
Noname manuscript No.
(will be inserted by the editor)

Model Discovery and Reuse by Knowledge Graphs for
Low-Code Development Platforms: The zAppDev Case Study

Ilirian Ibrahimi · Luca Berardinelli · Yannis Zorgios

Received: date / Accepted: date

Abstract Context : Low-code Development Platforms
(LCDPs) are tools that facilitate the rapid development
of full-stack applications using models as their primary
building blocks. However, there is limited support for
discovering and reusing models in LCDPs, leading to
unnecessary repetition of work. There is a high demand
for tools that can automatically discover and recom-
mend relevant models and model fragments to address
this issue.

Contribution: This paper presents an extended ver-
sion of a discovery and recommendation approach for
LCPD using a model repository based on knowledge
graphs. It expands the recommendation scope based on
class name similarities by including attribute similar-
ities. Accordingly, we propose an extended case study
on reusing zAppDev models, emphasizing the emerging
need for a model reuse approach.

Evaluation: Our proposed approach is evaluated us-
ing two methodologies. First, we regenerate from scratch
four different models not present in our repository with
the support of our approach. Second, we perform 10-
fold cross-validation on 100 zAppDev models randomly
selected from the repository. The evaluation revealed
that recommendations based on attribute similarities
outperformed those based on class name similarities.

B Ilirian Ibrahimi
Johannes Kepler University, Linz, Austria
E-mail: ilirian.ibrahimi@jku.at

B Luca Berardinell
Johannes Kepler University, Linz, Austria
E-mail: luca.berardinelli@jku.at

Yannis Zorgios
CLMS, Andrea Papandreo 19, Athens, Greece
E-mail: yz@clmsuk.com

Keywords MDE, Low-code platform, Model reuse,
Recommendation system, Knowledge graphs, RDF,
N-grams.

1 Introduction

Low-code Development Platforms (LCDPs) are tools
that allow users to create full-stack applications with-
out necessarily needing programming skills. Technical
configurations, generating structured code, and auto-
matically deploying applications to the cloud are just
some tasks LCDPs can handle [27,31]. LCDPs use mod-
els as their primary building blocks and utilize high-
level programming abstraction and model-driven engi-
neering to construct applications efficiently [16,8]. The
main goal of LCDPs is to make it easy and fast to
build enterprise applications, and their usage and im-
portance are continually growing [26,29]. According to
Gartner [30], LCDPs will play a significant role in most
application development activities by 2024.

LCDPs within similar domains often have models or
parts of models in common (e.g., retail systems often
have model fragments for managing customers, prod-
ucts, orders, and payments). Without effective discov-
ery and reuse mechanisms, these models or fragments
may be recreated from scratch, reducing productivity
and limiting the completeness of features. To address
these issues, it is desirable to have tools that can auto-
matically discover and suggest relevant models or model
fragments for reuse through semantic analysis of mod-
els. Modeling Assistants (MAs) [25] are tools that can
help in model reuse. MAs offer modeling suggestions
to modelers by comparing (parts of) the current model
with a collection of previously built models.

2 Ibrahimi et al.

In our previous works, we proposed a solution to
reuse cross-language LCDP models through model slic-
ing [20], and an approach to reuse models through mod-
eling recommendations [21]. In this work, we extend [21]
by:

1. Explaining in detail all the approach’s steps, making
explicit its workflow and the abstraction format of
the knowledge graph

2. Extending the querying and recommendation capa-
bilities based on class attributes,

3. Evaluating the new capabilities by creating four dif-
ferent models following recommendations triggered
by class attributes.

4. Comparing class-name and class-attribute similarity-
based recommendations,

5. Evaluating the complexity of our approach in terms
of executed steps to recall a whole model from the
repository.

The new extended approach is available in the zAp-
pDev LCDP1 for the zAppDev developers.

The paper is organized as follows: we start by out-
lining the importance of a model reuse approach. For
this, in Section 2, we provide some background infor-
mation relevant to our developed approach, followed
by a motivational example. In Section 3, we reveal the
need for model reuse in LCDPs and introduce the foun-
dational technologies required to implement it. After-
ward, in Section 4, we explain the approach on how it
persists models and how it provides recommendations.
Following this, in Section 5, we outline the tool support
for our approach. In Section 6, we depict the evaluation
results of the approach and explain them. Lastly, in Sec-
tion 7, we provide some related works to our approach,
and in Section 8, we conclude the paper.

2 Background and Motivational Example

In order to clarify the aim of this publication, we present
a running example in Figure 1 related to model reuse
on LCDPs.

We assume that the user wants to create a domain
model regarding tourism. This model should contain in-
formation about points of interest, photographs, routes,
fees, etc. Thus, the user starts by creating a model class
Photograph with the attributes Id, Name, and Descrip-
tion and a class PointOfInterest containing the at-
tributes Id, IsPublic, and Photographs. And finally, the
user connects these classes with a one-to-many relation-
ship. We consider this current model under construction

1 https://zappdev.com

Low-code UI

Photograph

- Id
- Name
- Description

PointOfInterest

- Id
- IsPublic
- Photographs0..1

*

Suggested classes

Trip
Person

Leg
POIResponse

Note
GeoCoordinates

Leg

- Id
- LegOrder
- TravelDate

*

0..1

Model Reuse
Approach

Repository

Input

Uses

Provides recommendations

Fig. 1 Running Example: Tourism.

state as the point where the user asks for modeling sup-
port.

Based on the information retrieved from the model
under construction, the reuse approach should be able
to find, among others, a model related to the trip do-
main in the repository, which contains relevant tourism
information. The approach retrieves, if any, one or more
existing and valid relevant models. One of them is pre-
sented in Figure 2. By comparing the state of the tourism
model under construction with the relevant model(s) in
the repository provided in Figure 2, the approach rec-
ommends to the user a list of classes that can be rele-
vant to the tourism domain, like Trip, Person, POIResponse,
Leg, Note, and GeoCoordinates. In our example, we
assume the user selects the class Leg to be integrated
within the model under construction. Thus, the class
Leg will be integrated together with its one-to-many
association with the class PointOfInterest. In this
context, a Leg refers to a specific segment of a trip. For
example, if someone is traveling from Pristina to New
York, the trip could be divided into two legs: one from
Pristina to Istanbul and another from Istanbul to New
York. Also, all the attributes related to the Leg class
within the repository, i.e., Id, LegOrder, TravelDate,
will be automatically integrated into the modeling can-
vas.

3 Enabling Model Reuse in LCPD

Based on the motivational example, we believe that
an approach that can store and reuse different models
would be a valuable asset for LCDPs. This approach

https://zappdev.com

Model Discovery and Reuse by Knowledge Graphs for Low-Code Development Platforms: The zAppDev Case Study 3

Fig. 2 An existing Trip model within the repository.

would facilitate the modeling process on an LCDP by
providing useful modeling recommendations to users.

Fig. 3 The BO metamodel.

In the following, we will introduce the technologies
that are suitable for implementing model discovery and
reuse functionalities in LCDPs. We will also demon-
strate how an exemplary LCDP, zAppDev, can benefit
from these functionalities. Finally, we will outline the
research questions related to this topic.

3.1 Technologies

Next, we present the key technologies that form the
foundation of such an approach, i.e., graph databases,
RDF, and the zAppDev LCDP.

3.1.1 Graph Databases and RDF

In order to improve the accuracy and relevancy of model
reuse, more data is required. The greater the amount
of data available, the more likely it is that something
valuable can be found and reused when creating new
models. However, the constantly increasing amount of
data raises the issue of how to manage it efficiently.
How should the data be stored, and how can it be easily
accessed? Therefore, scalability is a crucial concern.

