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Abstract: Digital Twins are emerging as a solution to
build and extend existing software systems to make better
use of data produced by physical systems. For supporting
the development of Digital Twins, several software ven-
dors are offering dedicated tool support, often referred
to as Digital Twin platforms. The modeling capabilities
of these platforms are mostly concerned with structural
viewpoints, i.e., providing an overview of available compo-
nents including their current and historical sensor values.
However, behavioral viewpoints did not yet receive much
attention on these platforms. As behavioral models are
often used during the design processes, e.g., for simula-
tion and synthesis, it would be beneficial for having them
included in Digital Twin platforms, e.g., for reasoning on
the set of possible next actions or for checking the execu-
tion history to perform runtime validation. In this paper,
we present a catalog of modeling patterns for augment-
ing Digital Twin models with behavioral models and their
corresponding runtime information without requiring any
extension of the code bases of Digital Twin platforms. We
demonstrate the presented modeling patterns by applying
them to the Digital Twin platform offered by Microsoft,
in an additive manufacturing use case of a 3D printer in
a production line.

Keywords: Model-Driven Engineering, Digital Twins, Be-
havior Modeling, Modeling Patterns, Language Engineer-
ing
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1 Introduction
Digital Twins (DTs) are becoming important ingredients
in realizing software-defined manufacturing [45]. Based on
a commonly used definition that was initially proposed by
Kritzinger et al. [25], the DT provides a virtual represen-
tation of the physical system that enables bi-directional
synchronization between it and its physical counterpart.
DTs promise to support a multitude of tasks of the whole
system life-cycle [15, 41]. In this context, more and more
software development companies provide a set of tools,
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also referred to as DT platforms, to automate common
DT creation and maintenance tasks.

Current DT platforms offer dedicated support for
structural modeling aspects, such as defining components
and topologies of systems to represent current and his-
torical runtime states of systems. However, behavioral
aspects are most often a second concern [35], although
these behavioral aspects are usually required for mod-
eling systems, especially when modeling DTs [39]. Such
behavioral models are used during the design and gen-
eration processes, e.g., for simulation and synthesis, and
thus also available in current system modeling languages,
such as SysML1 or AutomationML2. Enabling this type
of modeling in current DT platforms as well would allow
reflection on the runtime state of systems from behav-
ioral viewpoints. As a result, a more systematic analysis
of generated runtime data is achieved, e.g., comparing
simulation traces with actual execution traces, to men-
tion just one possible use case.

Therefore, the research goal of this paper is to find
means to augment existing DT models with behavior
without requiring heavyweight extensions of such plat-
forms. With the term heavyweight extensions, we mean
the necessity of changing the code base of platforms for
introducing additional modeling capabilities. Instead, we
are interested in representing behavioral models directly
using the current modeling capabilities of existing plat-
forms. By finding proper structures, structural DT mod-
els are augmented with behavior. Such augmentation also
includes a representation of the historical traces of be-
havior execution, i.e., the runtime of the system. In this
paper, we focus on discrete behavior models and leave
continuous ones as subject to future work.

To achieve this research goal, we present a modeling
pattern catalog for explicating how behavioral models,
including their runtime traces, can be represented in DT
platforms without having to rely on heavyweight exten-
sions of the code bases of these platforms. This enables us
to leverage provided features of these platforms, e.g., scal-
ability while reusing information from behavioral models

1 https://sysml.org
2 https://www.automationml.org

https://sysml.org
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which may be already in use in the early engineering pro-
cess.

We demonstrate the modeling pattern catalog by its
application to a 3D printer use case. In particular, we
demonstrate how to realize the presented patterns on top
of the Microsoft DT platform3. The results of this study
indicate that the presented patterns can be realized to
represent behavioral models with their runtime traces
in current DT platforms which already provide certain
structural modeling capabilities.

By proposing the pattern catalog and demonstrating
the realization of the patterns in the Microsoft DT plat-
form, this work contributes to theoretical results about
patterns for software language engineering, practical tool-
ing results for the Microsoft DT platform, and takeaways
for researchers, tool builders, and platform operators.

