
Towards Modeling Process Mining
for Graphical Editors

MohammadHadi Dehghani, Luca Berardinelli, and Manuel Wimmer
Institute of Business Informatics - Software Engineering & CDL-MINT, Johannes Kepler University, Linz, Austria

Email: mohammadhadi.dehghani@jku.at, luca.berardinelli@jku.at, manuel.wimmer@jku.at

Abstract—Engineering tools typically offer graphical environ-
ments to help modelers deal with the complexity of designing
software-intensive systems. Collecting and analyzing how differ-
ent users perform modeling actions is a valuable asset to improve
the user experience, the quality of the modeled system, and
the evolution of the modeling language and accompanying tool
support.

This tool paper presents a novel tool that captures user
interaction events in graphical modeling editors and enables
mining modeling processes. Modeling events from Sirius-based
graphical editors and GLSP-compliant editors are saved in IEEE
eXtensible Event Stream (XES) format and integrated with
the open-source ProM process mining tool as one example. By
importing modeling traces into process mining tools, analysts
can visualize and gain insights into the underlying model-
ing processes, enabling informed decision-making for designing
modeling language and tool improvements. Initial experimental
results demonstrate the applicability of our tool in capturing and
analyzing user interactions on desktop and Web editors in solo
and collaborative modeling sessions.

Index Terms—Modeling Processes, Event Streams, Process
Mining, Change Recording, Modeling Tools

I. INTRODUCTION

Software and system development is an evolutionary pro-

cess, and related artifacts undergo extensive changes in modern

software engineering methodologies. These changes usually

continue even after software deployment for maintenance

purposes [1]. Models are no exception to this fact and are

being used more than before in the software and system

development processes as model-driven [2] and low-code [3]

software development methodologies are rising to speed up the

development cycle and support reusing software artifacts. It is,

therefore, of high importance to understand and analyze the

changes that occur in models and supporting tools throughout

the different phases of development.

Understanding how users interact with graphical modeling

editors can provide valuable insights for optimizing the soft-

ware development process and identifying usability issues.

To achieve this goal, this paper presents a modeling process
mining approach for EMF-based models. The approach is

supported by a modeling event recorder (MER) tool1 to collect

events from desktop and web-based graphical modeling editors

implemented atop Sirius [4], an open-source framework that

allows generating graphical modeling workbenches for specific

domains from Ecore metamodels [5], and editors leveraging

the Graphical Language Server Platform (GLSP) [6].

1https://marketplace.eclipse.org/content/mer

The proposed approach leverages the capabilities of the

EMF Notification API [7] to record user interaction events

in the form of modeling traces. These traces are saved in

the widely-accepted and standardized IEEE eXtensible Event

Stream (XES) format [8] that promotes integration with ex-

isting process mining tools. By collecting XES-compliant

modeling event traces, off-the-shelf process mining tools, such

as ProM Tools [9], can be integrated with MER to analyse

the modeling activities performed via Sirius-based graphical

editors. Analysts, language engineers, and tool developers can

use our tool to understand how users navigate and interact

with graphical modeling editors.

This tool paper presents the design and implementation of

MER, the event logger tool, highlighting its capabilities in

capturing and analyzing user interactions within desktop and

Web editors based on Sirius [4] and GLSP frameworks [6].

The remainder of this paper is structured as follows.

Section II provides a domain-independent overview of the

proposed approach enabling modeling event recording and

modeling process mining for graphical editors. Section III

discusses the design of our tool for modeling process mining

for desktop and Web editors. Section IV discusses related

work, while Section V concludes the paper and suggests

directions for future research.

II. APPROACH

The use case diagram in Fig. 1 depicts the main stakeholders

and capabilities to enable a modeling process mining approach

from a domain-independent standpoint. In the following, we

describe each use case and we provide a short list of the most

prominent underlying technologies.