According to a performance comparison between re-
lational and graph databases in handling large-scale
social data [11], graph databases perform better and
have certain advantages over relational databases. Ad-
ditionally, a study by Franczek et al. [19] found that
non-relational databases are more efficient when read-
ing data in the context of web applications. For these

4 Ibrahimi et al.

reasons, we have used graph databases rather than re-
lational ones.

There are several graph databases available [6], but
in order to ensure scalability when using thousands of
models and compatibility with the web [13], we have
selected the Resource Description Framework (RDF),
which has been the W3C standard since 19992. RDF
graphs consist of subject, predicate, and object triples
and are used to represent data on the Web.

To address the issue of graph discovery, we have cho-
sen to use SPARQL [18], the standard query language
for data represented in subject, predicate, and object
format. As a repository backend for our approach, we
have selected TDB3, a repository specifically designed
for RDF data.

3.1.2 zAppDev and Business Object Models

The zAppDev LCDP is a web-based, model-driven de-
velopment environment allowing developers of any tech-
nology and proficiency level to easily create, edit and
reuse models of software artifacts (e.g., database mod-
els, business logic models, user interface models, and
more), covering the complete application development
lifecycle while having total control of the process.

Model reuse from a graph-based repository is appli-
cable to any graph-based models, like XML, JSON, and
EMF. In this paper, we demonstrate the performance
of a discovery and recommendation approach on BO
models, namely business object models (BOs). BOs en-
capsulate a single self-contained notion of the problem
domain. These include a set of (hierarchical) classes,
associations between classes, attributes, and parame-
terized operations defining classes’ behavior. Figure 3
depicts an excerpt of the zAppDev BO metamodel. It
is worth noting that this metamodel is introduced here
for explanatory purposes. Such metamodel is used here
to represent data structure manipulated by a zAppDev
built-in C#-based API that programmatically manip-
ulates BO models4. The model presented in Figure 2
shows a Trip BO model within the BO model editor.

The need for a model reuse approach is evident once
inspecting zAppDev BO models. Figure 4 shows an ex-
cerpt of an AccessComponent BO model. In this model,
three out of four classes are reused from other BO mod-
els (e.g., SystemDetail and SystemInterfaceDetails
classes from a SystemDetails model, and Location class

2 https://www.w3.org/TR/2004/
REC-rdf-concepts-20040210

3 https://jena.apache.org/documentation/tdb
4 The zAppDev LCPD does not provide a metalanguage

and then a metamodel artifact.

from a Location model). The newly created class is the
AccessComponent.

3.2 Research Questions

In the outlined running example, this paper aims to
answer the following research questions:

■ RQ1: How many classes are reused within a given
dataset of an LCDP?

By answering this RQ, we want to quantitatively assess
if and how many classes are reused to construct new
ones, given a dataset of models of an LCDP.

■ RQ2: What is the structure of the distinct classes?

A distinct class refers to a class that is counted only
once, even if it appears multiple times in a repository.
By answering this RQ, we want to assess if the reused
classes are islands or related to each other when used
within different projects (models).

3.3 Quantitative Analysis of Model Reuse in zAppDev

In order to estimate the extent of model reuse in zAp-
pDev, we collected 667 models from 19 real industrial
projects covering different domains (expenses, logistics,
finances, flight company services, etc.).

From a technical perspective, inspecting the XML
serialization of BO models is illuminating. An excerpt is
presented in Listing 1. The model root and each model
element, grouped by <Classes> and <Associations>
tags, declare the source BO model via the ModelName
attribute5. If the root’s and element’s ModelName val-
ues match, the model element is created in the same
model. Otherwise, it is imported from other models.
For instance, Listing 1 shows associations imported to-
gether with their class ends (e.g., Class1 and Class2
attributes) from other models, marked with red rectan-
gles (e.g., AccessComponentFunction), within the Ac-
cessComponent BO model.

By leveraging matches based on the ModelName at-
tribute, it is possible to calculate model reuse metrics,
like the number of i) distinct classes, reused classes (i.e.,
used out of the defining model), connected and isolated
classes (depending on their participation in at least one
association or not, respectively).

A knowledge graph is generated from the BO models
dataset, and a new backend function has been imple-
mented to calculate reused, connected, and island class
metrics.

5 The BusinessObject root element uses Model_Name. We
ignore this syntactical difference for the sake of readability.

https://www.w3.org/TR/2004/REC-rdf-concepts-20040210
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210
https://jena.apache.org/documentation/tdb

Model Discovery and Reuse by Knowledge Graphs for Low-Code Development Platforms: The zAppDev Case Study 5

Fig. 4 Reused classes within the AccessComponent model.

3.4 Quantitative Results

Figure 5 reports the model metrics calculated over 667
BO models, allowing us to answer the RQs as follows:

RQ1: How many classes are reused within a given
dataset of an LCDP? The dataset includes 667 BO
models for a total of 2652 classes by counting how many
times the ModelName attribute has been used within
the <Class> tag in BO models. The so-called distinct
classes are 1347, i.e., they are defined in one model and
appear at least once in the given dataset, thus including
also non-reused classes (i.e., distinct classes appearing
exactly once in the repository). Therefore, we obtain

that some distinct classes6 have been reused outside
the defining BO model, for a total of 1305 times. As a
result, we obtain that 49% of the classes out of a total
of 2652 are reused within different models.

RQ2: What is the structure of the distinct classes?
We found out that 977 out of 1347 distinct classes
(72%) are connected via associations, i.e., they are ref-
erenced either by Class1 or by Class2 attributes in the
<Association> tag (cf. Listing 1).

6 It is worth noting that it does not necessarily imply that
each distinct class has been reused.

6 Ibrahimi et al.

1

2 <BusinessObject Model_Name="AccessComponent" Model_Description="" Model_Creator="">
3 <Associations>
4 <Association ModelName="AccessComponent" Class1="DocumentReference" Class2="SystemDetails" Role1="

DocumentReference">...</Association>
5 <Association ModelName="AccessComponent" Class1="SystemInterfaceDetails" Class2="AccessComponent" Role1=

"SystemInterfaceDetail"...></Association>
6 <Association ModelName="AccessComponent" Class1="AccessComponent" Class2="Location" Role1="

AccessComponents">...</Association>

7 <Association ModelName= " SystemDetails" Class1="SystemInterfaceDetails" Class2="AccessComponent" Role1=

"SystemDetails">...</Association>

8 <Association ModelName= "Location" Class1="Location" Class2="AccessComponent" Role1="Location">...</
Association>

9 <Association ModelName= "SystemDetails" Class1="SystemDetail" Class2="AccessComponent" Role1="

SystemDetail" Role2="AccessComponent" Multiplicity1="Many">...</Association>
10 ...
11 <Classes>

12 <Class ModelName="AccessComponent" Name= "AccessComponent" ...>

13 <Attributes>
14 <Attribute Name="Id" IsValueClass="false" Description="" DataType="long"
15 MinLength="0" MaxLength="100" MinValue="" MaxValue="" Getter="" Setter="" />
16 <Attribute Name="CreatedOn" IsValueClass="false" Description="" DataType="DateTime" ...</Attributes>
17 </Class>

18 <Class ModelName="SystemDetails" Name= "SystemDetails" ShadowModel="SystemDetails"

19 <Attributes>
20 <Attribute Name="Id" IsValueClass="false" Description="" DataType="long" ... </Attributes>
21 </Class>
22 </BusinessObject>

Listing 1 Excerpt of the AccessComponent BO model

Fig. 5 Reused classes within the BO models.

3.5 Hypotheses and Considerations

Based on our findings and empirical results that an-
swered our RQs, we can derive two hypotheses:

▲ Hypothesis 1: A relevant number of the classes
within a dataset of a given company are reused.

▲ Hypothesis 2: The majority of the classes within
a dataset of a given company are connected.

