
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

A Model-Driven Framework for Composition-BasedQuantum Circuit Design

FELIX GEMEINHARDT, Johannes Kepler University Linz, Institute for Business Informatics - Software Engineering,

CDL-MINT, Austria

ANTONIO GARMENDIA, Johannes Kepler University Linz, Institute for Business Informatics - Software Engi-

neering, Austria

MANUEL WIMMER, Johannes Kepler University Linz, Institute for Business Informatics - Software Engineering,

CDL-MINT, Austria

ROBERT WILLE, Technical University of Munich, Chair for Design Automation, Germany

Quantum programming languages support the design of quantum applications. However, to create such programs, one still needs to
understand fundamental characteristics of quantum computing and quantum information theory. Furthermore, quantum algorithms
frequently make use of abstract operations with a hidden low-level realization (e.g., Quantum Fourier Transform). Thus, turning from
elementary quantum operations to a higher-level view on quantum circuit design not only reduces the complexity, but also lowers the
entry barriers for non quantum computing experts.

To this end, this paper proposes a modeling language and design framework for quantum circuits. This allows the definition
of composite operators advocating a higher-level quantum algorithm design, together with automated code generation for the
circuit execution. The proposed approach comes with a separation of the quantum operation definitions from the quantum circuit
syntax, which allows for an independent design and the use of customized libraries. To demonstrate the benefits of the proposed
approach, coined Composition-Based Quantum Circuit Designer, we realized the Quantum Counting algorithm as well as the Quantum
Approximate Optimization Algorithm with it. This shows that, compared to an existing state-of-the-art editor, the proposed approach
allows for the realization of both quantum algorithms on a high-level with a substantially reduced development effort.

CCS Concepts: • Computer systems organization → Quantum computing; • Software and its engineering → Abstraction,

modeling and modularity.

Additional Key Words and Phrases: Quantum Computing, Quantum Software Engineering, Quantum Circuits, Model-Driven Engineer-
ing, Quantum Software Languages

ACM Reference Format:
Felix Gemeinhardt, Antonio Garmendia, Manuel Wimmer, and Robert Wille. 2018. A Model-Driven Framework for Composition-Based
Quantum Circuit Design. Proc. ACM Meas. Anal. Comput. Syst. 37, 4, Article 111 (August 2018), 23 pages. https://doi.org/10.1145/
1122445.1122456

Authors’ addresses: Felix Gemeinhardt, felix.gemeinhardt@jku.at, Johannes Kepler University Linz, Institute for Business Informatics - Software
Engineering, CDL-MINT, Linz, Austria; Antonio Garmendia, antonio.garmendia@jku.at, Johannes Kepler University Linz, Institute for Business Informatics
- Software Engineering, Linz, Austria; Manuel Wimmer, manuel.wimmer@jku.at, Johannes Kepler University Linz, Institute for Business Informatics -
Software Engineering, CDL-MINT, Linz, Austria; Robert Wille, robert.wille@tum.de, Technical University of Munich, Chair for Design Automation,
Munich, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/1122445.1122456 
https://doi.org/10.1145/1122445.1122456 


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Gemeinhardt, et al.

1 INTRODUCTION

Quantum Computing (QC) is an interdisciplinary field which relies on quantum mechanical phenomena to process
information. Continuous developments in the field justify to expect near-term superiority compared to classical means
of computation at least for certain applications such as simulations in chemistry, optimization problems, or machine
learning approaches [9, 20, 36].

Computations performed on a quantum computer are implemented with operations of quantum gates, in analogy to
classical gates for conventional computation [13]. Such reversible quantum gates, together with irreversible operations
and concurrent classical computation, applied on quantum data (e.g., qubits) in an ordered manner represent a quantum
circuit. This so-called quantum circuit model of QC is regarded the most commonly used realistic model to run quantum
programs [51].

A universal fault-tolerant quantum computer would require millions of qubits of highest quality [24]. Whereas
experimental realizations of such computers will potentially still take decades of research, so-called Noisy Intermediate-

Scale Quantum (NISQ) computers already exist today and, therefore, may enable the bespoke near-term superiority
of QC with respect to classical computation [58]. Hybrid quantum-classical algorithms, called Variational Quantum

Algorithms (VQAs), have been proposed to cope with the limitations given in the NISQ era [9], where the parameters of
the quantum circuit are optimized with classical means of computation. Therefore, the resulting two research streams
consider quantum algorithms specifically for perfect, or noisy qubits [7].

Nowadays, quantum programming languages, like IBM’s Qiskit1, Google’s Cirq2, Microsoft’s Q#3, or Amazon’s
Braket4 offer the possibility to efficiently program and access quantum computers provided by Cloud services. Further-
more, the programs can be executed on quantum simulators locally or also via Cloud access. The field of Quantum
Software Engineering (QSE) is emerging and new tools are published on a regular basis as, e.g., recent pen-based program-
ming solutions [3]. However, code is usually written at the qubit level and requires to understand basic fundamental
concepts of quantum physics, like entanglement and superposition. Exceptions are represented by emerging libraries
and software development kits (e.g., IBM Qiskit) which offer higher level functionalities.

Such functionalities allow the definition of more abstract quantum operations (e.g., Quantum Fourier Transform

(QFT) [51]) which occur frequently in quantum algorithms. One example is the Quantum Phase Estimation (QPE) [51],
which is depicted in Figure 1. The illustration highlights the use of higher-level quantum operations and iterative
patterns for the definition of quantum algorithms. The QPE-algorithm determines the eigenphase of a given quantum
operation (U -gate). This quantum operation is usually a higher-level, composed gate. A controlled version is iteratively
applied a certain number of times (twice for 𝑈 2, three times for 𝑈 3, etc.) for each control qubit. Thereafter, the bespoke
QFT as another example of a higher-level, composed operation is applied to the circuit, before the quantum state is
measured.

Therefore, utilizing more abstract design concepts enables to hide the low-level realization and also promotes
flexibility and complexity reduction. Furthermore, turning from elementary quantum operations to such a higher-level
design perspective also lowers the entry barriers for non-quantum computing experts. Within this process towards
higher abstraction and automation in the design of quantum software, it seems reasonable to apply the lessons learned
from decades of research on classical software engineering to the field of quantum computing in order to avoid repeating

1https://qiskit.org
2https://quantumai.google/cirq
3https://docs.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-and-qdk
4https://aws.amazon.com/braket/?nc1=h_ls

Manuscript submitted to ACM

https://qiskit.org
https://quantumai.google/cirq
https://docs.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-and-qdk
https://aws.amazon.com/braket/?nc1=h_ls


105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

A Model-Driven Framework for Composition-Based Quantum Circuit Design 3

ȁ ۧ0

ȁ ۧ0

ȁ ۧ0

ȁ ۧ0

H

H

H

H

QFT

ȁ ۧΨ0 U2U U3 U4 ȁ ۧΨ𝑓

Legend

H Hadamard Gate

Controlled

U

QFT

Measurement Gate

Input Quantum Operation

Quantum Fourier Transform

Fig. 1. Quantum circuit for QPE; based on [5]

the evolution on the software side. Furthermore, due to its nascent character, the field is widely lacking commonly
accepted standards which calls for high levels of flexibility and extensibility of the designed software artifacts.

In this work, we build on existing knowledge from the foundations of Model-Driven Engineering (MDE) [10], and
Software Language Engineering (SLE) [16] and transfer it to QSE. We present an extensible language for creating
quantum circuits which goes beyond the basic concepts at the qubit level and an according modeling framework which
we term Composition-Based Quantum Circuit Designer (CoQuaDe). The proposed approach allows to generate modelling
environments which support a high-level quantum circuit design by the use of composite operations. These composite
operations may represent specific oracles, but also more general, frequently occurring operations like, e.g., amplitude
amplification and QFT. The latter kind can be defined dynamically promoting reusability and variation.

The level of abstraction and automation is further increased by accounting for iterative patterns in quantum algorithms
as well as automated generation of quantum operations from classical data. Moreover, the proposed approach is based
on a separation between the semantics concerning the quantum circuit itself and the specific quantum operations,
which enhances portability and flexibility. Therefore, we present two declarative modeling languages to account for the
separation of concerns. Note, that the proposed framework is by design modular concerning the utilized backends,
the quantum programming language for lower-level code generation, and the editor that is build on top as a frontend.
Therefore, it does not rely on commonly accepted standards in the field, which are still lacking.

Our contributions can be summarized as follows: (𝑖) We provide modelling languages and an according framework
for the generation of modelling environments; (𝑖𝑖) we provide a framework that allows for quantum circuit design on a
higher-level of abstraction and supported automated code generation; (𝑖𝑖𝑖) we demonstrate the proposed approach
for two well-known quantum algorithms; (𝑖𝑣) we compare the resulting framework with a state-of-the-art editor for
quantum circuits regarding the development effort.

The remainder of this paper is structured as follows. Section 2 presents the related work. Section 3 presents an
overview of the proposed framework. Details on its prototypical implementation are provided in Section 4 and Section 5.
In Section 6, we demonstrate the proposed approach using the realization of the Quantum Counting algorithm [51] and
the Quantum Approximate Optimization Algorithm (QAOA) [23]. We conclude the paper and provide future research
directions in Section 7.

2 RELATEDWORK

Many vendors of quantum computing provide quantum programming languages and software development kits (e.g.,
IBM’s Qiskit, Google’s Cirq, Microsoft’s Q#, Amazon’s Braket). Furthermore, vendor-agnostic tools have emerged for
higher portability (e.g., XACC [48], Project Q [63], QuantumPath [35]) with an steadily increasing number of upcoming
tools.