A modeler performs modeling activities using a graphi-

cal modeling editor. Modeling events are recorded in logs.

Thenceforth, when the user ends the modeling activities, the

modeling events are serialized in a specific format to feed

modeling process mining tasks, triggered by an analyst. A

graphical representation can be generated from mined mod-

eling processes to help analysts detect modeling patterns and

potential bottlenecks during graphical modeling activities. In

the following subsections, we detail each of the use cases.

A. Modeling

In MDE, models are the cornerstone machine-readable arti-

facts of the engineering process [2]. Graphical modeling helps

beginners (e.g., citizen developers of LCDP platforms [3],

929

2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C)

979-8-3503-2498-3/23/$31.00 ©2023 IEEE
DOI 10.1109/MODELS-C59198.2023.00146

Modeler

Modeling Event Data LoggingProcess Mining

Modeling Event RecordingGraphical Representation

includeextend include

Modeling Event Serialization

include

Modeling
extend

Analyst

extend

Fig. 1: Use Case Diagram

[10]) and expert modelers deal with complexity and improve

communication. EMF [7] and Sirius [4] are two prominent

technologies [11] to define modeling languages’ abstract and

concrete syntax through the Ecore metamodeling language and

Sirius, respectively, and to automatically providing Eclipse-

based graphical model editors by interpreting viewpoints de-

scriptors.

B. Modeling Event Recording and Data Logging

Modern information systems record detailed events that

occur within the system for later processing and analysis [12].

These systems record users’ actions on the application, finally

aggregating them into activities. The recorded data includes

various details of single actions and overall activities at

different, possibly customizable, granularity levels. It usually

consists of the name, order, duration of the performed action-

s/activities and the resources or users involved in each activity.

These records are called event data [13]. Event data logging

is an essential capability, and event data logs are the primary

input to enable process mining. Therefore, properly collecting

and recording the event data is highly important.

TABLE I: Example event data from a graphical modeling

editor application

Case-ID Activity TimeStamp Resource User
.
6824 Create EClass 13:48:21 A.xmi U1
6824 Set EClass:name 13:48:56 A.xmi U1
6825 Create EClass 13:49:30 B.xmi U2
6824 Create EAttribute 13:49:53 B.xmi U1
6824 Set EAttribute:name 13:50:21 B.xmi U1
.

We are interested in recording and logging events from

EMF-based graphical editors. Table I shows an example event

log which includes a collection of modeling event data cap-

tured from EcoreTools [14], which is a graphical modeling

editor for the Ecore metamodeling language [15]. Each row of

this table corresponds to an event that indicates the execution

of an action in a particular process instance or case, and each

column corresponds to an event attribute. The set of rows,

possibly including many cases, is a trace. For example, in the

trace for case 6824, the user U1 creates an EClass, sets its

name inside an XMI model file named “A.xmi”, then creates

an EAttribute, and changes its name in the file “B.xmi”. In

the meantime, as this user is modifying these files, user U2

creates an EClass in file “B.xmi”. Notice that this action has a

different Case ID as each user is performing a specific activity.

All these events are sorted based on execution timestamps [13].

C. Modeling Event Serialization

Nowadays, information systems produce huge amounts of

event data [16]. These applications require efficient serializa-

tion methods that save storage space and memory footprint.

In addition, the data should be structured to facilitate the

analysis and mining of the recorded events. In this regard,

there are existing serialization methods that tackle this is-

sue, like eXtensible Event Stream (XES) [8], Object-Centric

Event Logs (OCEL)2, Mining eXtensible Markup Language

(MXML) [17], among others. Generally, process mining tools

support one of these standards to process events.

The serialization format of the modeling event recording

tool determines which process mining tools support analyzing

the logged events. In particular, the XES standard is promoted

by the IEEE. It offers an XML Schema that defines the

structure of an XES event log/stream, plus extensions that

define additional attributes to enrich the information of logged

events (e.g., time extension). Eighteen process mining tools

accept the XES format as input at the time of writing3 .