Half of the classes within different models constructed
on a given LCDP from the same company (in our case,
zAppDev) are reused to build models. Based on the an-
swer to RQ2, we can hypothesize that the majority of

classes within a dataset constructed by the same com-
pany are connected.

In conclusion, we can see that a huge amount of
classes are reused within an LCDP, which shows the
need for a model reuse approach. Also, since the re-
search showed that most of the classes are connected,
the reuse approach should consider class associations.

3.6 Threats to Validity

One potential threat that could significantly affect the
results of this case study is the selection of models in-
vestigated. In our case study, we considered a dataset
of BO models, which can vary significantly. To mitigate
this potential threat to the validity of our case study,
we used 667 different BO models created within 19 dif-
ferent projects.

4 Model Reuse Approach for LCDP

This section explains the main phases of a model reuse
approach, extending the one presented in [21]. Its imple-
mentation for the zAppDev LCDP is called the Business
Object Reuse Approach (BORA).

Model Discovery and Reuse by Knowledge Graphs for Low-Code Development Platforms: The zAppDev Case Study 7

4.1 Usage Scenario

In Figure 6, we present the usage scenario of the pro-
posed model reuse approach through a sequence dia-
gram. The main actor is a citizen developer who starts
modeling on an LCDP. She can ask for modeling sup-
port through the UI that, in turn, triggers the rec-
ommendation API providing the relevant information
about the model under construction, i.e., classes and
their attributes. Having lists of classes and attributes,
the recommendation API queries the repository for classes
connected to the classes of the model under construc-
tion. The connected classes will be returned to the rec-
ommendation API for processing and ranking. If no
connected classes exist in the repository, the approach
searches for classes declaring the same attributes of
classes in the model under construction. If a class is
found with the same attributes, the approach checks
its connected classes and returns them to the recom-
mendation API. The ranked list of connected classes
will be provided to the citizen developer as a list of
recommended classes. She can select them, and such
user-selected classes will trigger another recommenda-
tion process. The latter will get the list of user-selected
classes as input and queries the repository for related
relevant information, i.e., their attributes, attribute data
types, connection types, etc. Finally, all the user-selected
classes, augmented with retrieved related information,
will be integrated directly into the modeling canvas of
the LCDP.

4.2 Model Reuse Approach Phases

A different perspective of the usage scenario depicted
in Figure 6 is shown in the activity diagram in Figure 7
The latter better highlights how model reuse is real-
ized through eight actions (1 - 9) over a client-server
LCDP architecture. The actions implemented by LCDP
engineers on the server side (1 - 5) realized a recom-
mendation service that is invoked by citizen developers
through the UI during modeling (6 - 9). In the follow-
ing, we group such actions according to the model-reuse
phases introduced by [22], i.e., abstraction, selection,
specialization, and integration phases.

4.2.1 Abstraction

Steps 1 - 5 in Figure 7 realize the abstraction phase.
In step 1 , different graph-based models are parsed us-
ing appropriate model parsers for different model types

(XML7, Ecore8, JSON9, RDF10) and converted11 to
RDF graphs. In step 2 , these graphs are merged into
a single RDF graph using Apache Jena12.

This merged RDF graph plays the role of the knowl-
edge graph. It is persisted into a graph repository in
step 3 . To provide ranked modeling recommendations,
the knowledge graph is weighted in step 4 by using
class term frequencies, i.e., the number that presents
the occurrence of class B after a class A will be inserted
as the respective weight between these two classes. In
step 5 , the knowledge graph is updated by inserting
the calculated weights on its edges.

4.2.2 Selection.

The selection phase is conducted in steps 6 - 7 . The ap-
proach gets all relevant information from the model un-
der construction, i.e., class names and class attributes,
on the client side and generates a recommendation ser-
vice request (6). The Recommender API is invoked and
queries the repository if there is any relevant model el-
ement to be selected and recommended (7). The graph
repository is an RDF-based weighted knowledge graph
generated by the abstraction phase (1 - 5). Two selec-
tion algorithms are available, one based on class names
and one based on class attributes. Based on the results,
both classes and attributes can be recommended to the
users through the LCDP UI. The following explains how
the recommendation action work once requested by the
citizen developer.

Class Recommendations Based on Class Names. As out-
lined in Figure 6, the approach checks the repository
for model classes having the same names as the classes
within the model under construction, using SPARQL
queries.

To extract relevant modeling recommendations, the
approach uses N-grams [12]. Currently, the approach
uses 1-grams, 2-grams, and 3-grams if one, two, or three
classes are selected on the model under construction
to trigger the recommendation service. Figure 8 shows
how recommendations (i.e., the response) are generated

7 https://docs.oracle.com/javase/8/docs/api/org/
xml/sax/package-summary.html

8 https://download.eclipse.org/modeling/
emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/
package-summary.html

9 https://rdf4j.org/
10 https://jena.apache.org/
11 In order to use the same SPARQL queries, the RDF
source models has to be transformed to a specific RDF schema
that is tailored for the zAppDev LCDP.
12 https://jena.apache.org/

https://docs.oracle.com/javase/8/docs/api/org/xml/sax/package-summary.html
https://docs.oracle.com/javase/8/docs/api/org/xml/sax/package-summary.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
https://rdf4j.org/
https://jena.apache.org/
https://jena.apache.org/

8 Ibrahimi et al.

Citizen developer

UI Recommendation API Repository

starts modeling and
request modeling

help

triggers recommendations API

get the model under
construction data and query

the repository

returns connected classes to
classes of model under

construction
returns related and ranked

recommendations

selects the
recommendations he/she

prefers

selected recommendations will
be integrated with their

relevant data

get list of selected classes
get all relevant data for the

selected classes

returns relevant class data

returns related classes to
classes with same attributes of

the class from the model
under constructionreturns ranked

recommendations

ALT

Fig. 6 Activity diagram of a recommendation scenario with an LCPD offering model-reuse by recommendation capabilities.

using 2-grams over the weighted knowledge graph by se-
lecting two classes, PointOfInterest and Photograph,
on the LCDP UI in Figure 1.

Existing models and recommended classes can both
be classified as domain-relevant or non-domain-relevant.
An existing model is considered domain-relevant if it
contains all classes currently defined within the model
under construction. If it does not, it is considered non-
domain-relevant. Existing models without matching class
names do not contribute to recommendations. The same
classification applies to recommendations referring to
such classes, i.e., domain-relevant recommendations in-
clude only domain-relevant classes, while non-domain-
relevant recommendations do not. This scenario is shown
in Figure 2. An existing Trip model is domain relevant
for the Tourism model since the former defines all the
classes currently included in the Tourism model under
construction, i.e., Photograph and PointOfInterest.
The approach queries the repository to get all pairs
of Photograph and PointOfInterest classes and all
related classes to these pairs, i.e., ends of association
relationships.

If Photograph-PointOfInterest pairs cannot be
found, the approach lessens from 2-grams to 1-grams for
further querying. In our example, the approach query
separately for the Photograph and PointOfInterest
classes and checks for their related classes. Once all rel-
evant classes are found, the approach responds to the
users by recommending these classes ranked based on
their term frequencies, prioritizing the domain-relevant
recommendations.

Class Recommendations Based on Class Attributes. If
the approach cannot provide any recommendation based
on class names, class attributes are checked for similar-
ity by counting the shared attributes amongst classes
in the model under construction and the ones in the
repository,

As shown in more detail in Figure 9, the approach
initially takes as input the list of attributes of the class
from which the recommendation service has been trig-
gered (e.g., X, Y, and Z). Then, it queries the entire
repository to get classes that contain these attributes.
Since we have constructed the query to match any class

Model Discovery and Reuse by Knowledge Graphs for Low-Code Development Platforms: The zAppDev Case Study 9

Fig. 7 Overview of the model reuse approach.

