange) for the QAOA56 use case

Thus, the object creators are treated as operands, i.e., QuantumCircuit, QuantumRegister,
ClassicalRegister, Layer, ElementaryQuantumGate, targetQubits, CompositeLoopQuantumOperation,
loopTargetQubits, Measurement, classicBits. Additionally, the [()] is considered as the range
operator. Operands comprise the qubit numbers (0, 55, 56), the object names (QAOA, qr, cr,
L1, L2, L3), the parameter names (iterations, 2, NumberOfQubits, NumberOfBits, operation,
operations, loop), and the names of links (Hadamard, StaticLoop, MeasurementCompBasis,
CostUnitary, SampleMatrix, MixerUnitaryQAOA). The larger QAOA use cases and Quantum
Counting use cases are analyzed analogously. Note, however, that we differentiate between qubits
of the different quantum registers for the Quantum Counting use case, i.e., qubit 0 of the first
quantum register and qubit 0 of the second quantum register are two unique operands.

Regarding the use of the IBM Quantum Composer, we count the following as operators: circuit,
quantum register, classical register, method definition for composed operators, the quantum gates
(e.g., cx, rz, rx, h, cost_unitary, mixer_unitary, cgrover, measure). Similar to the use
of CoQuaDe, we define the operands as: the name of the registers and the circuit, the number of
qubits and bits for each register, the qubit indices, the names of composite operations, and the
angle parameters of the quantum gates.

MICOSE4aPS. The MICOSE4aPS metric [80] has been developed to measure the program modu-
larity with respect to conducted changes of the given program. Its computation, which is described
further below, relies on several inputs which are defined for the present case in the following:

• Source Lines of Code (SLOC): For the IBM Quantum Composer, we rely on the SLOC of
the generated QASM code. Note, that the IBM Composer provides almost no abstraction
over QASM code and actions using the graphical editor match the lines of code in the
QASM program. Examples where some abstraction is provided are represented by shortcuts
when using the IBM Composer. For example, it is not required to state a classical bit for the

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

A Model-Driven Framework for Composition-BasedQuantum Circuit Design 111:35

measurement operation like in QASM, but rather is the index of the classical bit by default
set to the index of the measured qubit.

• change category: According to [80], one can differentiate between functional, structural,
and operator changes. For the present analysis, all changes are operator changes. Thus, an
additional categorization criterion is introduced, namely, whether or not the change affects
the quantum processing itself.

• change types: We define the following change types: (𝑖) change of quantum operator, change
of qubit, change of angle parameter as quantum processing changes, and (𝑖𝑖) change of
number of qubits or bits for the registers, and name changes of the quantum circuit and
quantum registers as non-quantum processing changes.

Using these definitions and following [80], the modularity is computed by

𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦 = 1 − 1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖 (1)

for 𝑛 different changes Δ𝑖 . The latter is given by

Δ = 𝑘𝑙 ∗𝑤 ∗
∑
𝑐ℎ𝑎𝑛𝑔𝑒𝑠

𝑚𝑎𝑥 (∑𝑏𝑒 𝑓 𝑜𝑟𝑒 ;
∑
𝑐ℎ𝑎𝑛𝑔𝑒𝑠) +𝑘𝑒 ∗𝑤 ∗ (1−𝑒𝑥𝑝 (−𝑝 ∗

∑
𝑐ℎ𝑎𝑛𝑔𝑒𝑠

𝑚𝑎𝑥 (∑𝑏𝑒 𝑓 𝑜𝑟𝑒 ;
∑
𝑐ℎ𝑎𝑛𝑔𝑒𝑠))) (2)

with 𝑝 = 5 and

𝑘𝑒 =

1, if 𝑆𝐿𝑂𝐶 ≥ 103,
1
850 ∗ (𝑆𝐿𝑂𝐶 − 150), if 150 < 𝑆𝐿𝑂𝐶 < 103,
0, if 𝑆𝐿𝑂𝐶 ≤ 150

and 𝑘𝑙 = 1−𝑘𝑒 , and𝑤 = 0.8 ∗ 𝑠1 + 0.2 ∗ 𝑠2 where 𝑠1 and 𝑠2 are weights related to the change category.
The latter are set to 𝑠

𝑞𝑝

1 = 1 for quantum processing changes, and 𝑠
𝑛𝑞𝑝

1 = 0.5 for non-quantum
processing changes. The 𝑠∗2 represent specific values which are defaulted to 1 in our analysis. The
𝑐ℎ𝑎𝑛𝑔𝑒𝑠 and 𝑏𝑒 𝑓 𝑜𝑟𝑒 relate to the number of items of a certain change type, e.g., the number of
changed qubits and the number of qubits before the change, respectively. Note, that for CoQuade,
the changed qubits denote the only quantum processing changes. Furthermore, we estimated the
changes for the IBM Quantum Composer conservatively to be solely given by the added elements,
i.e., we assumed that evolving to a larger circuit is possible without altering the existing items.

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:36 Gemeinhardt, et al.

C DECOMPOSED QUANTUM OPERATORS OF INVESTIGATED USE CASES

q0 : •
q1 : • •
q2 : • • • •
q3 :
q4 :

Grover Grover Grover Grover Grover Grover Grover
q5 :
q6 :
q7 :
c : /

4

q0 :
q1 :
q2 :
q3 : • • • • • • • •
q4 :

Grover Grover Grover Grover Grover Grover Grover Grover
q5 :
q6 :
q7 :
c : /

4

Fig. 12. Controlled Grover unitaries applied within the Power2Loop (label 2); visualization conducted with [3]

q30 : • • • • • • Rz(0.757)

q31 : Rz(1.51) • • • • Rz(4.54)

q32 : Rz(2.27) Rz(1.51) • • Rz(3.79)

q33 : Rz(3.03) Rz(3.79) Rz(2.27) Rz(3.03)

c3 : /
4

Fig. 13. Generated cost unitary for QAOA; visualization conducted with [3]

ACM Trans. Quantum Comput., Vol. 37, No. 4, Article 111. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Composition-based quantum circuit designer
	3.1 Overview
	3.2 Perspectives and potential impact

	4 Quantum Circuit Modelling Language
	4.1 Quantum circuit meta-model
	4.2 Quantum library meta-model
	4.3 Implemented CompositeLoopQuantumOperations
	4.4 Representation of quantum circuits
	4.5 Extension aspects

	5 Tool Support
	6 Demonstration and Evaluation
	6.1 Demonstration Case: Quantum Counting
	6.2 Demonstration Case: QAOA
	6.3 Comparison Study
	6.4 Threats to validity

	7 Conclusion and Future Work
	Acknowledgments
	References
	A General Loop Parameters
	B Evaluation - Metrics definition
	C Decomposed Quantum Operators of investigated use cases