Manuscript submitted to ACM



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Gemeinhardt, et al.

Concerning graphical editors, the IBM Quantum Composer5 provides a set of customizable tools that allow to build,
visualize and run quantum circuits, where a direct code generation to OpenQASM 2.0 and Qiskit is supported. Similar
features are offered within the QI Editor in Quantum Inspire [46], and the QPS quantum circuit modeler which supports
circuit execution on multiple platforms6. The Quirk7 graphical modeler on the other hand comes with a large set of
applicable gates and also allows to create composite operations, but does not provide automatic code generation from the
built circuit. The QuAntiL8 circuit transformer enables the translation of a given circuit into different languages as well
as modifications on a qubit and gate level of abstraction. Available graphical quantum circuit editors are summarized
and evaluated in Table 1 regarding their features of

• automatically generating code from the built quantum circuit (F1), and
• the possibility to define composite gates (F2).

Table 1. Supported features of current graphical editors (yes (✓), partly (∼), no (✗))

Graphical Editor F1 F2
IBM Quantum Composer [15.07.2022] ✓ ∼

QI editor [v1.0] ✓ ✗

QPS modeler [0.9.53] ✓ ✗

Quirk [v2.3] ✗ ∼
QuAntiL [v1.0.1] ✓ ✗

In Table 1, F1 has been evaluated as ✓if at least one code generator is provided. The support of composite gates has to
comprise the possibility of defining such gates in a manner which is independent of the number of qubits, besides a
plain static definition, in order to be evaluated as ✓. The support of pure static definitions, which would be sufficient
for a certain oracle but not e.g., for the general QFT, results in a ∼. From Table 1 it can be seen that the majority of
available graphical editors does not support composite gate definitions. Particularly, when it comes to such convenient
definitions of custom blocks, and other higher-level functionalities of quantum algorithm design, graphical editors are
inferior to available textual solutions.

Continuing with such non-graphical solutions for quantum circuit manipulation, QUANTIFY [53] is an open-source
framework for the analysis, verification, and optimization of quantum circuits based on Goolge Cirq. It offers the
choice between different Toffoli gate decompositions and semi-automatic circuit modification methods. The Quantum
Algorithm Design (QAD) platform of Classiq9 focuses on the automatic synthesis of complete quantum circuits from
high-level textual inputs. From such high-level models and user-defined constraints, the engine generates code in
lower level programming languages (e.g., Qiskit, Cirq, Q#) for the execution on a quantum machine. With a focus
on building higher level workflows, the Zapata Orchestra10 software tool allows to orchestrate quantum- as well as
classical programs for real-world applications where also quantum annealing facilities may be utilized.

The application of software engineering methods and principles from MDE to the field of QC has been discussed
several times in the literature. In this regard, modeling approaches for the design of quantum software have been
suggested, e.g., by Pérez-Delgado et al. [56] who proposed a Unified Modeling Language (UML) [52] extension to allow
5https://quantum-computing.ibm.com/composer/files/new
6https://quantum-circuit.com/docs
7https://algassert.com/quirk
8https://quantil.readthedocs.io/en/latest/user-guide/circuit-transformer
9https://www.classiq.io
10https://www.zapatacomputing.com/orquestra-platform

Manuscript submitted to ACM

https://quantum-computing.ibm.com/composer/files/new
https://quantum-circuit.com/docs
https://algassert.com/quirk
https://quantil.readthedocs.io/en/latest/user-guide/circuit-transformer
https://www.classiq.io
https://www.zapatacomputing.com/orquestra-platform


209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

A Model-Driven Framework for Composition-Based Quantum Circuit Design 5

quantum 
language
designer

quantum 
language 
user

Quantum Operations

Elementary Quantum Gates
State Preparation

Measurement
Composite Quantum Gates

Loop Operations

1 Definition of 
Quantum 

Operations Library

2 Automatic generation

Code 
Generation
Template

3 Modelling of 
Quantum Circuits

Quantum Circuit Project

q0

q1

H RZ

H RZ

4 Automatic generation

Quantum Language

OpenQASM

quantum 
platform 
provider

5 Quantum 
Circuit Execution

Hadamard (0)
Hadamard (1)
RZ (0)
RZ (1)

Modeling 
Environment for 

Quantum 
Operations

Modeling 
Environment for 

Quantum Circuits

Executable 
Code

Fig. 2. Overview of the proposed approach to build custom quantum circuit modelling environments

for the addition of basic quantum elements. Furthermore, the use of UML-profiles has been suggested by Pérez-Castillo
et al. [54]. In contrast, Ali et al. [1] developed a conceptual model of quantum programs, whereas in previous work
we presented a domain-specific language for the development of hybrid algorithms [27]. Finally, the role of MDE for
software modernization towards quantum software has been investigated [38, 55], and it has also been discussed and
envisioned in the context of Model-Driven Architecture [49]. Finally, we would like to mention reviews on quantum
programming frameworks (e.g., [25, 45, 62]) and quantum software engineering in general [67].

Overall, there exists a variety of graphical as well as non-graphical solutions for the manipulation of quantum
circuits where only the latter kind promotes high-level design features and automation. Furthermore, first attempts
have been made in applying the principles of MDE to the field of QC. In this work, we continue this line of research
and provide an extensible modeling language together with a modeling framework which (𝑖) allows for a flexible and
convenient definition and application of composite operations including iterative patterns, and (𝑖𝑖) provides automated
code generation. Besides that, the proposed approach also comes with a separation between the quantum circuit syntax
and the definitions of the quantum operations which allows to build and use customized libraries.

3 OVERVIEW ON COMPOSITION-BASED QUANTUM CIRCUIT DESIGNER

This section describes the proposed approach to develop modelling environments for quantum circuits. Figure 2 provides
a corresponding overview. The approach allows the quantum language designer to extend the language with a set of
quantum operations with code generation facilities (label 1), such as elementary quantum gates (e.g., Hadamard and
RZ), state preparation operations (e.g., reset gates), measurement (e.g., in computational basis), composite quantum
gates (e.g., amplitude amplification and oracles), and iterative quantum operations. These quantum operations may

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Gemeinhardt, et al.

be provided within specific libraries, e.g., for quantum chemistry, optimization, or machine learning. The quantum
language designer can extend the quantum modelling language with as many quantum operations as required.

After the customization of the quantum operations, the framework is able to automatically synthesize a custom
modelling environment for quantum circuits (label 2). In this way, the quantum language users can design quantum
circuits with the quantum operations defined by the designer of the quantum language (label 3).

When the user has completed designing the quantum circuits, the framework will be able to automatically generate
the artifacts (label 4), to execute these circuits on a specific quantum platform (label 5).

In the following, we describe the proposed language (Section 4) as well as the tool support (Section 5) to realize the
overall framework structured in Figure 2 in more detail.

4 QUANTUM CIRCUIT MODELLING LANGUAGE

The proposed approach, comes with the separation of the quantum operation definitions, from the quantum circuit
syntax. Therefore, first the meta-model for the quantum circuit design is introduced (Section 4.1), before we continue
with a description of the quantum library which comprises the bespoke definitions of quantum operations (Section
4.2). Then, we provide information on certain implemented quantum operations (Section 4.3), and an extension for
classical problem-specific inputs for operation definitions (Section 4.4). Finally, we show how quantum circuits can be
represented using the proposed framework with a simple example (Section 4.5).

4.1 Quantum circuit meta-model

The meta-model for the proposed language is depicted in Figure 3, by using an object-oriented meta-modelling language.
The representation of the language is structured into (i) classes which regard definitions of the quantum circuit itself,
i.e., excluding the quantum gates, and (ii) classes regarding the quantum operations which are applied to the circuit. The
language for the quantum circuit design is inspired by current functionalities of state-of-the-art software development
kits for quantum computing (e.g., Qiskit), fundamental quantum information theory [51], as well as identified patterns
in quantum computing11.

The QuantumCircuit may contain Registers, either of QuantumRegister or ClassicRegister type. Indeed, the quantum
circuit should contain at least one QuantumRegister. This restriction is defined through an OCL constraint [12]. The
possibility of having multiple QuantumRegisters in a QuantumCircuit allows a conceptual separation of qubits according
to their function, and should simplify the procedure of merging and partitioning of quantum circuits.

Furthermore, a QuantumCircuit consists of multiple Layers, reflecting the sequenced nature of quantum computation.
One Layer may include QuantumOperations, which may take controlQubits but take at least one targetQubit. The
selection of qubits happens via the Selector class with a combination of ElementSelector, referring to single qubits, and
RangeSelector, referring to a range of qubits (e.g., from 0 to 5). The reference to the abstract Register class allows to
address different QuantumRegisters.

Regarding the QuantumOperation, stating one controlQubit means that the respective gate is converted to its single-
controlled version, whereas a size of controlQubits, which is greater than 1, results in a multi-controlled gate. Furthermore,
this class takes the inverseForm attribute, which causes a transformation to the inversed form of a given quantum
operation if set to True. A QuantumOperation may be further conditioned on a ClassicControl object, which in turn has
a reference to the binary value of a selected single classical bit, or the binary encoded value of a selected ClassicRegister.