Photograph

PointOfInterest

PointOfinterest

Photograph

Note

Trip

Leg

3

4

5

5

4

 1. Trip
2. Leg

 3. Note

<<input>>

<<response>>

2-gram

Repository
Legend

 Classes

Relationships

Nr. Classes

Fig. 8 Extracting 2-grams from the repository.

that contains Queries are built as logical disjunction
prepositions of all involved attributes and then return
the matched classes ranked based on the number of
common attributes (i.e., ranked based on true argu-
ments). Thereafter, the approach collects connected classes
for each matched class in the repository. For instance, as
depicted in Figure 9, Class C3 contains three similar

attributes X, Y, and Z w.r.t. Class C1. In the reposi-
tory, Class C2, being directly connected to Class C3,
is recommended for the next modeling step.

Class Attribute Recommendations Since all the model-
relevant information is persisted in the Knowledge Graph,
the approach can also recommend relevant class at-
tributes during the modeling process.

While editing a class in the model under construc-
tion, the repository is queried for the same-named classes,
and if any, all corresponding attributes are collected.
The attribute list obtained from the repository is com-
pared against already existing attributes from the cur-
rently modeled class, any matches are removed, and the
remaining attributes are offered as recommendations to
the user.

10 Ibrahimi et al.

Class C1

- attr X
- attr Y
- attr Z

Class C3

- attr X
- attr Y
- attr Z

Class C2

- attr X1
- attr Y1
- attr Z1

Class C2

- attr X1
- attr Y1
- attr Z1

Class C5

- attr X2
- attr Y2
- attr Z2Class C4

- attr X3
- attr Y3
- attr Z3

Approach

- attr X
- attr Y
- attr Z

Query for
matches

Recommends

Repository

....

....

........

....

....

....

Fig. 9 Class recommendations from attributes.

Fig. 10 Specialization format of the model reuse approach.

4.2.3 Specialization

After the approach has selected the relevant model ele-
ments from the repository, a recommendation response
has to be generated that is compatible with the target
LCDP platform. The next step is, therefore, a special-
ization (8) that transforms the retrieved model ele-
ments into the specific format of the model under con-
struction, making such model elements suitable for reuse.
An example is shown in Figure 10. It depicts the recom-
mendations for a Photograph class given as an array
in JSON format generated from the RDF format lever-
aged by the graph-based repository.

4.2.4 Integration

The final step 9 is the integration of the selected mod-
eling elements within the modeling canvas of the LCDP,
thus leveraging UI-specific technologies. It happens when

the citizen developer accepts the recommendation of-
fered by the LCDP.

4.3 Handling Inexact Matchings

We leverage the Levenshtein distance [23] algorithm to
find matches from the repository, even if there are ty-
pos or slight differences in the class or attribute name.
This allows finding matches that differ by up to two
characters. We also use WordNet13 to find synonyms
or related words to improve the matching process.

5 Model Reuse for zAppDev: the BORA Tool

The Business Object Reuse Approach (BORA) imple-
ments the model-reuse approach in Figure 7 for the
zAppDev LCDP and BO models.

BORA is developed using Java Spring Boot and is
exposed as a REST API to integrate within an LCDP.
We integrated and used BORA into the zAppDev LCDP
as a proof of concept.

Recommender
System

BORA

Repository

Importer

<<uses>>

<<add Models>>

zAppDev

<<request>>

<<response>>

<<uses>>

Fig. 11 The BORA architecture for zAppDev.

The overall BORA architecture for zAppDev is shown
in Figure 11. The zAppDev LCDP accesses BORA’s
recommendation system API by triggering the relevant
endpoints, for example:

– onegram (String entity) is used for getting class
recommendations by considering only one class;

– onegramdomainrelevant (String cl,
String domain) is used to get class recommenda-
tions for a given class by considering a specific do-
main;

– twogram (String class1, String class2) is used
to get class recommendations by considering a class
pair.

Based on the endpoint triggered from the LCDP,
BORA triggers a SPARQL query over the repository
for collecting relevant model elements. The chosen rec-
ommendation function processes the results, if any, and

13 https://wordnet.princeton.edu

https://wordnet.princeton.edu

Model Discovery and Reuse by Knowledge Graphs for Low-Code Development Platforms: The zAppDev Case Study 11

a list of model elements is sent as a response to the
LCDP.

BORA allows importing models through the Im-
porter component that persists the model to the repos-
itory by converting it to RDF, merging to the RDF-
graph in the repository, and training the repository
again to update the weights.

From the zAppDev perspective, when the users want
to use BORA for getting modeling recommendations,
as depicted in Figure 12 and in Figure 13, they have
to click the "Business Object Suggester" button for
class recommendations or the "Get attribute sugges-
tion" button for attribute recommendation on the mod-
eling canvas, and BORA provides recommendations to
the user. After the user has selected the desired recom-
mended classes or attributes, they are automatically
integrated into the zAppDev platform.

When a recommended class is integrated, it auto-
matically imports all its attributes and association in-
formation to the corresponding end (the class from which
the recommendation service is triggered). Figure 12 shows
how BORA has been integrated into the zAppDev LCDP.
The following actions are illustrated:

a. Model under construction: The user asks for recom-
mendations on the model under construction. Up
to three classes can be selected at the same time. A
dedicated button triggers the recommendation. De-
pending on how many classes a user selects to ask for
recommendations, the respective N-gram endpoint
will be triggered, i.e., if the user selects one class, a
1-gram endpoint will be triggered; if he selects two
or three classes, then the 2-gram or 3-gram endpoint
respectively are invoked. it is worth noting that if
the user asks for recommendations without select-
ing any class, recommendations for isolated classes
are searched. In this particular case, BORA checks
within the repository if there is any model contain-
ing the same name as the model under construction
and returns all the isolated classes from that model.

b. BORA provides recommendations, and the user can
select many of them.

c. After the user selects the desired recommendations
and presses the "OK" button, the selected classes
are integrated into the modeling canvas with all the
relevant information in the repository.

The UI interaction is shown in Figure 13 for recom-
mendations of class attributes.

6 Evaluation

This section provides an overview of the evaluation of
BORA. It starts by identifying the research questions

and then describes the metrics used. The evaluation
is conducted using two different evaluation methodolo-
gies. The evaluation results are then presented, and
the section concludes with a discussion of the insights
gained from both evaluation methodologies.

6.1 Research Questions

The evaluation aims at answering these research ques-
tions:

■ RQ1: How does BORA perform on recom-
mending modeling classes based on attribute
similarities? The goal is to assess how BORA per-
forms in recommending relevant classes based on at-
tribute similarities.

■ RQ2: Are class names or class attribute simi-
larities more convenient for modeling recom-
mendations? The goal is to compare the perfor-
mance of recommendations based on class names
against class attributes and, thus, to determine whether
priority shall be given first to classes or their at-
tributes.

■ RQ3: How many steps does BORA need to
recall a whole model from the repository?
Since BORA is meant to provide modeling recom-
mendations iteratively, we can figure out how many
iterations it would take to recall a complete model
from the repository so the users can create a com-
plete model only through the recommendations they
get from BORA.

6.2 Metrics

It was necessary to determine the appropriate metrics
and their combination to evaluate the BORA approach.
The metrics are determined according to the following
variables:

– M is a model that is reconstructed from scratch
through BORA’s recommendations.

– TP , true positives: all recommendations that match
with the class names/class attributes in M.

– FP , false positives: all recommendations that don’t
match with the class names/class attributes in M.

– TN , true negatives: all model elements that don’t
match with the class names/class attributes in M
and are not recommended.

– FN , false negatives: all class names/class attributes
that match the model elements in M but are not
recommended.