The remainder of this paper is structured as follows.
In Section 2, we explain the background of this work,
i.e., Model-Driven Engineering and DTs. Section 3 intro-
duces a running example of a 3D printer used through-
out the paper. Section 4 introduces the different model-
ing patterns that allow extending current DT platforms
having a fixed structural modeling language with behav-
ioral viewpoints. In Section 5, we demonstrate the usage
of the presented patterns for the Microsoft DT platform
through our running example. Section 6 provides a criti-
cal discussion of the presented work. Finally, in Section 7,
we present and discuss related work, before we conclude
the paper with an outlook on future work in Section 8.

2 Background
This section summarizes relevant background information
for this work. We briefly outline Model-Driven Engineer-
ing (MDE), Digital Twins, and the combination of both.

2.1 Model-Driven Engineering

In Model-Driven Engineering (MDE), models are con-
sidered as the central artifacts in the engineering pro-
cess [9]. Engineering problems are attempted to be solved
by using formal models, i.e., machine-readable and pro-
cessable representations, which allow for different view-
points on the systems. By this, the abstraction power
of models is used to cope with the increasing complex-
ity of current systems [5, 9] which is, of course, also of

3 https://azure.microsoft.com/products/digital-twins

interest for software-defined manufacturing. To be able
to represent the observed reality in formal models, ded-
icated modeling languages, such as the Unified Model-
ing Language (UML4) or Domain-Specific Modeling Lan-
guages (DSMLs). In this context, a four-layer metamod-
eling stack (M0 - M3) [9, 32] is often used for defining how
metalanguages, languages, models, and runtime traces are
related to each other. Besides, there exist approaches for
multi-level modeling [26], where one goal is to reduce com-
plexity in domain models by having several instantiation
levels and where a level can influence elements in more
than just the level immediately below it [1, 2, 27]. For
the work presented in this paper, we are focusing on the
metamodeling stack which is illustrated in Fig. 1.
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Fig. 1. Four-layer metamodeling stack

At the M3 layer, meta-metamodels define meta-
languages (Meta-Language (ML)), which specify the con-
structs for languages and their relations at the next
layer, the so-called M2 layer. At this layer, metamod-
els define languages (Language (L)), which describe the
formalisms for models/domain models (Domain Model
(DM)) one layer lower at M1. Domain models specify the
general concepts within the given domain to finally de-
scribe the system and Runtime Trace (RT) at the M0
layer. In Fig. 1, we define a Structural Language (SL)
and a Behavioral Language (BL) based on the Meta Ob-
ject Facility (MOF) for defining the concepts for Structural
Models (SM) and Behavioral Models (BM). These SM and
BM are instances of the belonging SL and BL and are as-
sociated with each other. At the M0 layer, the Structural
Trace (ST) and the Behavioral Trace (BT) represent the
elements and their interactions during system runtime.

4 http://uml.org
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2.2 Digital Twins and Digital Twin
Platforms

DTs are software systems comprising data, models, and
services to interact with physical systems for a specific
purpose [6, 24, 25]. To enable the efficient and systematic
development of DTs, various vendors provide dedicated
tool support, the so-called Digital Twin platforms [28].
Examples include Microsoft Azure5, and Amazon Web
Services6, or tool platforms, such as Eclipse7. These plat-
forms provide predefined services for establishing a bi-
directional connection with physical assets to collect data
via sensors and control actuators. They also provide the
ability to connect these assets to tools, such as time se-
ries databases or visualization dashboards. The services
help to reduce the number of repetitive tasks, while also
supporting certain quality properties such as scalability
and interoperability [28]. One common feature of these
different platforms is that they provide dedicated model-
ing support for the creation of DTs. An investigation of
their modeling capabilities [35] shows that they support
a variety of commonalities.

2.3 MDE for Digital Twins

By applying MDE to DTs, the strengths of both fields
can be combined. Fig. 2 shows an architecture for this
combination. At the Modeling Layer the structural and
behavioral models (SM and BM) are modeled. They con-
form to their structural and behavioral language (SL and
BL). At the Realization Layer the actual System and
its digital counterpart (Digital Twin) are located. Based
on the machine-readable models and available transfor-
mations, the system or/and the DT can be automatically
generated. In previous work, we have shown this trans-
formation for structural information incorporated in SM,
such as AutomationML models [29] or UML class dia-
grams [35]. This structural information comprises infor-
mation on which components are running in a system,
which properties can be sensed, and particular values of
these properties at a given point in time.