D. Process Mining

According to v.d. Aalst et al. [16], [18], process mining
refers to discovering, monitoring, and improving real processes

by extracting knowledge from information systems’ event logs

to gain insight and optimize a process. Via process mining,

usage patterns can be identified, and process bottlenecks can

be detected and resolved. It is also possible to notice when

users deviate from the modeled patterns.

In this paper, we focus on collecting modeling events that

enable modeling process mining, i.e., the discovery, monitor-

ing, and improvement of the modeling activity performed by a

modeler creating prescriptive models manipulated in graphical

model editors suitable for MDE processes. Therefore, process

mining capabilities are inherited from available process mining

tools, like PrOM.

III. TOOL SUPPORT

This section presents a prototypical implementation of the

modeling event recording and process mining capabilities

depicted in Fig. 1. Modeling, modeling event recording, and

process mining capabilities can be realized by integrating

three components, i.e., (i) a graphical modeling editor, (ii)
a modeling event recorder, and (iii) a process mining tool.

In this paper, we propose a concrete model-driven realiza-

tion of a modeling process mining tool connecting (i) Sirius-

based graphical modeling editors, (ii) MER, a new modeling

event recorder for EMF models, and (iii) the open-source

process mining tool ProM [9].

Fig. 2 depicts a possible interaction of such a tool. First,

a modeler creates their desired modeling project and starts

designing the models via a dedicated Sirius-based graphical

editor (1). Then MER detects the beginning of a modeling

session and starts listening to the events happening inside that

2https://ocel-standard.org/
3http://www.xes-standard.org/tools

930

Graphical Editor

interact modifies Model
1

Model
n

Users

attachesuses observes changes

generates

Modeling Event Recorder (MER)

EMF Notification

IEEE
XES

discovers

uses as input

ProM Tools
Process Model

EMF Models

Legend

step

relation

n step number

1

2

3

4

...

Log Files

Ecore
XES

Change
Model

<<component>>
EMF-compliant tool

uses as input

Fig. 2: Modeling process mining workflow.

session (2). The events are in the form of EMF Notifications,

and they happen whenever the modeler modifies a model

through the editor GUI. At the end of a modeling session,

three log files are generated. Two of them represent the same

trace log in two different serialization formats, i.e., a standard

XES trace, conforming to published XES XML schema [8],

and an EMF-based XES model conforming to a new XES

metamodel. The third artifact is a Change Model conforming

to the Change Metamodel introduced by EMF [7] (3).

The IEEE XES log file is manually fed to ProM and any

IEEE XES compatible tool [8], while the equivalent XES

model and Change Model are suitable for EMF-compliant

tools. Thanks to ProM’s mining algorithms, analysts can

discover the process model describing the interaction of the

modelers with the graphical editor (4).

In the following, we discuss the rationales, technical de-

tails, and related artifacts involved in the realization of the

aforementioned components. The source code and additional

material are available in [19].

A. Desktop and Web-based Editors: Sirius and Theia

When designing a model, it is convenient to have a graphical

representation of the model, with the possibility of editing

through a drag-and-drop editor [20]. Moreover, with the

growth of cloud computing and the progress in web applica-

tion development, the software industry is leveraging cloud

environments and web user interfaces. This is particularly

evident for Low Code Development Platforms (LCDP) [10]

where the accidental complexity of model-driven techniques

and practices [2], [11] are (partially) hidden to non-experts,

a.k.a. citizen developers, by graphical editors and advanced

services.

In this work, we leverage Sirius [4] and the GLSP-compliant

Theia [21] frameworks and then offer the approach to desktop

and Web graphical model editors. This enables us to conduct

experimental case studies with different modeling languages

and graphical editors.