The metrics we used to evaluate the approach are
the following:

12 Ibrahimi et al.

a) Model under construction b) Modeling recommendations provided to the user c) Integration of the selected recommendation

Fig. 12 A screenshot of BORA’s class recommendation performance on zAppDev.

a) Class under construction c) Integrate the selected recommendationsb) Providing recommendations to the user

Fig. 13 A screenshot of BORA’s attribute performance on zAppDev.

■ Precision is the ratio between true positive recom-
mendations and total recommended items. Precision
states the accuracy of recommendations:

Precision =
TP

TP + FP
(1)

■ Recall is the ratio between TP recommendations
and the total items available in M, which can be true
or false positives. It quantifies how many classes in
M can be recommended:

Recall =
TP

TP + FN
(2)

■ F-measure is a ratio that presents the harmonic
average of precision and recall:

Fmeasure = 2× Precision×Recall

Precision+Recall
(3)

It is worth noting since precision and recall have
the same weight of 0.5, we use the F1score, which is the

Model Discovery and Reuse by Knowledge Graphs for Low-Code Development Platforms: The zAppDev Case Study 13

specific case of the Fmeasure metric when Precision and
Recall are given the same weights (i.e., 0.5).

■ MAP [5] is the arithmetic mean of the average pre-
cision values for an information retrieval system over
a set of n recommendations:

MAP =
1

n

∑
n

APn (4)

We use MAP to evaluate the approach’s ranking.

■ coverage@N, in [14], is the percentage of items
i ∈ I recommended to projects p ∈ P , where I is
the set of all items available for recommendation
and P is the set of projects. We reuse this metric
and apply it to classes c ∈ C rather than projects.

coverage@N =
| ∪c∈C ∪N

r=1RECr(c)|
|I|

(5)

6.3 Evaluation Methodologies

The evaluation was carried out using two methodologies
detailed in the following.

6.3.1 Evaluation Methodology A

This evaluation methodology has been presented in our
previous work [21]. During the development phase of
BORA, we collected 667 zAppDev models. Due to in-
dustrial property rights, the zAppDev models mentioned
in this paper cannot be made available to the public.
However, it is pertinent to note that a series of RDF
models derived from the Ecore/EMF models have been
diligently uploaded to our designated GitHub reposi-
tory14Notably, the Ecore/EMF models themselves are
openly and publicly accessible via the established Maven
repository15. All 667 zAppDev models were transformed
into RDF graphs and then combined into one single
RDF graph. This graph was then weighted based on the
frequency of terms, such as the occurrences of classes.
This weighted RDF graph serves as the knowledge base
for BORA to make model recommendations.

In order to address the research questions, four ad-
ditional models were collected, two pertaining to the
Trip domain and two to the Order domain. These mod-
els are also available on the paper’s companion GitHub
repository. However, they are not included in the gen-
erated repository as their sole purpose is for evaluation.
14 https://github.com/iliriani/BORA_Ecore
15 https://mvnrepository.com/

We also used those four models to evaluate our previous
work [21].

The evaluation results are summarized in Table 1.
To evaluate BORA, we attempted to reconstruct these
four models from scratch using only recommendations
provided by BORA for each modeling step (i.e., repeat-
ing steps 6 - 9 in Figure 7). For each iteration through
each class of the selected model , we calculated the Pre-
cision (Equation 1), Recall (Equation 2), and F1 score
(Equation 3). Finally, we computed the average (Avg)
and standard deviation (SD) for each metric.

Since BORA provides ranked results based on class
occurrences (i.e., term frequencies), we also evaluated
the ranking process. To evaluate BORA’s ranking, we
calculated the average precision for each iteration of the
modeling step and then calculated the mean of all the
average precisions to obtain the MAP (see Equation 4).
In addition, we calculated the MAP standard deviation.

Since BORA is a reuse-based recommendation ap-
proach, we calculated how many domain-relevant classes
BORA could utilize from the repository to reconstruct
the new models. Utilization refers to the extent to which
BORA could explore the repository to provide recom-
mendations. When BORA provides relevant recommen-
dations, it is important to know how many relevant
classes are in the repository. Similarly, if BORA does
not provide any relevant recommendations, it is impor-
tant to confirm that nothing relevant can be found in
the repository. This evaluation metric is coverage@N 5,
first introduced by Di Rocco et al. in [14] and it is rel-
evant for answering RQ1 and RQ2.

6.3.2 Evaluation Methodology B

Another evaluation methodology of BORA was con-
ducted to eliminate any potential bias related to the
evaluation methodology, such as the selection of test
models, the consideration of synonyms as true positives,
and manual evaluation.

For this reason, we randomly selected 100 zAppDev
models and used 10-fold cross-validation (10% for test-
ing and 90% for training) to outline the performance of
BORA in different cases and compare the results for the
recommendations generated from class name similari-
ties and those from attribute similarities. Concerning
the recommendations based on class name similarities,
we used BORA’s 1-grams, i.e., we consider the related
classes of only these classes whose attributes match the
given attributes as input. The 10-fold cross-validation
results are given in Table. 2.

Moreover, to address RQ3, we have evaluated the
approach by testing it on how many steps we can get
to recommend/reuse an entire model within the repos-

https://github.com/iliriani/BORA_Ecore
https://mvnrepository.com/

14 Ibrahimi et al.

itory. We started the reuse process from a given class
within the model and designed the whole model by se-
lecting the proposed recommendations. In addition, we
have determined the reuse process based on the start-
ing point since it can significantly impact the iteration
required for getting a wholly recommended model from
the repository. We assumed that if the starting point
is a central class that is highly connected can retrieve
much more recommendations that can be reused during
the modeling process. Consequently, the model within
the repository will be reused faster than starting the
recommendation process by a less-connected starting
point. Thus, we evaluated the required recommenda-
tions steps starting from the highest connected class in
one case and the least connected class in another.

In Table. 2, we have depicted the precision/recall
in each step until the entire model is recommended,
i.e., we aggregated the recall through each iteration till
we got a recall of 1. For this evaluation, we selected
three different models within our repository. The chosen
models are a model named Trip with 14 classes, a model
named Expenses with 20 classes, and an Actor model
with 16 classes.

6.4 Results Overview

■ Answer to RQ1:
Results from Evaluation methodology A:
According to Table Table 1, the precision is very
low, with a maximum of 0.02543 in Model III. This
is because many classes have the same attributes,
leading to many irrelevant recommendations. An-
other reason for the low precision value is that the
class attributes were not very descriptive of the do-
main. The attributes of the models under construc-
tion were mostly general, such as name and date,
and the classes of the model under construction did
not contain many attributes. The lack of class at-
tributes also contributes to the low recall value. With-
out representative class-domain attributes on both
sides - the model under construction and the repos-
itory - finding relevant classes for recommendations
is difficult.
Consequently, since F1 is the harmonic function of
Precision and Recall, its values are also relatively
low. Additionally, because there were many domain-
irrelevant recommendations, BORA’s ranking is also
relatively low.
Concerning the coverage, based on the evaluation
results, we can see that BORA could discover a
lot of domain-related classes, with an average cov-
erage@N of 0.89450. Although, during the evalua-
tion methodology, we recognized that we have such

a discrepancy between recall and coverage@N be-
cause the class attributes of the model under con-
struction were not very domain descriptive. That
means that most of the classes contained quite com-
mon attributes, and when looking for class recom-
mendations from those attributes, we got mostly
domain-irrelevant recommendations. On the other
hand, there were only a few classes that contained
domain-relevant attributes and from which BORA
could discover a lot of relevant recommendations;
nevertheless, even the domain-relevant recommen-
dations were not the same as the classes of the model
under construction. In conclusion, BORA could dis-
cover a lot of domain-relevant attributes for reuse,
which gave a high coverage@N value. But, the rec-
ommended classes did not match any class of the
model under construction; thus, we got a low recall
value.
Results from Evaluation methodology B: The eval-
uation results are significantly better when using
real industrial models, as shown in TableTable. 2.
In each iteration of the 10-fold cross-validation pro-
cess, almost all metrics are higher than 0.6. Many
of the test classes share many attributes with the
classes from the training set, allowing the approach
to extract many relevant classes for recommenda-
tions based on attribute similarities. As a result,
the average precision is 0.66. The same attributes
among different models also enable us to find many
relevant classes within the repository for providing
recommendations, resulting in a high average recall
of 0.75. Since the F1 score is a harmonic function
of precision and recall, we can see that the aver-
age F1 of 0.7 is also significantly high. Finally, since
we have many true positives (TP), BORA’s ranking
performance is very high, with an average MAP of
0.71.