11https://patterns.platform.planqk.de/pattern-languages/af7780d5-1f97-4536-8da7-4194b093ab1d

Manuscript submitted to ACM

https://patterns.platform.planqk.de/pattern-languages/af7780d5-1f97-4536-8da7-4194b093ab1d


313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

A Model-Driven Framework for Composition-Based Quantum Circuit Design 7

Quantum Circuit Design

QuantumCircuit

ClassicRegister

numberOfBits: Int

QuantumRegister

numberOfQubits: Int

<<abstract>>

Register

<<abstract>>

NamedElement

name: String

LayerSelector

RangeSelector
begin: Int
end: Int

ElementSelector

index: Int

*1..*

Quantum Operations

<<abstract>>

QuantumOperation
inverseForm: Boolean 

StatePreparation MeasurementCompositeQuantumOperation ElementaryQuantumGate

CompositeLoopQuantumOperation

iterations: Int [0..1]
incrementalTargetQubits: Boolean [0..1]
incrementalControlQubits: Boolean [0..1]
targetQubitsBlockSize: Int [0..1]
controlQubitsBlockSize: Int [0..1]
controlQubitsIterationType: ITERATION_TYPE [0..1]
targetQubitsIterationType: ITERATION_TYPE [0..1]
incrementalBlockTargetQubits: Boolean [0..1]
incrementalBlockControlQubits: Boolean [0..1]
incrementBy: Int [0..1]
loop: ConcreteLoopOperation [0..1]

ITERATION_TYPE
<<enumeration>>

NONE
SHIFT
CHANGE_BLOCK

theta: Double [0..1]
phi: Double [0..1]
lambda: Double [0..1]

loopTargetQubits

loopControlQubits

fixedControlQubits

fixedTargetQubits

Operation

qubo: Qubo [0..1]
operation: ConcreteQuantumOperation

1..*

ClassicControl

value: Int
0..1

<<merge>>

Selector

Layer

1..1

* *

1..*

*

1..*

* * * *

classicBits

controlQubits

targetQubits

classicSelector

*

Fig. 3. Meta-model for quantum circuit design

Furthermore, the relation to the Operation class serves as the link to the definition of the concrete quantum operation as
described in Section 4.2, as well as classical information inputs in Quadratic Unconstrained Binary Optimization (QUBO)
form as described in Section 4.4.

Wemade a distinction of different kind ofQuantumOperations such as ElementaryQuantumGate,Measurement, StatePrepa-
ration, and CompositeQuantumOperation.

The ElementaryQuantumGate class represents the elementary quantum operations, i.e., single-qubit gates, which may
also be parameterized. The three angles theta, phi, and lambda are sufficient to define any elementary qubit rotation in this
regard [51]. Specifying multiple targetQubits results in an iterative application of the respective ElementaryQuantumGate

to the qubits given by targetQubits. This definition should ease the design of frequently occurring layers, where the
same gate is applied to each qubit. Such patterns may be used, e.g., to avoid repeated parameter specification, and for
initializing the quantum state to the state of equal superposition [47].

The quantum operations which are irreversible quantum gates by definition are StatePreparation and Measurement

operations. These classes may not only comprise common instructions, e.g., resetting qubits to |0⟩ or measuring in the
computational basis, but also more general irreversible operations. Examples include the preparation of a certain state
which is taken to be given at the beginning of a particular quantum algorithm, or the measurement in a basis other
than the computational basis.

Manuscript submitted to ACM



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Gemeinhardt, et al.

The Measurement type of gates additionally require classicBits to save the qubits information. The reference to
Register allows for a proper assignment to the specificQuantumRegister and ClassicRegister, respectively. Stating multiple
targetQubits and classicBits results in the same iterative application as for the ElementaryQuantumGate.

QuantumOperationLibrary

<<abstract>>

NamedElement

name: String

*

styleIconPath: String
reversible: Boolean
type: Class
targetQubits: Int
controlQubits: Int

reverse

0..1

ConcreteQuantumOperation

allowsQubo: Boolean
classicBits: Int
theta: Boolean
phi: Boolean
lambda: Boolean

ConcreteLoopOperation
allowsFixedControlQubits: Boolean
allowsFixedTargetQubits: Boolean
allowsControlQubitsIterationType: Boolean
allowsTargetQubitsIterationType: Boolean
allowsControlQubitBlockSize: Boolean
allowsTargetQubitBlockSize: Boolean
allowsIncrementControlQubits: Boolean
allowsIncrementTargetQubits: Boolean
allowsIterations: Boolean
allowsMultipleOperations: Boolean
allowsIncrementBy: Boolean
loopTargetQubits: Int
loopControlQubits: Int
fixedTargetQubits: Int
fixedControlQubits: Int

<<abstract>>

QuantumOperationDefinition

Fig. 4. Meta-model for the quantum library

The CompositeQuantumOperation is a composed gate to aggregate arbitrary elements in its composition. This gate may
consist of multiple Layers, representing its decomposed form. These Layers in turn comprise abstractQuantumOperations,
which closes the cycle. Note that to avoid infinite loops, a constraint is defined that an operation cannot admit a layer
which contains an operation equals to any of the parent operations.

The CompositeLoopQuantumOperations enables to represent iterative patterns as a single composite quantum opera-
tion. Such iterative patterns occur frequently, e.g., in VQAs [9, 23, 57], Quantum Arithmetics [40], Shor’s Algorithm [6],
or QPE and QFT [51]. The CompositeLoopQuantumOperation requires some additional references to Selector for specifica-
tion. The fixedTargetQubits and fixedControlQubits specify the qubits which serve as target- and control qubits of the loop
operation, but do not change between the iterations of the loop. The loopTargetQubits and loopControlQubit describe the
overall target- and control qubits for the gate which is iteratively applied within the CompositeLoopQuantumOperation.
They must not be confused with the targetQubits and controlQubits of the CompositeLoopQuantumOperation itself. In
order to ensure high flexibility of the realized concrete CompositeLoopQuantumOperations, the class in the meta-model
of the quantum circuit has several attributes. Depending on the required functionality of the respective concrete
CompositeLoopQuantumOperation, these attributes are internally handled in different ways and are therefore further
illustrated in Section 4.3.

Additional restrictions to prohibit errors when using the proposed framework are introduced with OCL con-
straints [12]. Constraints of this kind ensure (𝑖) that QuantumRegisters do not overlap, and (𝑖𝑖) within a single operation,
Manuscript submitted to ACM



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

A Model-Driven Framework for Composition-Based Quantum Circuit Design 9

a targetQubit must not be a controlQubit at the same time. The latter does not hold true for CompositeLoopQuantumOpera-

tionswhere the bespoke constraint is only required for each iteration but not the wholeCompositeLoopQuantumOperation

itself.
Note that this meta-model does not have the concrete definition of any quantum gate. This is because we promote a

flexible approach to dynamically add QuantumOperations. This requirement is due to the large number of quantum
operations and the possibility of working with quantum libraries which may be specifically tailored for certain purposes.
Obviously, the use of inheritance to extend the quantum circuit meta-model may be a solution, but this involves the
frequent modification of the quantum circuit meta-model. In order to avoid this issue, there are several solutions, such
as: the application of the type object pattern [39], multi-level modeling [44], among others. The proposed solution is
based on the type object pattern by the use of a library meta-model to define quantum operations dynamically [26].

4.2 Quantum library meta-model

Figure 4 shows the meta-model that describes how to define the concrete quantum operations. The root of this meta-
model is the QuantumOperationLibrary which may include several QuantumOperationDefinitions. The latter class takes
the Boolean attribute reversible. This attribute ensures that manipulations which are unique to reversible gates, like
reversing or controlling, only act on reversible quantum operations. To introduce the required restrictions, we use OCL
constraints. The reference to the class itself (reverse) allows to easily define the inversed form of a certain quantum
operation. Setting certain values for targetQubits or controlQubits allows to fix the number of qubits in the gate definition.
Therefore, the proposed framework allows to define QuantumOperations either for an arbitrary or fixed number of
qubits. The former is preferable in terms of reusability because the defined operation is independent of the number of
qubits it should act on. The latter on the other hand is required for specific quantum operations, e.g., oracles, which are
defined only for a certain application.

A QuantumOperationDefinition may be either a ConcreteLoopOperation or a ConcreteQuantumOperation. The Con-
creteLoopOperations within the QuantumOperationLibrary may make use of several attributes, which are specified by the
according allows*-Booleans (cf. Figure 4). These attributes have been chosen to allow a high degree of expressiveness
concerning the possible specific operations. However, to avoid an extensive list of sparsely used attributes, these may
be internally handled in different ways by the different ConcreteLoopOperations. Examples hereof are shown in Section
4.3. Furthermore, the number of loopTargetQuibts, loopControlQubits, fixedTargetQubits, and fixedControlQubits can be
fixed to certain integer values in the definition of the ConcreteLoopOperation.

The ConcreteQuantumOperation takes a Boolean which denotes whether a classical input in QUBO-form is allowed
for the creation of the respective ConcreteQuantumOperation. Furthermore, for Measurement operations, the number
of classicBits may be fixed analogously to the targetQubits and controlQubits for the QuantumOperationDefintion. The
restriction, that classicBits must not be stated for operations other than Measurements, is again realized with an OCL
constraint. Finally, a ConcreteQuantumOperationwhich represents a parameterized gate, can take three angle parameters
(theta, phi, lambda) for its definition.

4.3 Implemented CompositeLoopQuantumOperations

In the following, the three currently implemented concrete CompositeLoopQuantumOperations are described. Whereas
two of them (StaticLoop, Power2Loop) allow for a high-level realization of frequently occurring patterns in quantum
circuits, the third one (GeneralLoop) is designed to be more expressive in order to realize also highly specific loop

Manuscript submitted to ACM



469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Gemeinhardt, et al.

patterns. The description of their usage and the implemented CompositeQuantumOperations will follow in Section 6 as
the latter are more specific to the provided use cases compared to the CompositeLoopQuantumOperations.