1) Sirius-based graphical editors: Thanks to Sirius, users

have a reusable way of defining graphical modeling editors

extending the Eclipse IDE desktop application. Given an

existing or new metamodel in Ecore, Sirius can automatically

generate an editor that lets users graphically define models of

different types [22]. In particular, Sirius specifies a Viewpoint

Specification Project allowing different graphical concrete syn-

tax options such as generic diagrams, edition tables, crossta-

bles, trees, and sequence diagrams [5], taming the accidental

technical complexity required for building graphical modeling

editors from scratch [20].

Examples. The current integration activities regard en-

abling process mining for (i) AutomationML [23] using

CAEX Modeling Workbench editor [24] (a demo video is

available in [19]), (ii) SysML via Papyrus Sirius Integra-

tion [25], and (iii) Ecore via Eclipse Ecore Tools [14].

AutomationML and SysML process mining capabilities are

part of a more extensive industrial case study with Volvo

Construction Equipment [26] conducted within the AIDOaRt

European project [27] where MER has been already applied.

2) Theia-based editors: GLSP [6] is available for creating

graphical editors based on Web technologies. The Language

Server Protocol (LSP) [28] and an extensible client and server

frameworks are offered by GLSP. Moreover, GLSP makes

it possible to create Web graphical editors with the server

handling computation-intensive tasks. Eclipse Theia, VSCode,

and Eclipse Desktop offer integration layers [6].

Theia [21] is a GLSP-compliant extensible platform that en-

ables the creation of cloud-based and desktop IDE-like editors

using Web technologies (HTML, CSS, and TypeScript) [29].

The Web-based editor consists of two components. A server

application (back-end) and one or several client applications

(front-end) that connect to the server. The client application

contains no modeling logic. It is responsible for providing a

user interface, sending all the actions to the server, and receiv-

ing updates from the server. Following the same rationale, the

MER component for Web editors is deployed on top of the

server application.

We have forked the Eclipse Theia Ecore Tools’ GitHub

repository [19] and integrated MER into the Theia Ecore

Tools so that the corresponding event log is saved whenever a

graphical model is saved. Theia Ecore Tools includes a client

and a GLSP server, which has been modified on purpose.

Example. The GLSP-compliant Ecore editor, integrated into

the Eclipse Theia IDE, provides a Web-based version of the

popular Ecore tools. It allows its users to graphically create

and modify Ecore Models via a diagram editor integrated into

the web-based IDE Eclipse Theia [30].

B. Modeling Event Recording: MER

The MER component is the heart of the proposed approach.

It detects any (potentially concurrent) modeling sessions and

starts recording the events while the session is active. It

leverages the EMF Notification API [7] to listen to model

resource changes. Once a modeling session is concluded, three

log files are generated: the IEEE XES log file, an XES model,

and a Change Model. The IEEE XES log file is compatible

with 18 different tools [8], including the chosen process

931

Fig. 3: Example process model created for Table I by ProM.

mining tool ProM. We modified [19] the OpenXES library

for Java [8] to serialize the log traces in an efficient manner.

The same traces are also saved into an equivalent XES

model conforming to a given XES metamodel (Fig. 4, further

described later). The IEEE XES log file can be consumed

by ProM and any IEEE XES compatible tool [8], while the

equivalent XES model and Change Model are suitable for

EMF-compliant tools.

As shown in Fig. 2, a Change Model is also gen-

erated according to an extended Change Metamodel [19]

introduced in [7]. In particular, we extended the overall

ChangeDescription by adding a timestamp attribute to

FeatureChange. The benefit is twofold. It allows the

collection of timed change descriptions while preserving

compatibility thanks to such a non-breaking change [31] to

the original Change Metamodel. It enables modeling event

recording capability to desktop and Web graphical editors.

The MER component can be deployed as an Eclipse plugin

for Sirius-based desktop editors and as a Java server applica-

tion for Theia-based web editors.