5 IoTHub: https://azure.microsoft.com/services/iot-hub/, DT
service: https://azure.microsoft.com/services/digital-twins/,
and TSI database: https://azure.microsoft.com/services
6 AWS IoT Greengrass https://docs.aws.amazon.com/
greengrass/v2/developerguide/what-is-iot-greengrass.html
7 Eclipse Hono: https://www.eclipse.org/hono/, Vorto: https:
//www.eclipse.org/vorto/, and Ditto: https://www.eclipse.org/
ditto/
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Fig. 2. MDE for DTs: From Design Models to Digital Twin Arte-
facts

3 Running Example: 3D Printer
As a running example for this paper, we consider a pro-
duction line where additive manufacturing is used to im-
prove flexibility, support complex geometries, and sim-
plify fabrication. As part of this production line, 3D print-
ers are used for printing different items needed for the
final product. In this context, we will focus on the 3D
printer and identify open challenges at the end of this
section.

3.1 3D Printer Models

Fig. 3a shows a simplified structure for the used 3D print-
ers in terms of a UML class diagram. A 3DPrinter has
a unique id, a temperature value temp showing the cur-
rent processing temperature of the printer, and the three
different axes x, y, z to indicate the current position of
the print head. Besides these attributes, the 3D printer
can process signals as input (receive), such as connect,
sendCADFile, print, pause, stop, and reset and as out-
put (send), such as finished for indicating the end of a
print job and error to indicate errors.

In addition to the structural information summarized
in the class diagram, the 3D printer can take different
states during its operation. Fig. 3b shows the behavioral
model of the 3D printer as a UML state machine. As
starting point, it will be in the state StandBy waiting for
any connection. After connecting a device to the printer,
the state will change to Connected and the printer is
ready to receive a print file. After receiving the file to
print, the 3D printer is in the state Operational, does
some preheating, and then is ready to print. When it
starts printing, the operational state will be Printing.
During printing, there is the opportunity to pause the
printing (PausePrinting) and restart it again or cancel

https://azure.microsoft.com/services/iot-hub/
https://azure.microsoft.com/services/digital-twins/
https://azure.microsoft.com/services
https://docs.aws.amazon.com/greengrass/v2/developerguide/what-is-iot-greengrass.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/what-is-iot-greengrass.html
https://www.eclipse.org/hono/
https://www.eclipse.org/vorto/
https://www.eclipse.org/vorto/
https://www.eclipse.org/ditto/
https://www.eclipse.org/ditto/
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3DPrinter
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(a) Structural Model as
Class Diagram

StandBy

Connected

Printing

connect

finished

Operational

sendCADFile

PausePrinting

pauseprint

print

CancelPrinting
stop

finished

Error

reset error

(b) Behavioral Model as State Diagram

Fig. 3. Structural and behavioral views of a 3D printer. Please
note that we use a custom shortcut notation concerning sending
and receiving signals.

the print job (CancelPrinting). When the print job is
finished, the 3D printer will go back to the StandBy state.
If an error occurs at any time, the printer changes to
the state Error. After resetting it, it will change back to
StandBy.

Based on the defined structure and behavior in the
models, properties, and states of the 3D printer can
change during runtime. Fig. 4 shows an excerpt of a
possible runtime execution trace. From snapshot t1 to
t2 temperature (from 35 to 80), state (from operational
to printing), and y-position (from 0 to 1) change. From
snapshot t2 to t3 the change is no longer linear but de-
pends on the signal being processed. Depending on the
signal, the printer changes to another state (StandBy or
PausePrinting) with other specified values for the prop-
erties. Snapshot t3 does not show a view produced by exe-
cution but shows opportunities that could be analyzed by
using state machines to reason about the potential next
states, e.g., in what-if analysis.

This runtime execution trace can be divided into one
structural and one behavioral trace. In the structural ex-
ecution trace, the value change of the properties of the
class are propagated, i.e., how the position and the tem-
perature change (Fig. 4, change of temp and y values). In
the behavioral execution trace, behavior is observed over
time. For instance, the status of the 3D printer changes
from operational to printing and then to standby or pause
printing (Fig. 4). Based on the behavior and associated
state, the system can respond differently to interactions.