■ Answer to RQ2:
Results from Evaluation methodology A: Consider-
ing the evaluation results of BORA’s recommen-
dation performance based on class name similar-
ity [21], with an overall average precision of 0.36517,
recall of 0.35585, F1 value of 0.27585, MAP of 0.613306,
and coverage@N of 0.954616, we can see that BORA’s
performance in those four models is significantly
better when considering class names for modeling
recommendations instead of the class attributes.
Results from Evaluation methodology B: When con-
sidering a much larger dataset of real industrial mod-

16 Since in the previous work we evaluated the metrics for
each N-grams, and on three different models, here we out-
lined the average value of each metric throughout the entire
evaluation table

Model Discovery and Reuse by Knowledge Graphs for Low-Code Development Platforms: The zAppDev Case Study 15

Table 1 Evaluation process of class recommendations based on class attribute similarities

Reuse from repository evaluation - from class attributes

Domain Model Precison Recall F1 MAP coverage@N

Avg. SD Avg. SD Avg. SD Avg. SD

Trip
Model I 0.00523 0.00261 0.14286 0.05832 0.01009 0.00440 0.01194 0.00597 1.00000

Model II 0.01556 0.01987 0.15000 0.13229 0.02717 0.03297 0.07422 0.13261 0.69565

Order
Model III 0.02543 0.02141 0.26190 0.17496 0.04635 0.03962 0.17332 0.16131 1.00000

Model IV 0.02339 0.02187 0.12692 0.05867 0.03838 0.03391 0.11387 0.15351 0.88235

(avg.) 0.89450

Table 2 Comparison of recommendations based on class names and attribute similarities.

Iterations
Class names similariies Attribute similarities

Precision Recall F1 MAP Precision Recall F1 MAP

1 0.5221 0.9363 0.6037 0.9494 1 0.7843 0.9096 0.8424 0.8313

2 0.5076 0.4783 0.4471 0.6214 2 0.8535 0.8549 0.8542 0.8683

3 0.2434 0.3217 0.2313 0.3973 3 0.6901 0.5733 0.6263 0.8215

4 0.3713 0.5146 0.3753 0.5625 4 0.7005 0.6422 0.6701 0.7345

5 0.3961 0.6705 0.4316 0.7097 5 0.6316 0.7410 0.6819 0.7309

6 0.2337 0.2679 0.2148 0.3279 6 0.6348 0.7910 0.7044 0.8417

7 0.5478 0.6637 0.5470 0.7355 7 0.6160 0.6939 0.6526 0.9052

8 0.6444 0.8303 0.6683 0.8630 8 0.6418 0.7460 0.6900 0.5677

9 0.2504 0.4333 0.2741 0.4667 9 0.4662 0.7407 0.5722 0.1573

10 0.3087 0.5715 0.3515 0.6047 10 0.6034 0.7787 0.6800 0.6549

Average 0.4026 0.5688 0.4145 0.6238 0.6622 0.7471 0.6974 0.7113

els as test/train models and performing 10-fold cross-
validation, as presented in Table 2, we see that in
each iteration, the metrics derived from the attribute
similarities outperform those derived from class name
similarities.

■ Answer to RQ3:
The evaluation results of the number of iterations
required to completely reuse a model from the repos-
itory show that domain-specific N-grams almost al-
ways have higher precision than non-domain-specific
ones. However, recall is usually higher for non-domain-
specific N-grams. One crucial point outlined in Ta-
ble 3 confirms the assumption that starting from
the most connected class requires fewer iterations to
completely recommend a model from the repository,
except for the Actor model. In this model, fewer iter-
ations are required to reuse a model from the repos-
itory when starting from the least connected class,
named ActorInboxMessage, rather than starting
from the highest connected class.

The reason is that in the observed Actor model, the
highest connected class, ActorFunctionRestriction,
is not actually the most connected class among all
Trip-related models. This means that there are other
Actor-related models within the repository, and it
was concluded that the class Actor - not in the
observed Actor model - is much more connected
than ActorFunctionRestriction. Thus, since the
least-connected class in the observed Actor model,
ActorInboxMessage, is connected with the Actor
class from another Actor-related model, all Trip-
related classes will be recommended directly on the
next iteration.

In conclusion, BORA performs very well in reusing
the knowledge of previous models in order to construct
new ones, regardless of class names or class attributes
will be considered. BORA also performs relatively well
in supporting the citizen developers during the model-
ing process with domain-relevant recommendations. Fi-
nally, considering class attributes instead of class names

16 Ibrahimi et al.

Table 3 Recall sum-up evaluation of BORA

Model Relevance Start point n-gram
Iteration to completely get reused an model from the repository

1 2 3 4 5 6 7 8
Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall

Trip

Domain - specific

Most connected class

1-gram 0.545 1.000
2-gram 0.571 1.000
3-gram 0.550 1.000

Least connected class

1-gram 1.000 0.077 1.000 0.154 0.833 0.462 0.833 0.462 0.833 0.462 0.846 0.923 0.786 0.923 0.591 1.000
2-gram 1.000 0.083 0.800 0.333 0.800 0.333 0.800 0.333 0.833 0.833 0.769 0.833 0.476 1.000
3-gram 0.750 0.273 0.750 0.273 0.750 0.273 0.818 0.818 0.750 0.818 0.474 1.000

Non - domain - specific

Most connected class

1-gram 0.481 1.000
2-gram 0.444 1.000
3-gram 0.393 1.000

Least connected class

1-gram 1.000 0.077 1.000 0.154 0.500 0.308 0.500 0.308 0.400 0.769 0.407 0.846 0.407 0.846 0.342 1.000
2-gram 1.000 0.083 0.500 0.333 0.222 0.333 0.222 0.333 0.385 0.833 0.357 0.833 0.316 1.000
3-gram 0.429 0.273 0.176 0.273 0.176 0.273 0.400 0.909 0.345 0.909 0.289 1.000

Expenses

Domain - specific

Most connected class

1-gram 0.800 1.000
2-gram 0.789 1.000
3-gram 0.778 1.000

Least connected class

1-gram 1.000 0.188 0.833 0.313 0.762 1.000
2-gram 0.667 0.133 0.789 1.000
3-gram 1.000 0.357 0.714 0.357 0.778 1.000

Non - domain - specific

Most connected class

1-gram 0.762 1.000
2-gram 0.789 1.000
3-gram 0.700 1.000

Least connected class

1-gram 0.750 0.188 0.600 0.375 0.696 1.000
2-gram 0.500 0.267 0.625 1.000
3-gram 0.833 0.357 0.833 0.357 0.833 0.357 0.667 1.000

Actor

Domain - specific

Most connected class

1-gram 0.786 0.688 0.765 0.813 0.421 1.000
2-gram 0.750 0.800 0.405 1.000
3-gram 0.750 0.857 0.389 1.000

Least connected class

1-gram 0.500 0.063 0.432 1.000
2-gram 0.429 1.000
3-gram 0.333 0.071 0.500 0.143 0.389 1.000

Non - domain - specific

Most connected class

1-gram 0.786 0.688 0.765 0.813 0.333 1.000
2-gram 0.750 0.800 0.333 1.000
3-gram 0.765 0.929 0.318 1.000

Least connected class

1-gram 0.500 0.063 0.356 1.000
2-gram 0.349 1.000
3-gram 0.333 0.071 0.400 0.143 0.311 1.000

for recommendations is more effective for providing mod-
eling recommendations.