C. Process Mining: ProM

Different tools support generic process mining tasks, such

as ProM [9], Celonis4 and Disco5. In this paper, we choose

the ProM tool because it is a well-known and open process

mining tool that has been used extensively in research. It

offers several plugins for different mining purposes, supports

common log formats as input (including XES), and generates

process models in different formats. For example, the ProM

tools contain some miner plugins that generate different types

of process models as their output. Some of the most common

miners of ProM are inductive visual miner, which produces

process trees; Integer Linear Programming (ILP) miner, which

produces Petri nets; and Heuristic miner, which produces C-

nets. By integrating ProM as a process mining tool, we also

inherit its capability to visualize mined process models. Fig. 3

shows a modeling process model of an Ecore metamodel,

created by ProM using the inductive visual miner plugin. This

is one of the several ways that a process model can be extracted

from the same log shown in Table I via different algorithms

and various configurations for each one

D. XES Metamodel

Our approach offers an XES metamodel to save modeling

events as an EMF artifact to ease the integration with EMF-

compliant tools. For example, in our previous work [26], the

4https://www.celonis.com/
5https://www.fluxicon.com/disco/

�����

�����
���� ��� 	
���� �	
�� ��	��

�����

����
������	��� ����� ������	��� ����� ������	���

�������	
��	��
���� �		
���	��

�����
�		
���	�� �		
���	��

�		
���	��
�������
�������
 ��!����
!�����"�"�
��#����#$
 "������

���	�%���
����� &������	���

'������	���
���������� �����

Fig. 4: XES metamodel based on the schema provided by [8].

:Log

:Trace create EClass:Event

:Attribute
key = "timestamp"
value = "13:48:21

:XES

:Attribute
key = "resource"
value = "A.xmi"

:Attribute
key = "caseId"
value = "6824"

create EAttribute:Event

:Attribute
key = "timestamp"

value = "13:49:53

:Attribute
key = "resource"

value = "B.xmi"

Fig. 5: Mapping two events of Table I to XES.

collected XES models are used to feed EMF-based model

generators to train a model recommender [32].

Fig. 4 shows the metamodel of the XES format. As depicted,

the root class is XES, which contains the rest of the elements.

Each XES file may contain multiple Logs. Every Log should

contain at least one and may contain several Trace elements.

Each Trace includes a non-empty series of Events (activ-

ities within a process). The Attribute element defines the

properties of Logs, Traces and Events. In addition, each

Attribute has a key that is unique within the same Log,

Trace and Event elements, i.e., one Event cannot have

two or more attributes with the same key, but two different

Events may have an Attribute with the same key.

As we leverage the EMF Notification API to observe the

changes, but we need the XES format for serialization, we

have developed a transformation to adapt the EMF Notification

objects to XES objects. We show how we map the EMF events

to XES via an object diagram in Fig.5. This object diagram

partially represents two events from Table I.

IV. RELATED WORK

Due to space limitations, we focus on the most relevant

related work. In [33], Tinnes et al. present the OCKHAM tool

that learns model transformations for mining edit operations

from existing models in a model repository. Our approach

delegates process mining to capabilities inherited by XES-

compliant tools like ProM and works directly with recorded

change logs. The work in [34] discusses a generic operation

recorder for model evolution based on an operation meta-

model. Like MER, it reuses EMF Notifications but ignores

process mining capabilities and compatibility with standards

like XES. The work in [35] outlines a research agenda to

improve collaborative graphical modeling focusing on users

and change history. It also proposes using Event Sourcing to

support model versioning and collaboration. Our approach can

932

contribute to collaborative graphical modeling via Theia-based

Web editors by collecting edit events in XES. Please note that

previously the integration of MDE techniques with process

mining techniques has been proposed, but only for generated

applications from models [36].