The first operation is the StaticLoop which represents an iterative application of certain QuantumOperations where
the targetQubits and controlQubits for the applied gates do not change between iterations. It allows iterations, i.e., the
number of times the gates are appended to the QuantumCircuit. It shall be further noted, that the StaticLoop is the only
implemented CompositeLoopQuantumOperations that allows multiple QuantumOperations as input (allowsMultipleOper-

ations=True). All other CompositeLoopQuantumOperations-specific parameters (allows*) are False.
The second CompositeLoopQuantumOperations is the Power2Loop, which is useful to realize loop patterns as they

occur, e.g., within QPE, QFT, Quantum Arithmetics, and Shor’s Algorithm. Here, the respective gate is applied 2𝑥 times,
with 𝑥𝜖N0, to fixed targetQubits and the controlQubit changes in each iteration. Within each iteration of the Power2Loop,
the StaticLoop is utilized for the repeated applications to unchanged qubits. The following additional parameters specify
the Power2Loop:

• incrementControlQubits: A Boolean which specifies whether the controlQubit is incremented or decremented
between successive iterations.

• incrementTargetQubits: A Boolean which specifies the number of gate applications for each iteration. Here, True
results in an increasing number of gate applications for each controlQubit, i.e., in the first iteration the single
controlled gate is appended 20 times and in the last (z-th) iteration 2𝑧−1 times, where 𝑧 is given by the number
of stated controlQubits. Analogously, False reverses the number of applications starting with 2𝑧−1 for the first
and 20 for the last iteration and controlQubit, respectively.

The StaticLoop and Power2Loop already cover iterative patterns of quantum algorithms, as they occur, e.g., within
VQAs [9, 23, 57], or QPE and QFT [9]. However, to facilitate and provide higher expressiveness, we implemented a
third, more exhaustive CompositeLoopQuantumOperations, called GeneralLoop. This operation allows to realize less
well specified loops as they occur, e.g., in ansätze for VQAs or Quantum Arithmetics. To avoid an excessive amount of
parameters, those are internally handled in different ways even within distinct forms of the GeneralLoop as described
bellow. By investigating various loop patterns (e.g., from [40], [51], the PlanQK Pattern Atlas12, the Qiskit Textbook13)
we figured out the following minimum set of additional parameters:

• targetQubitsIterationType: Qubits can change according to different schemes between iterations. SHIFT causes a
block of targetQubits to be shifted by incrementBy after each iteration. The size of the qubit-block and whether
the shift happens in an incremental or decremental manner is specified by parameters that are discussed
bellow (targetQubitsBlockSize, incrementTargetQubits). In the CHANGE_BLOCK method, incrementBy qubits are
added or removed from the targetQubits. Details of this change are described bellow. Lastly, NONE keeps the
targetQubits without any changes between iterations.

• controlQubitsIterationType: Same as with targetQubitIterationType but for the control qubits of the gate applica-
tions.

• targetQubitsBlockSize: This parameter is handled differently in the SHIFT and CHANGE_BLOCK method. In the
SHIFT method, it specifies the size of the block of targetQubits that is shifted. In the CHANGE_BLOCK method,
it denotes the minimal amount of targetQubits. For example, if the stated targetQubits for the gate application
are (0, 1, 2, 3, 4) and the number of qubits should be reduced in each iteration, targetQubitsBlockSize= 2 would

12https://patterns.platform.planqk.de/pattern-languages/af7780d5-1f97-4536-8da7-4194b093ab1d
13https://qiskit.org/textbook/preface.html

Manuscript submitted to ACM

https://patterns.platform.planqk.de/pattern-languages/af7780d5-1f97-4536-8da7-4194b093ab1d
https://qiskit.org/textbook/preface.html


521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

A Model-Driven Framework for Composition-Based Quantum Circuit Design 11

result in a loop of four iterations where the targetQubits of the last iteration are (0, 1) (provided incrementBy= 1,
and incrementBlockTargetQubits= 𝐹𝑎𝑙𝑠𝑒 and incrementTargetQubits= 𝐹𝑎𝑙𝑠𝑒 as described bellow).

• controlQubitsBlockSize: Same as with targetQubitBlockSize but for the control qubits of the gate applications.
• incrementBlockTargetQubits: A Boolean which specifies whether a block of targetQubits should be incremented

or decremented between iterations, i.e., whether targetQubits are added to or removed from the block. It can only
be stated for the CHANGE_BLOCK method as the block size remains constant in the SHIFT method. Together
with the Boolean incrementTargetQubits it specifies the four possible variants of how the block of qubits is
modified.

• incrementBlockControlQubits: Same as incrementBlockTargetQubits but for the control qubits of the gate applica-
tions.

• incrementTargetQubits: A Boolean which denotes whether targetQubits are addressed in a ascending or descend-
ing manner. Within the CHANGE_BLOCK method, together with the Boolean incrementBlockTargetQubits it
specifies the four possible variants of how the block of qubits is modified. For example, stating targetQubits

(0, 1, 2, 3, 4), incrementBlockTargetQubit= 𝑇𝑟𝑢𝑒 , and incrementTargetQubits= 𝐹𝑎𝑙𝑠𝑒 would yield the following
targetQubits for the respective iterations: (4), (3, 4), (2, 3, 4), (1, 2, 3, 4), (0, 1, 2, 3, 4) (provided targetQubitsBlock-

Size= 1). Within the SHIFT method this parameter simply specifies whether the targetQubits are increased (e.g.,
(0, 1), (1, 2), (2, 3), (3, 4)) or decreased (e.g., (3, 4), (2, 3), (1, 2), (0, 1)).

• incrementControlQubits: Same as incrementTargetQubits but for the control qubits of the gate applications.
• fixedTargetQubits: A subset of targetQubits for the gate applications which denote the qubits that remain the

same for each iteration. The gates are applied to those qubits but the qubits do not change between iterations,
i.e., they are not considered in the SHIFT or CHANGE_BLOCK method.

• fixedControlQubits: Same as fixedTargetQubits but for the control qubits of the gate applications.
• iterations: The number of iterations that should be applied. In contrast to the StaticLoop, this parameter is not

mandatory. As default, our tool would automatically determine the maximum number of iterations possible
based on the stated parameters.

4.4 Extension for QUBO-inputs

The features of the proposed approach described above allow for the design of quantum circuits that may be parameter-
ized. Therefore, in principle, circuits for VQAs can be implemented. However, the ansatz of a VQA may not be fixed, as
for example the hardware-efficient ansatz of VQE [42], but rather be defined by problem-specific information like, e.g.,
the cost function in the case of QAOA [23]. In order to automate the creation of ConcreteQuantumOperations based on
this problem-specific input, the framework is extended at the meta-model level with the Operation class (cf. Figure 3)
and the additional allowsQubo parameter for ConcreteQuantumOperations (cf. Figure 4). The Operation class serves as
the link for the cost function input in QUBO-form,i.e., a matrix where the entries represent the coefficients of the cost
function.

Note that the described extension is rather specific to QAOA and combinatorial optimization problems, whereas the
features of the proposed framework described in the previous sections are more generally applicable. Nevertheless,
the former is included in the framework to allow the creation of parameterized quantum circuit for QAOA, which
represents a prominent VQA [9], at a high level of automation and abstraction. It should be highlighted that VQAs,
which do not require problem-specific information in their ansatz definition, can be represented with the proposed
framework without the described extension for QUBO-inputs.

Manuscript submitted to ACM



573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Gemeinhardt, et al.

Fig. 5. Quantum Circuit for the generation of a 5-qubit GHZ-state (taken from [18])

Overall, the proposed approach promotes (𝑖) abstraction by hiding low-level gates, (𝑖𝑖) variation due to the possibility
of a flexible definition of CompositeQuantumOperations and of having multiple targetQubits and controlQubits, (𝑖𝑖𝑖)
composition with the concept of CompositeQuantumOperations and CompositeLoopQuantumOperations, and (𝑖𝑣) library
support by the use of the type object pattern. In the next section, we demonstrate these features with a simple example.

4.5 Representation of quantum circuits

The chosen example to demonstrate the application of the proposed approach is the standard circuit to generate the
GHZ-state [30]. This fully entangled state is important, e.g., for distributed quantum information processing and
quantum communication [21]. Taking the quantum circuit for generating the GHZ-state for 5 qubits (Figure 5), the
required quantum operations comprise a Hadamard gate on the first qubit, followed by a series of single-controlled
Pauli-X gates (CNOTs). Therefore, this minimal example comprises elementary quantum gates (Hadamard), as well as
iterative components (CNOTs).

The according instructions to implement this circuit with the proposed framework are given in Listing 1. The
QuantumCircuit contains one QuantumRegister with five qubits, and two Layers. The first Layer contains an Ele-

mentaryQuantumGate, specifically the Hadamard gate (ConcreteQuantumOperation) which acts on the first qubit
(targetQubits [0]). In the second layer, the CNOT gates are implemented using the concrete GeneralLoop operation,
which acts on the whole quantum circuit (targetQubits [(0-4)]). The required parameters for the loop result from its
definition as a ConreteLoopOperation with the according allows* statements, where only non-default values for these
parameters have to be stated by the user. The CNOTs inside the GeneralLoop have control qubits 0-3 (loopControlQubits)
and target qubits 1-4 (loopTargetQubits). Because the CNOT only takes one control qubit and target qubit, blocks of
targetQubitsBlockSize=1 and controlQubitsBlockSize=1 are applied, where the selected qubits are SHIFTed in each iteration
(targetQubitsIterationType, controlQubitsIterationType). Here, the incrementTargetQubits and incrementControlQubits

statements result in an ascending shift of qubits with each iteration. Note that the chosen example solely serves to
demonstrate the application of the proposed framework to a very minimal example. Some of the given instructions
would not be necessary for a full specification but have been stated to explain the parameters of the GeneralLoop. More
sophisticated demonstration cases are presented in Section 6.