… …

t1 t2 t3t0

print

Operational Printing

p1: 3DPrinter

id: Printer1
temp: 180
x: 0
y: 0
z: 0

p1: 3DPrinter

id: Printer1
temp: 200
x: 0
y: 1
z: 0

t4

p1: 3DPrinter

id: Printer1
temp: 80
x: 0
y: 0
z: 0

p1: 3DPrinter

id: Printer1
temp: 180
x: 0
y: 1
z: 0

StandBy

PausePrinting

Fig. 4. Excerpt of a runtime execution trace of the 3D printer

The presented models are expressed using a struc-
tural and behavioral language defined at the metamodel-
ing layer. For this purpose, Fig. 5 shows a simplified ex-
ample based on UML class diagrams and state machines.
A Class can have properties (Property) and Signals,
which could be of type receive or send. A class can
reference a StateMachine. This state machine consists of
States and Transitions. Each transition has a trigger,
a defined source and target state, and an operation to
indicate if the transition fires (fire()). States have a
name and different booleans which indicate if the state is
the initial or final state or if it is active or not. In the rep-
resentation of the running example, we used a composite
state (Fig. 3b) to simplify the syntactical view on the
state machine where every state can switch to an error
state. However, this composite state can be flattened/re-
duced (i.e., from each state there is a transition to the
error state), therefore we do not consider it further in our
approach. Please note that in Fig. 5, both the design and
runtime views for the models are shown as is required for
executing the models, e.g., using simulations [12]. Thus, it
is essential that also methods, such as fire(), and boolean
attributes, such as as isActive, are modeled.

Class

Property

name : String
type : Signal_Enum

Signal

receive
send

«enumeration»

Signal_Enum

pkg_SL

StateMachine

trigger : String

fire() : void

Transition

pkg_BL

name : String
isInitial : Boolean
isActive : Boolean

State source

target

0..* 0..*

1..1

1..1

0..* 0..*

0..1

name : String

name : String

Fig. 5. Example metamodels of a simplified structural and behav-
ioral language
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3.2 3D Printer Digital Twin

Based on the defined language and the structural model,
the system can also be realized for a DT platform. List-
ing 1 shows an excerpt of the concrete syntax represen-
tation of the 3D printer interface for the Azure DT plat-
form. In this listing, the different properties and signals of
the printer (cf. Fig. 3a) are expressed in the Azure Digital
Twin Definition Language (DTDL) which is based on the
JSON-LD8 syntax.

Listing 1. Excerpt of the 3DPrinter interface in Azure DTDL

{ " @type " : " I n t e r f a c e " ,
" displayName " : " 3 DPrinter " ,
" @id " : " dtmi : com : cd l : 3 DPrinter ; 2 " ,
" contents " : [ {

" @type " : [ " Telemetry " , " Temperature " ] ,
" schema " : " f l o a t " ,
" un i t " : " d e g r e e C e l s i u s " ,
"name" : " temperature " } , {
" @type " : [ " Telemetry " ] ,
" schema " : " f l o a t " ,
"name" : " x " } ,
. . . , {
" @type " : [ "Command" ] ,
"name" : " connect " } ,
. . . . , {
" @type " : [ "Command" ] ,
"name" : " r e s e t " } ] ,

}

The listing shows the structural representation of the sys-
tem, but the mapping of behavioral models is still an open
issue, which is also highlighted in the following two chal-
lenges.
– Challenge 1: Currently, DT platform languages nei-

ther provide native support for behavioral descrip-
tions nor do they have the ability for extending the
offered modeling support. How can we still use behav-
ioral viewpoints for DTs without heavyweight exten-
sions, i.e., changes to the code base, of the platforms?

– Challenge 2: There is no representation of histories
of such behavioral descriptions since there is not yet
a behavioral viewpoint in DT platforms. If we would
have behavioral viewpoints in DT platforms, how can
they be utilized for historical information similar to
what was done for structural models?

In the next section, we tackle these two challenges by
introducing dedicated patterns to add behavioral view-
points to DT models which also allow for representing
the history of a system using these new viewpoints.

8 https://www.w3.org/TR/json-ld

4 A Pattern Catalog for
Representing Behavioral
Models in Digital Twin
Platforms

In this section, we present a catalog of patterns, which can
be employed for overcoming the challenges mentioned in
the previous section. In particular, we present patterns for
extending the capabilities of Digital Twin Modeling Lan-
guages (DTMLs) as offered by existing DT platforms by
reducing three meta-modeling levels into two levels. Fur-
thermore, we show how to represent histories of behavior
by exploiting different temporal modeling patterns. The
concrete realization of the patterns is shown in Section 5
for Microsoft Azure.