V. CONCLUSION AND FUTURE WORK

This paper introduces a novel tool chain for capturing

and analyzing user interaction events in graphical modeling

editors. Our MER tool captures user interactions and saves

them in the XES format (amongst others). These event logs

can be imported into, e.g., the ProM process mining tool to

visualize and analyze user processes. Moreover, to leverage

the extensive EMF-based tool ecosystem in future work, we

devised an XES metamodel in Ecore and generated compliant

XES trace models.

This represents the basis for further analysis mechanisms

that may improve user experiences. Future research may focus

on enhancing the tool with event logging formats that also

consider the models’ contents, and expanding its compatibility

with other editors and process mining tools.

ACKNOWLEDGMENT

This project has received funding by the AIDOaRt project,

an ECSEL Joint Undertaking (JU) under grant agreement

number 101007350, by the EU Horizon 2020 research and in-

novation programme under the Marie Skłodowska-Curie grant

agreement No 81388, and by the Austrian Federal Ministry for

Digital and Economic Affairs and the National Foundation for

Research, Technology and Development (CDG).

REFERENCES

[1] J. Garcia and J. Cabot, “Stepwise Adoption of Continuous Delivery
in Model-Driven Engineering,” in DEVOPS 2018, pp. 19–32, Springer,
2019.

[2] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice. Synthesis Lectures on Software Engineering,
Cham: Springer International Publishing, 2017.

[3] D. Di Ruscio, D. S. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, and
M. Wimmer, “Low-code development and model-driven engineering:
Two sides of the same coin?,” Softw. Syst. Model., vol. 21, no. 2, pp. 437–
446, 2022.

[4] “Sirius.” https://eclipse.dev/sirius/overview.html. Accessed: 2023-07.
[5] V. Viyović, M. Maksimović, and B. Perisić, “Sirius: A rapid development

of DSM graphical editor,” in IEEE 18th International Conference on
Intelligent Engineering Systems INES 2014, pp. 233–238, 2014.

[6] “Eclipse GLSP.” https://eclipse.dev/glsp/. Accessed: 2023-07.
[7] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse

Modeling Framework. Pearson Education, 2008.
[8] “IEEE Standard for eXtensible Event Stream (XES) for Achieving

Interoperability in Event Logs and Event Streams,” standard, IEEE,
2016.

[9] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J.
M. M. Weijters, and W. M. P. van der Aalst, “The ProM Framework: A
New Era in Process Mining Tool Support,” in Applications and Theory
of Petri Nets 2005, pp. 444–454, Springer, 2005.

[10] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting
the Understanding and Comparison of Low-code Development Plat-
forms,” in 2020 46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), pp. 171–178, IEEE, 2020.

[11] A. Iung, J. Carbonell, L. Marchezan, E. Rodrigues, M. Bernardino,
F. P. Basso, and B. Medeiros, “Systematic Mapping Study on Domain-
specific Language Development Tools,” Empirical Software Engineer-
ing, vol. 25, pp. 4205–4249, Sept. 2020.

[12] A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, F. M. Maggi,
A. Marrella, M. Mecella, and A. Soo, “Automated Discovery of Process
Models from Event Logs: Review and Benchmark,” IEEE Transactions
on Knowledge and Data Engineering, vol. 31, no. 4, pp. 686–705, 2019.

[13] D. Schuster, S. J. van Zelst, and W. M. van der Aalst, “Utilizing Domain
Knowledge in Data-driven Process Discovery: A Literature Review,”
Computers in Industry, vol. 137, p. 103612, 2022.

[14] “Ecore Tools.” https://projects.eclipse.org/projects/modeling.emft.
ecoretools. Accessed: 2023-07.

[15] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse
Modeling Framework. Pearson Education, 2008.

[16] W. M. P. van der Aalst, Process Mining: Data Science in Action.
Springer, 2nd ed., 2016.

[17] B. F. van Dongen and W. M. Van der Aalst, “A Meta Model for Process
Mining Data.,” EMOI-INTEROP, vol. 160, p. 30, 2005.