Manuscript submitted to ACM



625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

A Model-Driven Framework for Composition-Based Quantum Circuit Design 13

Listing 1. Implementation of 5-qubit GHZ-state quantum circuit
1 QuantumCircuit GHZ {
2 QuantumRegister qr {
3 NumberOfQubits 5
4 }
5 Layer L1 {
6 ElementaryQuantumGate {
7 operation Hadamard
8 targetQubits [0]
9 }
10 }
11 Layer L2 {
12 CompositeLoopQuantumOperation {
13 loop GeneralLoop
14 targetQubits [(0-4)]
15 operations (Pauli -X)
16 loopTargetQubits [(1-4)]
17 loopControlQubits [(0-3)]
18 incrementTargetQubits
19 incrementControlQubits
20 targetQubitsBlockSize 1
21 controlQubitsBlockSize 1
22 targetQubitsIterationType SHIFT
23 controlQubitsIterationType SHIFT
24 }
25 }
26 }

5 TOOL SUPPORT

We implemented the proposed approach, called CoQuaDe, atop of the Eclipse Modeling Framework (EMF) [64] as an
Eclipse plug-in available at: https://github.com/jku-win-se/composition-quantum-circuit. The meta-models introduced
above are implemented in Ecore, which is the meta-modeling language provided by EMF. In addition, we also built a
textual editor for quantum circuits atop of Xtext [8], which is a framework compatible with EMF to develop programming
languages.

As explained in Section 4, the main objective of designing the library meta-model is due to the fact that the quan-
tum operations can be added dynamically. To do this, we implemented an Eclipse Extension Point [65] in which the
developer is able to add ElementaryQuantumGates, CompositeQuantumOperations, StatePreparation, and Measurement

operations. Of course, the developer should provide all the data related in order to add a ConcreteQuantumOperation or
ConcreteLoopOperation. To demonstrate the feasibility of the approach, we implemented the following operations: Reset
(StatePreparation); Measurement in computational basis; Hadamard, Pauli-Z, Pauli-X, Swap, and RZ as ElementaryQuan-

tumGates; a Grover unitary, a general cost unitary and mixing unitary, a QFT gate, as well as two QFT-element gates as
CompositeQuantumOperations; and a StaticLoop, Power2Loop, and GeneralLoop as CompositeLoopQuantumOperations.

We demonstrate the feasibility of the resulting tool by implementing two uses cases, namely the Quantum Counting
algorithm and QAOA, which will be explained in the next section. In both cases, we were able to directly generate
Qiskit code from each designed circuit. It should be further highlighted at this point that the proposed approach is
modular concerning the lower-level quantum programming language. However, for demonstration purposes we rely on
the Qiskit SDK [2] as described bellow.

6 DEMONSTRATION AND EVALUATION

In the following, we will assess the potential of the proposed composition-based approach (CoQuaDe) for reducing the
development effort regarding (i) non-parameterized quantum circuits for fault-tolerant quantum computing, as well as

Manuscript submitted to ACM

https://github.com/jku-win-se/composition-quantum-circuit


677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Gemeinhardt, et al.

(ii) parameterized quantum circuits for algorithms of the NISQ era (VQAs). Therefore, the following research questions
(RQs) will be answered:

• RQ1: How are non-parameterized quantum circuits implemented using CoQuaDe?

• RQ2: How are parameterized quantum circuits for VQAs implemented using CoQuaDe?

• RQ3: What is the succinctness of the proposed approach?

To assess RQ1, we apply the approach to the QPE algorithm, which is a prominent representative of quantum algorithms
for fault-tolerant quantum computation [61], and a central building block of many other quantum algorithms (e.g., HHL
algorithm [33], Shor’s algorithm [6]). Specifically, we will treat the Quantum Counting algorithm [51] (cf. Subsection 6.1),
which represents an instance of QPE. RQ2 will be assessed by implementing the QAOA algorithm [23] as a representative
of VQAs, where the quantum circuit is parameterized (cf. Subsection 6.2). In contrast to other VQAs (e.g., VQE), in QAOA
the concrete form of the circuit is furthermore only specified by additional classical input in QUBO-form. Regarding
RQ1 and RQ2, we will propose two alternatives for modelling the respective quantum circuits. Finally, we evaluate the
succinctness of the proposed language for both demonstration cases by comparing the number of required actions
with the IBM Quantum Composer (RQ3). The reason for the latter lies in the design of our language as a declarative
one and our intention to build a graphical editor on top of our presented framework in the future. Concerning the
latter, we envision our framework as a quantum blended modelling environment [14]. The results of our evaluation
are presented and discussed in Subsection 6.3. The IBM Quantum Composer has been preferred over other graphical
editors (cf. Section 2) as it supports composite gates and it is well documented and maintained14.

Regarding the presented demonstration case implementations, it should be noted that advancing to higher levels
of abstraction is always possible, if the according operation definitions are provided. The latter would get arbitrarily
specific though, and reusability would be lost. Therefore, we will justify the chosen level of composition for a fair
comparison in Section 6.3.

6.1 Quantum Counting

The Quantum Counting algorithm outputs the approximate number of solutions M of a given search problem, which is
generally unknown in advance. The algorithm basically represents a combination of the Grover iteration with the phase
estimation technique based upon the QFT [51]. Being an application of the QPE procedure [51], Quantum Counting
estimates the eigenphase of the Grover unitary, with a certain accuracy, and success probability. From the eigenphase,
M can be calculated with classical means. The quantum registers for the circuit are made up by counting qubits, where
the required number depends on the desired success probability and qubits for implementing the Grover unitary. Next,
we illustrate and describe the implemented quantum circuit.

6.1.1 Overview on the Quantum Circuit. The first step in the Quantum Counting algorithm is the state initialization,
which consists of Hadamard gates applied to all qubits. The subsequent gates of the circuit represent the QPE algorithm
for Quantum Counting via several Grover unitaries which are controlled on the counting qubits, and the inverse QFT
on those qubits. One Grover unitary is composed of (𝑖) Hadamards applied to each targetQubit, (𝑖𝑖) a problem-specific
oracle, and (𝑖𝑖𝑖) an amplitude amplification operation. The repeated application of controlled Grover unitaries with
different repeats for different control qubits encodes the phase of this unitary to the control qubits in the Fourier
basis via the phase kickback mechanism [51]. The inverse QFT is finally used to translate this information to the
computational basis before the state is being measured.
14https://quantum-computing.ibm.com/composer/docs/iqx/new

Manuscript submitted to ACM

https://quantum-computing.ibm.com/composer/docs/iqx/new


729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

A Model-Driven Framework for Composition-Based Quantum Circuit Design 15

1 2 3 4 5

Fig. 6. High level view of generated quantum circuit for Quantum Counting (Alternative 1); visualization conducted with [2]

1 2 3 4 5

Fig. 7. First order decomposition of generated quantum circuit forQuantum Counting (Alternative 1); visualization conducted with [2]

6.1.2 Implementation of the Quantum Circuit. The described demonstration case is taken from the IBM Qiskit Text-
book15. Such textbook examples serve educational and demonstration purposes verywell but comewith the disadvantage
of using insufficiently small numbers of qubits for realistic applications. Therefore, our evaluation is limited to a demon-
stration case, where we expect smaller benefits of our approach, compared to large quantum circuits of the same kind.
The generated quantum circuit is depicted for various levels of abstraction in Figures 6-7, which are described next.

The state initialization can be realized with a single Hadamard (ElementaryQuantumGate) which takes all qubits
from the circuit as targetQubits (label 1).

For the subsequent phase encoding via repeated applications of the controlled Grover unitary, the Power2Loop has
been utilized (label 2). Here, incrementControlQubits as well as incrementTargetQubits has been set to True. The Grover
unitary itself has been implemented as a ConcreteQuantumOperation with a fixded number of targetQubits= 4, where
stating one controlQubit results in a single controlled version of the respective CompositeQuantumOperation.

The inverse QFT has been implemented for two alternatives. Regarding the first one, the swap and rotation part are
implemented separately (Alternative 1). For this purpose, the GeneralLoop operation has been utilized to generate the
swap block (Figure 6, 7: label 3) with the Swap gate (ElementaryQuantumGate) as the applied gate and the attributes of
the CompositeLoopQuantumOperations being specified as given in Listing 2. No fixedControlQubits, fixedTargetQubits,
and Iterations have been defined. Next, the GeneralLoop is again used to realize the rotations (Figure 6, 7: label 4)
within the inverse QFT. The gate, which is iteratively applied four times within the loop, is given by the implemented
QFT_Element (CompositeQuantumOperation). It shall be noted, that two versions for this composed gate are possible:
first, as an object which just utilizes concepts and methods from the Qiskit SDK [2] in its definition, and second as an
object which relies on the concepts of our proposed approach (e.g., Power2Loop) in its definition. With the required

15https://qiskit.org/textbook/ch-algorithms/quantum-counting.html

Manuscript submitted to ACM

https://qiskit.org/textbook/ch-algorithms/quantum-counting.html


781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Gemeinhardt, et al.