4.1 Augmenting Digital Twin Models with
Behavior

As DTMLs are currently neither defined by dedicated
meta-languages nor provide multi-level modeling tech-
niques that allow explicit language extensions [1, 2, 27],
they, unfortunately, cannot be extended at the language
level. This would indeed break compatibility with the sup-
porting platform (cf. Challenge 1 as discussed before).
Therefore, in order to still be in the position to extend
these languages with behavioral viewpoints, we need to
perform these extensions at a lower level of the meta-
modeling stack, i.e., on levels M0 and M1, since M2 is
fixed. For this purpose, we propose two patterns that
serve as a blueprint for augmenting DT models with be-
havior descriptions as visualized in Fig. 6. It is important
to consider that due to the reduction of metamodeling
layers, we do not keep the strict separation between lev-
els as shown in Fig. 1 in the background, but have to use
them in a more flexible way.

The application of these patterns enables the model-
ing of behavioral aspects in combination with structural
aspects, leveraging the existing infrastructure (i.e., mod-
eling tools, APIs, code generators, and runtime environ-
ments) already offered by DT platforms. The main idea
of the patterns is that the behavioral aspects, including
the language to express these aspects, are defined as in-
stantiations of the already available modeling language
for the structural aspects – in our setting, DTML. By
this, we aim to compensate for the one missing level of
instantiation. The two proposed patterns offer two alter-
natives on how to augment behavior to DT models: one

https://www.w3.org/TR/json-ld


6 D. Lehner et al., Behavioral Models on Digital Twin Platforms

is substituting the instanceOf relationships with associa-
tions (the behavioral model (BM) is referring to language
elements (BL) residing on the same level) while the other
is merging the artifacts of two levels (BM and its traces
(BT)) into one artifact on one level (BM+BT) which is a
direct instantiation of BL.

As a prerequisite to augment current DT models with
behavior for both patterns, we introduce SL+ (Fig. 6), a
base that is used by structural models in our blueprint
as a link to behavioral aspects. In particular, all entities
of the structural model (SM) which should be equipped
with behavior descriptions should inherit from a particu-
lar base class.

The description of the individual patterns, the trade-
offs between these two alternatives, their implementation,
and their application are described in the following based
on the well-known pattern description template [17]. For
the implementation, we use the well-established UML no-
tation before moving on to more specific implementations
for a DT platform in Section 5.

«instanceOf»
«association»

Legend
DTML Digital Twin Modeling Language
SL Structural Language
SL+ Base for augmenting structural

elements with behavior
BL Behavioral Language
SM Structural Model
BM Behavioral Model
ST Structural Trace
BT Behavioral Trace

M2

M1

M0

DTML (SL)

SL+ BL

SM BM

ST BT BM+BT

Closed behavior model pattern

Open behavior model pattern

Shared pattern elements

«inheritance»

Fig. 6. Macro-view on Open vs. Closed Behavior Model Patterns

4.1.1 Closed Behavior Model Pattern

Purpose: The Closed Behavior Model Pattern has the
purpose of describing the behavior of a closed system,
meaning that details on all model elements are already
known at design time, and defined as a schema for par-
ticular object types. At runtime, this pattern ensures that
the behavioral model elements are instantiated only in a
particular way based on this defined behavioral schema.

Structure: In this pattern (cf. Fig. 6), the behavioral
model (BM) is created as an instantiation of the DTML, and
in addition, an association relation is used to refer to the
elements of the behavioral language (BL). This relation
substitutes the instanceOf relation as shown in Fig. 1. The
structural model (SM) has an association with the behav-
ioral model detailing the behavior of the corresponding

structural entities. In the behavioral model, behavioral
language is used to specify constraints given by the par-
ticular domain. These constraints are used to guide the
development of the behavioral trace (BT) which is a direct
instance of the behavioral model.

Consequences: In this pattern, the behavioral lan-
guage serves as semantic meta-information of the be-
havioral traces, as these traces are instantiated directly
from the behavioral model. Explicitly modeling domain-
specific constraints in the behavioral model requires some
modeling effort, but enables the validation of these con-
straints on the behavioral trace. However, this strict in-
stantiation comes with reduced flexibility on M0, e.g., to
add new types of behavioral traces. This is only possible
by adapting the model on M1.