[18] W. Van der Aalst, A. Adriansyah, and B. van Dongen, “Replaying
History on Process Models for Conformance Checking and Performance
Analysis,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 2, no. 2, pp. 182–192, 2012.

[19] “Modeling Process Mining.” https://github.com/jku-win-se/
modeling-process-mining. Accessed: 2023-07.

[20] F. Bedini, R. Maschotta, and A. Zimmermann, “A Generative Approach
for Creating Eclipse Sirius Editors for Generic Systems,” in 2021 IEEE
International Systems Conference (SysCon), pp. 1–8, 2021.

[21] “Eclipse Theia.” https://theia-ide.org/. Accessed: 2023-07.
[22] S. Jäger, R. Maschotta, T. Jungebloud, A. Wichmann, and A. Zimmer-

mann, “Creation of Domain-Specific Languages for Executable System
Models with the Eclipse Modeling Project,” in 2016 Annual IEEE
Systems Conference (SysCon), pp. 1–8, 2016.

[23] “AutomationML.” https://www.automationml.org/. Accessed: 2023-07.
[24] “CAEX Modeling Workbench.” https://github.com/amlModeling/

caex-workbench. Accessed: 2023-07.
[25] “Papyrus Sirius Integration.” https://git.eclipse.org/c/papyrus/org.eclipse.

papyrus-sirius.git. Accessed: 2023-07.
[26] J. Bergelin, L. Berardinelli, D. Bilic, H. Bruneliere, A. Cicchetti,

M. Dehghani, C. Di Sipio, J. Miranda, A. Rahimi, and R. Rubei,
“Towards Automating the Industrial Design of CPS: The Experience
of Volvo Construction Equipment.” Availabe at SSRN: https://ssrn.com/
abstract=4484021 or https://dx.doi.org/10.2139/ssrn.4484021, 2023.

[27] H. Bruneliere, V. Muttillo, R. Eramo, L. Berardinelli, A. Gomez,
A. Bagnato, A. Sadovykh, and A. Cicchetti, “AIDOaRt: AI-augmented
Automation for DevOps, a Model-Based Framework for Continuous
Development in Cyber-Physical Systems,” Microprocessors and Mi-
crosystems, vol. 94, p. 104672, 2022.

[28] “Language Server Protocol.” https://microsoft.github.io/
language-server-protocol/. Accessed: 2023-07.

[29] “Eclipse Theia.” https://theia-ide.org/. Accessed: 2023-07.
[30] “EMF Cloud.” https://eclipse.dev/emfcloud/. Accessed: 2023-07.
[31] A. Cicchetti, D. Di Ruscio, and A. Pierantonio, “Managing Dependent

Changes in Coupled Evolution,” in International Conference on Theory
and Practice of Model Transformations, pp. 35–51, Springer, 2009.

[32] C. Di Sipio, J. Di Rocco, D. Di Ruscio, and P. T. Nguyen, “MORGAN:
a Modeling Recommender System based on Graph Kernel,” Software
and Systems Modeling, pp. 1–23, 2023.

[33] C. Tinnes, T. Kehrer, M. Joblin, U. Hohenstein, A. Biesdorf, and S. Apel,
“Mining domain-specific edit operations from model repositories with
applications to semantic lifting of model differences and change profil-
ing,” Automated Software Engineering, vol. 30, no. 2, p. 17, 2023.

[34] M. Herrmannsdoerfer and M. Koegel, “Towards a generic operation
recorder for model evolution,” in Proc. of the 1st International Workshop
on Model Comparison in Practice, pp. 76–81, 2010.

[35] J. Pietron, “Enhancing Collaborative Modeling,” in Proc. of the 23rd
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proc., pp. 1–6, 2020.

[36] A. Mazak and M. Wimmer, “On Marrying Model-Driven Engineering
and Process Mining: A Case Study in Execution-based Model Profiling.,”
in SIMPDA, pp. 78–88, 2016.

933