Listing 2. Implementation of Layer 3 for Quantum Counting (label 3) using CoQuaDe
1 Layer L3 {
2 CompositeLoopQuantumOperation {
3 loop GeneralLoop
4 targetQubits [(0-3)]
5 operations (Swap)
6 loopTargetQubits [(0-1)]
7 loopControlQubits [(2-3)]
8 incrementControlQubits
9 targetQubitsBlockSize 1

10 controlQubitsBlockSize 1
11 controlQubitsIterationType SHIFT
12 targetQubitsIterationType SHIFT
13 }
14 }
15 }

Listing 3. Implementation of Layer 4 for Quantum Counting (label 4) using CoQuaDe
1 Layer L4 {
2 CompositeLoopQuantumOperation {
3 loop GeneralLoop
4 targetQubits [(0-3)]
5 operations (QFTElement)
6 loopTargetQubits [(0-3)]
7 incrementTargetQubits
8 incrementBlockTargetQubits
9 targetQubitsBlockSize 1

10 targetQubitsIterationType CHANGE_BLOCK
11 }
12 }
13 }

CompositeQuantumOperation being specified, the rotation part of the inverse QFT is generated with the attributes for the
GeneralLoop as presented in Listing 3 (note that no controlQubits are given for the CompositeLoopQuantumOperation).
Again, no fixedControlQubits, fixedTargetQubits, and Iterations are specified. After their creation, the swap and rotation
part of QFT are applied to the counting qubits of the quantum circuit.

An alternative way of obtaining the inverse QFT is possible in case a dedicated CompositeQuantumOperation

is provided in the QuantumOperationLibrary, where the attribute inverseForm= 𝑇𝑟𝑢𝑒 causes a conversion of the
original QFT to its inversed version (Alternative 2). The final element of the QuantumCircuit is represented by a single
Measurement (label 5) with the counting qubits of the circuit being defined as its targetQubits.

Note that all mentioned CompositeQuantumOperations are defined for an arbitrary number of qubits, and only fully
specified when being applied to the circuit with the given targetQubits and controlQubits. The only exception is the
Grover unitary, which includes a specific oracle, and is therefore defined as a ConcreteQuantumOperation with a fixed
number of targetQubits.

Overall, we implemented a quantum circuit for the Quantum Counting algorithm as an instance of QPE at different
levels of abstraction. Within Alternative 1, the inverse QFT gate is explicitly built using our framework, whereas in
Alternative 2 we suppose to have a QFT gate provided in the quantum library. Finally, it should be noted that the
CoQuaDe is expressive enough to realize dynamic quantum circuits, with the dynamic QPE [11, 17] as one example.
However, we refrain from going into the details of treating dynamic quantum circuits at this point, as they are more
concerned about efficient low-level implementation and compilation of circuits, rather than high-level functionalities16.

16https://research.ibm.com/blog/ibm-quantum-roadmap-2025

Manuscript submitted to ACM

https://research.ibm.com/blog/ibm-quantum-roadmap-2025


833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

A Model-Driven Framework for Composition-Based Quantum Circuit Design 17

6.2 QAOA

The application of VQAs has been shown useful for exploiting the potential of current NISQ devices [9]. Such algorithms
take a certain parameterized quantum circuit, called ansatz, where the parameters of the circuit are classically optimized
for a particular optimization function. The final output is then obtained based on measurement results from the
optimized quantum circuit. One prominent example of VQAs is the QAOA, which has been specifically developed
for combinatorial optimization problems. Being inspired by the adiabatic evolution of the quantum system given in
quantum annealing [23], QAOA integrates information from the cost function of the optimization problem, for the
definition of its ansatz.

6.2.1 Overview on the Quantum Circuit. The parametrized quantum circuit of QAOA comprises two unitaries: the
cost unitary and the mixing unitary. The cost unitary is defined by the cost function of the combinatorial optimization
problem, which is usually stated as a QUBO problem [29], whereas the mixing unitary does not require further
information for its definition. The resulting ansatz, which acts on the quantum system, is given by an alternating
application of these two unitaries for a certain number of times. It should be noted, that there are multiple adaptations
to the original QAOA, which may either address the cost unitary (e.g., [66]) or the mixing unitary (e.g., [31]). In its
original version, with the choice of the mixing unitary mentioned above, the initial state of the quantum system is
represented by the state of equal superposition.

6.2.2 Implementation of theQuantum Circuit. Again, the investigated demonstration case is based on the small example
provided in the IBM Qiskit Textbook17. In this particular case, the combinatorial optimization problem takes only four
variables, resulting in a quantum circuit size of four qubits. The implemented circuits are depicted at different levels of
abstraction in Figure 8-9. The implementation of the quantum circuit for QAOA is presented in Listing 4.

1 2 3

Fig. 8. High level view of generated quantum circuit for QAOA (Alternative 2); visualization conducted with [2]

In order to realize the described circuit with our framework, the first step is to create the initial state. This happens
again by applying a Hadamard gate (Listing 4: Layer L1) with all qubits defined as targetQubits (Figure 8-9: label 1).
Thereafter, the cost and mixing unitary have to be specified. As described above, the cost unitary can be built based on
the cost function coefficients. In order to automate this process for arbitrary coefficients, we make use of the language
extension described in Section 4.4. The output of the routine is a ConcreteQuantumOperation representing the cost
unitary that is automatically stored to the QuantumOperationLibrary. Using this routine, therefore, relieves the user
from the knowledge of how to build the respective unitary based on the problem information. The mixing unitary
for the original QAOA, due to its generality, is supposed to be readily available as a CompositeQuantumOperation in

17https://qiskit.org/textbook/ch-applications/qaoa.html

Manuscript submitted to ACM

https://qiskit.org/textbook/ch-applications/qaoa.html


885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Gemeinhardt, et al.

1 2 3

Fig. 9. First order decomposition of generated quantum circuit for QAOA (Alternative 2); visualization conducted with [2]

Listing 4. Implementation of QAOA quantum circuit with CoQuaDe
1 QuantumCircuit QAOA {
2 QuantumRegister qr {
3 NumberOfQubits 4
4 }
5 ClassicRegister cr {
6 NumberOfBits 4
7 }
8 Layer L1 {
9 ElementaryQuantumGate {

10 operation Hadamard
11 targetQubits [(0-3)]
12 }
13 }
14 Layer L2 {
15 CompositeLoopQuantumOperation {
16 iterations 2
17 operations (CostUnitary(SampleMatrix),MixerUnitaryQAOA)
18 targetQubits [(0-3)]
19 loop StaticLoop
20 loopTargetQubits [(0-3)]
21 }
22 }
23 Layer L3 {
24 Measurement {
25 operation MeasurementCompBasis
26 targetQubits [(0-3)]
27 classicBits [(0-3)]
28 }
29 }
30 }

the used library. At this point, it is possible to proceed in different ways. First, the new cost unitary and the mixing
unitary can be applied to a QuantumCircuit, which is subsequently stored. This QuantumCircuit can now be used
like a ConcreteQuantumOperation within the StaticLoop to be iterated for a specified number of times (Alternative 1).
Alternatively, one can pass a list of QuantumOperations to the StaticLoop (label 2) and thereby circumvent the additional
step of creating an intermediate Quantum Circuit (Alternative 2). The latter alternative is represented in Layer L2 of
Listing 4. Finally, the measurement is conducted by a single Measurement gate (Listing 4: Layer L3) with multiple
targetQubits (label 3).

In summary, a quantum circuit for QAOA can be implemented in two alternativeways.Within the first, an intermediate
QuantumCircuit is created, stored, and subsequently iteratively applied to the main circuit. The second alternative does
not require this intermediate step and allows for a direct application of the respective unitaries.

Manuscript submitted to ACM



937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

A Model-Driven Framework for Composition-Based Quantum Circuit Design 19

6.3 Evaluation and Discussion

We compare the proposed approach to the IBM Quantum Composer. Therefore, we evaluate the development effort to
design quantum circuits for QPE and QAOA. The comparison of textual and graphical declarative languages requires
an according metric to measure the development effort. For this purpose, we interpret the declaration of a quantum
circuit as an attributed typed graph [34]. Based on this representation, the required number of actions taken by the user
is defined as the sum of (i) created objects, (ii) user-specified non-default attributes, and (iii) links between objects.

Regarding the quantum circuit for QPE, we have chosen a level of composition where still only (i) unspecified and
generally applicable CompositeLoopQuantumOperations, and (ii) frequently occurring composite gates are utilized. One
example of the latter is the QFT gate, which is an integral part of the HHL algorithm [33], Shor’s algorithm [6], and QPE
[51]. The problem-specific, non-reusable Grover unitary represents the only necessary exception to the statement above.
Therefore, we analogously build this unitary in advance with the IBM Quantum Composer and view its generation and
application just as two actions to ensure a fair comparison. We conducted analogously with elementary quantum gates
that are not supported by the IBM Quantum Composer to avoid artificially high number of actions in its evaluation. We
want to highlight at this point, that the creation of controlled composed gates is currently not supported by the IBM
Quantum Composer. It is only feasible by utilizing OpenQASM code, which is generated in advance with the Qiskit
SDK. In contrast, the CoQuaDe allows for a very simple application of composite gates in their controlled version.