Implementation: Fig. 7 shows the implementation of
this pattern. A given DomainBehavior is linked to the
respective Behavior element via an association. This as-
sociation is annotated as unsettable, meaning that instan-
tiations of this DomainBehavior on M0 (e.g., DomainBe-
havior4StructuralTrace1 in Fig. 7) cannot use this associ-
ation to link to a particular element on M0. Thus, this as-
sociation serves as semantic meta-information to refer to
the corresponding Behavior of the DomainBehavior used
to instantiate a particular behavioral trace. Structure
and Behavior are both abstract elements to ensure that
traces are instantiated only from the domain-specific
parts, i.e. DomainStructure and DomainBehavior, with
the defined constraints.

«abstract»
Structure

DomainStructure

«abstract»
Behavior

StructuralTrace1 DomainBehavior4StructuralTrace1

DomainBehavior

M0

M1

M2
Entity

«association»

Legend

«instanceOf» «inheritance»

{unsettable}

Fig. 7. Implementation of the Closed Behavior Model Pattern

Instantiation on the running example: Instantiating
the implementation of this pattern to the running exam-
ple of this paper, leads to the elements as illustrated in
Fig. 8. Based on the structural and behavioral languages
as described in Fig. 5 (note that the fire() operation of
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the transition in Fig. 5 is represented as fire attribute
in Fig. 7), the 3DPrinter contains an inheritance rela-
tionship to Class and an outgoing association to the re-
spective state machine describing the 3D Printer behavior
(cf. PrinterStateMachine in Fig. 8). Fig. 8 visualizes the
contents of this PrinterStateMachine using the example
of the states Operational and Printing, which are con-
nected via the transition Print. PrinterStateMachine,
Operational, Printing, and Print comprise unsettable
associations to the StateMachine, State, or Transition
that contain the respective meta-information on the
language level (i.e., attributes and associations). The
domain-specific definitions of these language elements
define (i) further restrictions on attributes (e.g., the
isStart is initialized with a value, which cannot be
changed on M0, by marking the corresponding attributes
as final), (ii) constraints on associations (e.g., specify that
the Operational can only be linked to Printing via
Print), and (iii) guidelines (e.g., the name attribute of a
State or Transition is not defined within the elements of
DomainBehavior as values of attributes, but rather repre-
sented by the respective class names such as Operational
or Print). By this explicit modeling of domain-specific
constraints on M1, the structural and behavioral depen-
dencies on M0 can be controlled. It results, for example,
that the attribute isStart of the states need not be con-
sidered in the behavioral traces anymore.

4.1.2 Open Behavior Model Pattern

Purpose: The purpose of the Open Behavior Model Pat-
tern is the behavioral description of systems in which the
behavior of the system might be changed during runtime,
i.e., systems with open behavior. The behavior can be
specified individually on the object level, but not on the
type level.

Structure: In this pattern (Fig. 6, white and dark gray
marked part of the macro view), the M1 level contains the
information about the behavioral language (BL), whereas
the domain-specific details of the behavioral model (BM)
are merged with the behavioral traces (BT) on the M0
level. Thus, the behavioral model and the behavioral trace
are both directly instantiated from the behavioral lan-
guage.

Consequences: The lack of a dedicated DomainBehav-
ior description (cf. Section 4.1.1) in this pattern reduces
the initial modeling effort for describing a system on M1.
However, it increases the modeling effort on M0 as the do-
main behavior needs to be introduced on this level. More-
over, the lack of domain-specific constraints on M1 does

not allow for the validation of correct instantiation for
particular structural entity types and thus remains spe-
cific for the given instances. Nevertheless, these missing
constraints increase the flexibility of the modeled behav-
ior on M0, as it can be changed without the need for any
adaptations on M1.

Implementation: The implementation of this pattern
is visualized in Figure 9. Here, the behavioral traces are
directly instantiated from the Behavior, requiring the be-
havior to not be abstract. This means that the correct
modeling of domain-specific aspects (e.g., which transi-
tions can be connected to which states) needs to be con-
sidered implicitly when modeling the behavioral traces
(Behavior4StructuralTrace1) on M0. The structural
trace (StructuralTrace1) is connected by an associa-
tion relation to this implicitly modeled domain behavior
in the behavior trace.