6.5 Threats to Validity

In the following, we discuss the threats that may affect
the validity of the findings of our experiment. The first
threat that can significantly impact the validity of the
evaluation results is the class attributes we selected for
the first evaluation methodology. In order to mitigate
this threat, we used at least three different and most
relevant class attributes. By relevant, here we mean the
most specific and descriptive attributes for that class.
We did this by removing common class attributes like
Id, Name, etc.

Another threat that could significantly validate our
evaluation results is the models we considered for in-
vestigation. Considering models that may (not) be sim-
ilar to other models in the repository can significantly
change the evaluation results. To mitigate this threat,
we selected four different models of two different do-
mains. Moreover, we conducted another evaluation method-
ology by selecting 100 real industrial models and per-

forming 10-fold cross-validation to calculate the metrics
of interest.

7 Related Works

Di Rocco et al. [17] present MemoRec, a metamodel
recommendation approach based on collaborative filter-
ing. MemoRec encodes different metamodels in a graph
representation, compares their similarity to the model
under construction, and provides modeling recommen-
dations retrieved after the metamodel and a model frag-
ment comparison process. Also, in [15], Di Rocco et al.
present MORGAN, a GNN-based recommender system
for facilitating the modeling process by assisting in the
specification of metamodels and models. The (meta)
models are encoded in a graph-based format, and af-
terward, a graph kernel function processes the graphs’
information to provide model recommendations. Com-
pared to these approaches, BORA shares with them
a graph-based repository, although BORA is search-
based and uses N-grams for prediction, while MOR-
GAN and MemoRec are ML-based. BORA can spec-
ify the relevant domain when given two different class

Model Discovery and Reuse by Knowledge Graphs for Low-Code Development Platforms: The zAppDev Case Study 17

names and produce modeling recommendations using
N-grams. BORA, compared to these approaches, can
determine the relevant modeling recommendation by
considering the sequence of one, two, or three classes.
Compared to MemoRec, BORA is not limited only to
metamodel recommendations; it is level-agnostic in this
context.

In [32], Weyssow et al. present an approach based
on a pre-trained language model for providing meta-
model concept recommendations. This approach gets
lexical and structural information from metamodels,
uses these information to train a deep neural language
model, and provides modeling recommendations pro-
vided by this trained deep neural language model. The
difference between our approach is that it relies on a
knowledge graph that is able to abstract knowledge of
different graph-based (meta) models and uses N-grams
for producing model recommendations. However, the
idea of weighting our knowledge graph with the textual
embedding technique used in Weyssow et al. s. can be
considered interesting future work.

Angel et al. [4,24] present Extremo - a heteroge-
neous modeling assistant. Extremo persists heteroge-
neous models into a single data model and provides
different queries that allow the users to search for po-
tential artifacts that can be reused.

Compared with Extremo, which uses a data model
for model persistence, BORA uses an RDF graph-based
repository. Also, BORA is capable of not just querying
the repository. Furthermore, it can provide recommen-
dations based on N-grams by clicking the "get sugges-
tions" button without requesting the user know any-
thing about the approach. BORA is technology inde-
pendent and can be used as a REST API.

Concerning model reuse, Bragilovski et al. [7] have
recently published a framework that transforms mod-
els into ME-MAP [28] and uses an iterative greedy al-
gorithm to match the user’s query (query-by-example)
with the models within a repository. The models will be
ranked based on how much they match the model frag-
ment given as a query by the user and will be returned
as a query result.

BORA, compared to this framework, is different re-
garding model reuse. BORA queries the repository and
uses N-grams to provide modeling recommendations
steps that the user might not be aware of, whereas this
framework is just query-by-example based, i.e., the user
already knows what he/she is looking for.

In [9], Burgueño presents a framework that uses
NLP techniques to process text documents, creates word
embeddings and persists them on an NLP model, and
provides model recommendations based on that model.
This framework also considers the users’ previous in-

teraction with the model, what they selected, and what
they rejected. Similarly, in [10], Capuano et al. present a
UML class recommender that learns from code repos-
itories. The difference between Burgueño’s framework
is that it provides document-specific recommendations,
i.e., it can suggest recommendations relevantly to the
domain of the documents it received as input, whereas
BORA uses a knowledge graph constructed by merg-
ing heterogeneous models and is capable of providing
cross-domain recommendations. The source of the ap-
proach is also the difference between BORA and Ca-
puano’s approach. While Capuno et al. use the knowl-
edge from code repositories to provide modeling recom-
mendations, we use the knowledge of models.

Henning Agt-Rickauer et al. [2] present an approach
for domain modeling recommendation, namely DoMoRe.
DoMoRe uses a large-scale network of semantic-related
terms extracted from different knowledge bases [1] to
provide modeling recommendations during the model-
ing process.

One of the differences between BORA and DoMoRe
is that BORA uses the knowledge of the previously con-
structed model to predict recommendations, including
model names, class names, class attributes, attributes
names, attribute datatypes, class associations, etc. So
BORA is model reuse-based. On the other hand, Do-
MoRe uses a large-scale graph of connected terms to
predict another term. DoMoRe’s repository can be in-
tegrated into BORA’s repository in order to enhance
the model class names recommendations.

Also, Lissete et al. [3] provide a model recommen-
dation system for LCDPs. The low-code user provides
a meta-model for recommendation to the system. Then
the user uses a textual DSL to determine which of the
meta-model elements play the roles of users, items, and
item features. The DSL also specifies the number of
recommended items that have to be offered to the de-
veloper, the recommendation method, format, etc.

Even though we provide a modeling recommenda-
tions approach and Lissete a DSL for configuring mod-
eling recommendations within an LCDP, our approach,
by specifying the right paraments, can conceptually be
integrated and used within this DSL,

8 Conclusion

This extended paper builds upon our previous work
on BORA [21] (Business Object Reuse Approach) by
introducing class recommendations based on attribute
similarities. Through a comprehensive survey conducted
on a collection of LCDP models, we initially identi-
fied the pressing need for a model reuse approach. The

18 Ibrahimi et al.

survey results revealed that approximately half of the
classes in these models are reused across different projects,
highlighting the significance of our proposed solution.

In this paper, we have provided a more detailed ex-
planation of BORA, shedding light on its inner work-
ings and highlighting its key features. Notably, we have
demonstrated that recommendations based on attribute
similarities outperform class name-based recommenda-
tions regarding effectiveness. This finding emphasizes
the importance of considering attribute similarities when
suggesting class reuse to LCDP users.

Moreover, our evaluation process substantiated that
BORA is an efficient tool for model reuse. By measuring
the number of steps required for BORA to fully reuse
a model from a repository, we established its efficacy
in streamlining the reuse process. This efficiency offers
tangible benefits to LCDP users, saving time and ef-
fort while promoting model reuse during the modeling
process.

In summary, this extended paper contributes to ad-
vancing model reuse techniques by incorporating class
recommendations based on attribute similarities into
the BORA tool. By addressing the need for a model
reuse approach, providing a comprehensive explanation
of BORA, showcasing the superiority of attribute-based
recommendations, and demonstrating its efficiency in
practice, our research establishes BORA as a valuable
tool for enhancing software development processes in
LCDPs and fostering model reuse across projects.