Concerning the quantum circuit for the QAOA algorithm, the situation is slightly different. Besides the generally
applicable StaticLoop, we utilize two unitaries which are specific to the standard version of the QAOA algorithm: the
cost unitary and the mixing unitary. The former, is only specified given the QUBO-input as described in Section 4.4,
whereas the latter is independent of the optimization problem at hand. Adaptations to the original QAOA, which regard
different cost and mixer unitaries are a field of active research (e.g., [4, 32, 59, 60, 66, 68]). Therefore, we aim to build a
QuantumOperationLibrary specifically for quantum combinatorial optimization, with the two implemented unitaries
as a starting point. Further included quantum operations may comprise adaptations to the standard QAOA, but also
unitaries for other VQAs (e.g., VQE) and non-VQAs (e.g., Grover Adaptive Search [22, 28]). In contrast to the QPE
circuit, for QAOA we counted the required actions for the composite gate definitions in the implementation with the
IBM Quantum Composer. The results of the evaluation are summarized in Table 2. It has to be considered, that the
illustrated demonstration cases represent small examples of quantum circuits.

Discussion. In summary, using the CoQuaDe we were able to develop quantum circuits for QPE (RQ1) as well as
QAOA (RQ2) for different alternatives. Regarding RQ3, the required numbers of actions for these two demonstration
cases could be reduced by 72% (QAOA) and 29% (QPE) compared to the state-of-the-art. Further scaling advantages are
supposed for larger quantum circuits. Here, the utilization of composite gates results in a constant scaling of required
actions using the CoQuaDe, whereas the scaling for the IBM Quantum Composer would be at least linear, depending
on the specific composite gate. Therefore, using the CoQuaDe allows for quantum circuit design on a higher-level of
abstraction with a significantly reduced development effort.

Table 2. Required number of actions (#objects/#links/#non-default parameters/total)

IBM Quantum Composer CoQuaDe
QPE (Alt.2) 35/39/9/83 32/21/6/59
QAOA (Alt.2) 42/50/16/108 18/9/3/30

Manuscript submitted to ACM



989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Gemeinhardt, et al.

Limitations. It should be noted, that the evaluated demonstration cases represent prominent and sophisticated
examples of non-parameterized as well as parameterized quantum circuits, respectively. Nevertheless we cannot
generalize our findings regarding the implementation possibilities to arbitrary quantum circuits of the bespoke kinds.

7 CONCLUSION AND FUTUREWORK

We presented a composition-oriented modeling language for creating quantum circuits. By incorporating concepts
which go beyond the qubit-level of software design, the proposal provides the use of composed quantum operations
and automated code generation from the built quantum circuits. This allows to hide low-level implementation details
in the design of such circuits. Furthermore, we have demonstrated the feasibility and succinctness benefits of the
proposed approach via the application to the Quantum Counting algorithm and QAOA. We found significantly reduced
development efforts compared to using existing state-of-the-art quantum circuit designers.

Future Work. The proposed approach, being work in progress, offers several immediate extension possibilities. In the
future, we will explore frameworks like the Eclipse Sirus or JavaFX for the implementation of a graphical editor for
our presented approach. In this sense, we plan to provide a quantum blended modelling environment build atop of
the presented quantum languages [14]. In addition, we plan to enable the import of quantum circuits and subsequent
manipulation of the circuit with our framework.

Furthermore, the repertoire of quantum operations will be extended in the future to cope with more advanced
quantum circuits. In this regard, we aim to build a library for quantum operations specifically for the purpose of
quantum combinatorial optimization as described in Section 6.3. This will allow for fast experimentation with different
variational and non-variational solution approaches. Concerning VQAs, we intend to add the possibility of stating
initial parameters for the generated parametrized quantum circuit.

The proposed model will also be extended for higher-level circuit design and optimization. In this regard, a first step
will be to include facilities for automated quantum operator discovery, utilizing techniques from genetic programming
and reinforcement learning. Here, the goal is to automatically create a CompositeQuantumGate that yields a certain target
output state. Furthermore, the circuit synthesis may comprise model-based circuit aggregation and partitioning [19],
and the framework may incorporate generic as well as NISQ-specific circuit optimization procedures (e.g., [50]).
Applying concepts from MDE also allows to use well-known model-based transformation tools [41] for quantum circuit
transformations to different representations. The later are required, for example, when using the ZX-calculus [43] and
the LOv-calculus [15]. Finally, as the bespoke procedures may produce errors, a subsequent verification step [37] might
be necessary to guarantee that the resulting quantum circuits are correct.

ACKNOWLEDGMENTS

Financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for
Research, Technology and Development and by the Austrian Science Fund (P 30525-N31) is gratefully acknowledged.

DATA AVAILABILITY

All code and data is available at: https://github.com/jku-win-se/composition-quantum-circuit. In this repository, we
published both explained meta-models and the implementation of the demonstration cases.

Manuscript submitted to ACM

https://github.com/jku-win-se/composition-quantum-circuit


1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

A Model-Driven Framework for Composition-Based Quantum Circuit Design 21

REFERENCES
[1] Shaukat Ali and Tao Yue. 2020. Modeling Quantum programs: challenges, initial results, and research directions. In Proc. of the 1st ACM SIGSOFT Int.

Workshop on Architectures and Paradigms for Engineering Quantum Soft. 14–21.
[2] MD SAJID ANIS et al. 2021. Qiskit: An Open-source Framework for Quantum Computing. https://doi.org/10.5281/zenodo.2573505
[3] Ian Arawjo, Anthony DeArmas, Michael Roberts, Shrutarshi Basu, and Tapan Parikh. 2022. Notational Programming for Notebook Environments:

A Case Study with Quantum Circuits. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology. 1–20.
[4] Andreas Bärtschi and Stephan Eidenbenz. 2020. Grover mixers for QAOA: Shifting complexity from mixer design to state preparation. In 2020 IEEE

International Conference on Quantum Computing and Engineering (QCE). IEEE, 72–82.
[5] Bela Bauer and Chetan Nayak. 2014. Analyzing many-body localization with a quantum computer. Physical Review X 4, 4 (2014), 041021.
[6] Stephane Beauregard. 2002. Circuit for Shor’s algorithm using 2n+ 3 qubits. arXiv preprint quant-ph/0205095 (2002).
[7] Koen Bertels, Aritra Sarkar, and Imran Ashraf. 2021. Quantum computing—from NISQ to PISQ. IEEE Micro 41, 5 (2021), 24–32.
[8] Lorenzo Bettini. 2016. Implementing domain-specific languages with Xtext and Xtend. Packt Publishing Ltd.
[9] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen,

Jakob S Kottmann, Tim Menke, et al. 2021. Noisy intermediate-scale quantum (NISQ) algorithms. arXiv preprint (2021).
[10] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-Driven Software Engineering in Practice, Second Edition. Morgan & Claypool

Publishers.
[11] Lukas Burgholzer and Robert Wille. 2021. Towards verification of dynamic quantum circuits. arXiv preprint arXiv:2106.01099 (2021).
[12] Jordi Cabot and Martin Gogolla. 2012. Object Constraint Language (OCL): A Definitive Guide. In 12th Int. School on Formal Methods for the Design of

Computer, Communication, and Soft. Systems (SFM). Springer, 58–90.
[13] G Chen, DA Church, BG Englert, MS Zubairy, et al. 2003. Mathematical models of contemporary elementary quantum computing devices. Quantum

Control: Mathematical and Numerical Challenges 33 (2003), 79–117.
[14] Federico Ciccozzi, Matthias Tichy, Hans Vangheluwe, and Danny Weyns. 2019. Blended modelling-what, why and how. In 2019 ACM/IEEE 22nd

International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE, 425–430.
[15] Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron. 2022. LOv-Calculus: A Graphical Language for Linear

Optical Quantum Circuits. arXiv preprint arXiv:2204.11787 (2022).
[16] Benoît Combemale, Ralf Lämmel, and Eric Van Wyk. 2018. SLEBOK: the software language engineering body of knowledge (Dagstuhl Seminar

17342). In Dagstuhl Reports, Vol. 7. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[17] Antonio D Córcoles, Maika Takita, Ken Inoue, Scott Lekuch, Zlatko K Minev, Jerry M Chow, and Jay M Gambetta. 2021. Exploiting dynamic

quantum circuits in a quantum algorithm with superconducting qubits. Physical Review Letters 127, 10 (2021), 100501.
[18] Diogo Cruz, Romain Fournier, Fabien Gremion, Alix Jeannerot, Kenichi Komagata, Tara Tosic, Jarla Thiesbrummel, Chun Lam Chan, Nicolas Macris,

Marc-André Dupertuis, et al. 2019. Efficient quantum algorithms for GHZ and W states, and implementation on the IBM quantum computer.
Advanced Quantum Technologies 2, 5-6 (2019), 1900015.

[19] Omid Daei, Keivan Navi, and Mariam Zomorodi-Moghadam. 2020. Optimized Quantum Circuit Partitioning. Int. Journal of Theoretical Physics 59,
12 (2020), 3804–3820.

[20] Franklin de Lima Marquezino, Renato Portugal, and Carlile Lavor. 2019. A primer on quantum computing. Springer.
[21] Ellie D’Hondt and Prakash Panangaden. 2004. The computational power of the W and GHZ states. arXiv preprint quant-ph/0412177 (2004).
[22] Christoph Durr and Peter Hoyer. 1996. A quantum algorithm for finding the minimum. arXiv preprint (1996).
[23] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approximate optimization algorithm. arXiv preprint (2014).
[24] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland. 2012. Surface codes: Towards practical large-scale quantum

computation. Physical Review A 86, 3 (2012), 032324.
[25] Sunita Garhwal, Maryam Ghorani, and Amir Ahmad. 2021. Quantum programming language: A systematic review of research topic and top cited

languages. Archives of Computational Methods in Engineering 28, 2 (2021), 289–310.
[26] Irene Garrigós, Manuel Wimmer, and Jose-Norberto Mazón. 2013. Weaving aspect-orientation into web modeling languages. In Int. Conf. on Web

Eng. Springer, 117–132.
[27] Felix Gemeinhardt, Antonio Garmendia, and Manuel Wimmer. 2021. Towards Model-Driven Quantum Soft. Engineering. In Second Int. Workshop on

Quantum Soft. Engineering (Q-SE 2021) co-located with ICSE 2021.
[28] Austin Gilliam, Stefan Woerner, and Constantin Gonciulea. 2021. Grover adaptive search for constrained polynomial binary optimization. Quantum

5 (2021), 428.
[29] Fred Glover, Gary Kochenberger, and Yu Du. 2018. A tutorial on formulating and using QUBO models. arXiv preprint arXiv:1811.11538 (2018).
[30] Daniel M Greenberger, Michael A Horne, and Anton Zeilinger. 1989. Going beyond Bell’s theorem. In Bell’s theorem, quantum theory and conceptions

of the universe. Springer, 69–72.
[31] Stuart Hadfield, Zhihui Wang, Bryan O’gorman, Eleanor G Rieffel, Davide Venturelli, and Rupak Biswas. 2019. From the quantum approximate

optimization algorithm to a quantum alternating operator ansatz. Algorithms 12, 2 (2019), 34.
[32] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor G Rieffel, Davide Venturelli, and Rupak Biswas. 2019. From the quantum approximate

optimization algorithm to a quantum alternating operator ansatz. Algorithms 12, 2 (2019), 34.

Manuscript submitted to ACM

https://doi.org/10.5281/zenodo.2573505


1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Gemeinhardt, et al.

[33] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum algorithm for linear systems of equations. Physical review letters 103, 15
(2009), 150502.

[34] Reiko Heckel and Gabriele Taentzer. 2020. Graph Transformation for Software Engineers. Springer.
[35] Jose Luis Hevia, Guido Peterssen, and Mario Piattini. 2022. QuantumPath: A quantum software development platform. Software: Practice and

Experience 52, 6 (2022), 1517–1530.
[36] Jack D Hidary. 2019. Quantum Computing: An Applied Approach. Springer.
[37] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. 2021. A verified optimizer for quantum circuits. Proc. of the ACM on

Programming Languages 5, POPL (2021), 1–29.
[38] Luis Jiménez-Navajas, Ricardo Pérez-Castillo, and Mario Piattini. 2021. KDM to UML Model Transformation for Quantum Soft. Modernization. In

Int. Conf. on the Quality of Information and Communications Technology. Springer, 211–224.
[39] Ralph Johnson and Bobby Woolf. 1997. Type Object. Addison-Wesley, 47–65.
[40] Eric R Johnston, Nic Harrigan, and Mercedes Gimeno-Segovia. 2019. Programming Quantum Computers: essential algorithms and code samples.

O’Reilly Media.
[41] Nafiseh Kahani, Mojtaba Bagherzadeh, James R Cordy, Juergen Dingel, and Daniel Varró. 2019. Survey and classification of model transformation

tools. Software & Systems Modeling 18, 4 (2019), 2361–2397.
[42] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M Chow, and Jay M Gambetta. 2017. Hardware-efficient

variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 7671 (2017), 242–246.
[43] Aleks Kissinger and John van de Wetering. 2019. Pyzx: Large scale automated diagrammatic reasoning. arXiv preprint arXiv:1904.04735 (2019).
[44] Juan De Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2014. When and how to use multilevel modelling. ACM Transactions on Soft. Eng. and

Methodology (TOSEM) 24, 2 (2014), 1–46.
[45] Ryan LaRose. 2019. Overview and comparison of gate level quantum Soft. platforms. Quantum 3 (2019), 130.
[46] Thorsten Last, Nodar Samkharadze, Pieter Eendebak, Richard Versluis, Xiao Xue, Amir Sammak, Delphine Brousse, Kelvin Loh, Henk Polinder,

Giordano Scappucci, et al. 2020. Quantum Inspire: QuTech’s platform for co-development and collaboration in quantum computing. In Novel
Patterning Technologies for Semiconductors, MEMS/NEMS and MOEMS 2020, Vol. 11324. Int. Society for Optics and Photonics, 113240J.

[47] Frank Leymann. 2019. Towards a Pattern Language for Quantum Algorithms. In Quantum Technology and Optimization Problems (Lecture Notes in
Computer Science (LNCS), Vol. 11413). Springer, 218–230.

[48] Alexander McCaskey, Eugene Dumitrescu, Dmitry Liakh, and Travis Humble. 2018. Hybrid programming for near-term quantum computing
systems. In 2018 IEEE Int. Conf. on Rebooting Computing (ICRC). IEEE, 1–12.

[49] Armin Moin, Moharram Challenger, Atta Badii, and Stephan Günnemann. 2021. MDE4QAI: Towards Model-Driven Engineering for Quantum
Artificial Intelligence. arXiv preprint (2021).

[50] Beatrice Nash, Vlad Gheorghiu, and Michele Mosca. 2020. Quantum circuit optimizations for NISQ architectures. Quantum Science and Technology
5, 2 (2020).

[51] Michael A Nielsen and Isaac Chuang. 2002. Quantum computation and quantum information. American Association of Physics Teachers.
[52] OMG. 2017. UML. https://www.omg.org/spec/UML/.
[53] Oumarou Oumarou, Alexandru Paler, and Robert Basmadjian. 2020. QUANTIFY: A framework for resource analysis and design verification of

quantum circuits. In 2020 IEEE Computer Society Annual Symp. on VLSI (ISVLSI). IEEE, 126–131.
[54] Ricardo Pérez-Castillo, Luis Jiménez-Navajas, and Mario Piattini. 2021. Modelling Quantum Circuits with UML. arXiv preprint (2021).
[55] Ricardo Pérez-Castillo, Manuel A Serrano, and Mario Piattini. 2021. Soft. modernization to embrace quantum technology. Advances in Engineering

Soft. 151 (2021), 102933.
[56] Carlos A Pérez-Delgado and Hector G Perez-Gonzalez. 2020. Towards a quantum Soft. modeling language. In Proc. of the IEEE/ACM 42nd Int. Conf.

on Soft. Eng. Workshops. 442–444.
[57] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. 2014. A

variational eigenvalue solver on a photonic quantum processor. Nature communications 5, 1 (2014), 1–7.
[58] John Preskill. 2018. Quantum computing in the NISQ era and beyond. Quantum 2 (2018), 79.
[59] Eleanor Rieffel, Jason M. Dominy, Nicholas Rubin, and Zhihui Wang. 2020. XY-mixers: analytical and numerical results for QAOA. Phys. Rev. A 101

(2020), 012320. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.012320
[60] Yue Ruan, Samuel Marsh, Xilin Xue, Xi Li, Zhihao Liu, and Jingbo Wang. 2020. Quantum approximate algorithm for NP optimization problems with

constraints. arXiv preprint arXiv:2002.00943 (2020).
[61] Peter W Shor. 1996. Fault-tolerant quantum computation. In Proceedings of 37th conference on foundations of computer science. IEEE, 56–65.
[62] Balwinder Sodhi and Ritu Kapur. 2021. Quantum Computing Platforms: Assessing the Impact on Quality Attributes and SDLC Activities. In 2021

IEEE 18th Int. Conf. on Soft. Architecture (ICSA). IEEE, 80–91.
[63] Damian S Steiger, Thomas Häner, and Matthias Troyer. 2018. ProjectQ: an open source Soft. framework for quantum computing. Quantum 2 (2018),

49.
[64] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. 2008. EMF: Eclipse Modeling Framework. Addison Wesley.
[65] Lars Vogel. 2015. Eclipse rich client platform. Lars Vogel.

Manuscript submitted to ACM

https://www.omg.org/spec/UML/
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.012320


1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

A Model-Driven Framework for Composition-Based Quantum Circuit Design 23

[66] Shixin Zhang, Chang-Yu Hsieh, Shengyu Zhang, and Hong Yao. 2021. Differentiable Quantum Architecture Search. Bulletin of the American Physical
Society 66 (2021).

[67] Jianjun Zhao. 2020. Quantum Soft. engineering: Landscapes and horizons. arXiv preprint (2020).
[68] Linghua Zhu, Ho Lun Tang, George S Barron, FA Calderon-Vargas, Nicholas J Mayhall, Edwin Barnes, and Sophia E Economou. 2020. An adaptive

quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer. arXiv preprint arXiv:2005.10258 (2020).

Manuscript submitted to ACM


	Abstract
	1 Introduction
	2 Related Work
	3 Overview on Composition-based Quantum Circuit Designer
	4 Quantum Circuit Modelling Language
	4.1 Quantum circuit meta-model
	4.2 Quantum library meta-model
	4.3 Implemented CompositeLoopQuantumOperations
	4.4 Extension for QUBO-inputs
	4.5 Representation of quantum circuits

	5 Tool Support
	6 Demonstration and Evaluation
	6.1 Quantum Counting
	6.2 QAOA
	6.3 Evaluation and Discussion

	7 Conclusion and Future Work
	Acknowledgments
	References