Acknowledgements This project has received funding from
the EU Horizon 2020 research and innovation programme un-
der the Marie Skłodowska Curie grant agreement No 813884,
and by the AIDOaRt project, an ECSEL Joint Undertaking
(JU) under grant agreement No. 101007350.

References

1. H. Agt and R.-D. Kutsche. Automated construction of
a large semantic network of related terms for domain-
specific modeling. In CAiSE, 2013.

2. H. Agt-Rickauer, R. D. Kutsche, and H. Sack. DoMoRe
– A recommender system for domain modeling. MOD-
ELSWARD 2018 - Proceedings of the 6th International
Conference on Model-Driven Engineering and Software
Development, 2018-January(January):71–82, 2018.

3. L. Almonte. Towards automating the construction of rec-
ommender systems for model-driven engineering. 2020.

4. M. S. Ángel, J. de Lara, P. Neubauer, and M. Wimmer.
Automated modelling assistance by integrating hetero-
geneous information sources. Computer Languages, Sys-
tems and Structures, 2018.

5. S. M. Beitzel, E. C. Jensen, and O. Frieder. MAP, pages
1691–1692. Springer US, Boston, MA, 2009.

6. A. Bhattacharyya and D. Chakravarty. (Graph Database:
A Survey). 2020 International Conference on Com-
puter, Electrical and Communication Engineering, IC-
CECE 2020, 2020.

7. M. Bragilovski, R. Stern, and A. Sturm. How do I find
reusable models? Software and Systems Modeling, 2023.

8. A. Bucaioni, A. Cicchetti, and F. Ciccozzi. Modelling in
low-code development: a multi-vocal systematic review.
Software and Systems Modeling, (Lcd), 2022.

9. L. Burgueño, R. Clarisó, S. Li, S. Gérard, J. Cabot,
L. Burgueño, R. Clarisó, S. Li, S. Gérard, and J. C. A.
Nlp-based. An NLP-based architecture for the autocom-
pletion of partial domain models To cite this version :
HAL Id : hal-03010872 A NLP-based architecture for the
autocompletion of partial domain models. 2021.

10. T. Capuano, H. Sahraoui, B. Frenay, and B. Vanderose.
Learning from code repositories to recommend model
classes. Journal of Object Technology, 21(3):3:1–11, July
2022. The 18th European Conference on Modelling Foun-
dations and Applications (ECMFA 2022).

11. Y. Chen. Comparison of Graph Databases and Re-
lational Databases When Handling Large-Scale Social
Data. page 82, 2016.

12. D. M. Christopher and S. Hinrich. Foundations of statis-
tical natural language processing. 1999.

13. P. Cudré-Mauroux and S. Elnikety. Graph data manage-
ment systems for new application domains. Proceedings
of the VLDB Endowment, 4(12):1510–1511, 2011.

14. J. Di Rocco, D. Di Ruscio, C. Di Sipio, P. T. Nguyen,
and R. Rubei. Development of recommendation systems
for software engineering: the CROSSMINER experience.
Empirical Software Engineering, 26(4), 2021.

15. J. Di Rocco, C. Di Sipio, D. Di Ruscio, and P. T. Nguyen.
A gnn-based recommender system to assist the specifica-
tion of metamodels and models. In 2021 ACM/IEEE
24th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS), pages 70–
81, 2021.

16. D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio,
M. Tisi, and M. Wimmer. Low-code development and
model-driven engineering: Two sides of the same coin?
Software and Systems Modeling, 2022.

17. J. Di Rocco, D. Di Ruscio, C. Di Sipio, P. T. Nguyen,
and A. Pierantonio. MemoRec: a recommender system
for assisting modelers in specifying metamodels. Software
and Systems Modeling, 2022.

18. B. DuCharme. Learning SPARQL (free chapters). 2013.
19. A. Grzech, L. Borzemski, J. Świa̧tek, and Z. Wilimowska.

Preface. Advances in Intelligent Systems and Computing,
430(October):V–vi, 2016.

20. I. Ibrahimi and D. Moudilos. Model slicing on low-code
platforms. In C. Dubois and J. Cohen, editors, STAF
2022 Workshop Proceedings: 2nd International Work-
shop on Foundations and Practice of Visual Modeling
(FPVM 2022), Nantes, France, July 5-8, 2022, volume
3250 of CEUR Workshop Proceedings. CEUR-WS.org,
2022.

21. I. Ibrahimi and D. Moudilos. Towards model reuse
in low-code development platforms based on knowledge
graphs. In Proceedings of the 25th International Con-
ference on Model Driven Engineering Languages and
Systems: Companion Proceedings, MODELS ’22, page
826–836, New York, NY, USA, 2022. ACM.

22. A. Kusel, J. Schönböck, M. Wimmer, G. Kappel,
W. Retschitzegger, and W. Schwinger. Reuse in model-
to-model transformation languages: are we there yet?
Software and Systems Modeling, 2015.

23. V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Soviet physics. Dok-
lady, 10:707–710, 1965.

Model Discovery and Reuse by Knowledge Graphs for Low-Code Development Platforms: The zAppDev Case Study 19

24. Á. Mora Segura and J. de Lara. EXTREMO: An Eclipse
plugin for modelling and meta-modelling assistance. Sci-
ence of Computer Programming, 2019.

25. G. Mussbacher, B. Combemale, J. Kienzle, S. Abrahão,
H. Ali, N. Bencomo, M. Búr, L. Burgueño, G. En-
gels, P. Jeanjean, J. M. Jézéquel, T. Kühn, S. Mosser,
H. Sahraoui, E. Syriani, D. Varró, and M. Weyssow. Op-
portunities in intelligent modeling assistance. Software
and Systems Modeling, (June), 2020.

26. W. Read, T. Report, and K. Takeaways. The Forrester
Wave ™ : Low-Code Development. 2016.

27. A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pieran-
tonio. Supporting the understanding and compari-
son of low-code development platforms. Proceedings -
46th Euromicro Conference on Software Engineering and
Advanced Applications, SEAA 2020, (August):171–178,
2020.

28. A. Sturm, D. Gross, J. Wang, and E. Yu. Means-ends
based know-how mapping. Journal of Knowledge Man-
agement, 21(2):454–473, 2017.

29. M. Tisi, J.-M. Mottu, D. S. Kolovos, J. De Lara, E. M.
Guerra, D. Di Ruscio, A. Pierantonio, and M. Wim-

mer. Lowcomote: Training the Next Generation of Ex-
perts in Scalable Low-Code Engineering Platforms. In
STAF 2019 Co-Located Events Joint Proceedings: 1st
Junior Researcher Community Event, 2nd International
Workshop on Model-Driven Engineering for Design-
Runtime Interaction in Complex Systems, and 1st Re-
search Project Showcase Workshop, CEUR Workshop
Proceedings (CEUR-WS.org), Eindhoven, Netherlands,
July 2019.

30. P. Vincent, K. Iijima, M. Driver, J. Wong, and Y. Natis.
Licensed for Distribution Magic Quadrant for Enterprise
Low-Code Application Platforms. pages 1–34, 2019.

31. R. Waszkowski. Low-code platform for automating busi-
ness processes in manufacturing. IFAC-PapersOnLine,
52(10):376–381, 2019.

32. M. Weyssow, H. Sahraoui, and E. Syriani. Recommend-
ing Metamodel Concepts during Modeling Activities with
Pre- Recommending Metamodel Concepts during Model-
ing Activities with Pre-Trained Language Models. 2021.

	Introduction
	Background and Motivational Example
	Enabling Model Reuse in LCPD
	Model Reuse Approach for LCDP
	Model Reuse for zAppDev: the BORA Tool
	Evaluation
	Related Works
	Conclusion