Instantiation on the running example: Applying
this pattern to the running example on M0, as visu-
alized in Figure 10, the particular Printer1 on M0
is connected to its StateMachine4Printer1, which is
instantiated directly from the StateMachine. In the
same way, Operational4Printer1, Printing4Printer1,
and Print4Printer1 are instantiated from State or
Transition of the behavioral language on M1. As a re-
sult, there are no restrictions on how to link these ele-
ments on M0. For instance, Printer1 may be also con-
nected to any other state machine, or Operational could
be linked via a transition to the StandBy state, even
though this is not reasonable semantically. In addition,
the isStart attribute needs to be set for each instantia-
tion of the individual states on M0. However, if the state
machine from Fig. 10 is extended by, e.g., another state
called Scanning, this can easily be incorporated on M0 by
creating a new instance of State, without requiring any
adaptations on M1. The same applies to changes in the
semantics of the state machine, e.g., changing the start
state of the state machine from StandBy to Operational.

4.2 Representing Behavioral Traces in
Digital Twin Platforms

With the patterns described above, we have provided
blueprints for augmenting DT models with behavior.
However, although these patterns enable the represen-
tation of behavior as behavioral traces for one particular
point in time (cf. Challenge 1), the history of these traces
(cf. Challenge 2) is still an open question. In order to
enable the representation of historical traces, we propose
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«abstract»
Class

«abstract»
State
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isStart: bool
isActive: bool

«abstract»
Transition

name: String
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«abstract»
StateMachine

Operational4Printer1

isStart: false
isActive: false

Printing4Printer1

isStart: false
isActive: false

fires: true

Print4Printer1

PrinterStateMachine

StateMachine4Printer1

Printing
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Operational
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isActive: bool
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1..1 1..1
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M1

1..1

{unsettable}

1..1

1..1

{unsettable}

{unsettable}

1..1

1..1

3DPrinter

id: String [1..1]
temp: Float [1..1]
x: Float[1..1]
y: Float[1..1]
z: Float[1..1]

Printer1

id: 1
temp: 45
x: 0
y: 1
z: 0

Text Meta-Information«association»

Legend

«instanceOf» «inheritance»

0..* 0..*

Fig. 8. Closed Behavior Model Pattern applied to the running example

{abstract}
Structure

DomainStructure

Behavior

StructuralTrace1 Behavior4StructuralTrace1M0

M1

M2 Entity

«association»

Legend

«instanceOf» «inheritance»

Fig. 9. Implementation of the Open Behavior Model Pattern

two patterns that can be used in addition to the open and
closed behavior model patterns.

4.2.1 Temporal Annotation-based History Pattern

Purpose: The purpose of the Temporal Annotation-based
History Pattern is to represent historical execution traces
of behavioral descriptions of DTs, with a focus on scala-
bility concerning storage.

Structure: In this pattern, the used DTML has to be
equipped with temporal annotations [11, 19] which are
applicable for attributes of elements. In previous work,
we have shown that such annotations are commonly avail-
able in DT platforms [35]. In case such annotations are
not supported, Fowler [16] shows alternatives that can
be used in order to implement this kind of support. The
application of temporal annotations on the language and
model level can be used in order to preserve the history
of attribute values (cf. Model (incl. TA) in Fig. 11). In
the runtime traces, temporal annotated attributes con-
tain beside the current model trace (cT) also the historical
model trace (hT), whereas the non-annotated attributes
simply contain the current attribute value at the current
timestamp (cT). The historical model trace consists of a
list of timestamps and associated attribute values.

Consequences: Applying this pattern leads to scala-
bility with respect to storing models and performing cer-
tain queries, as the historical traces can be persisted in
dedicated databases, such as time-series database (e.g.,
shown in [29, 31]). It is however more difficult to repro-
duce complete historical states from these traces, as they
only contain the attribute values in a fragmented way, but
not the system structure at a given point in time. Thus
queries are limited to historical traces without reproduc-
ing the complete states as snapshots.

Implementation: Implementing this pattern (cf.
Fig. 12 for the pattern implementation for the closed be-
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State Transition

name: String
isStart: bool
isActive: bool

name: String
fires: bool

StateMachine

Operational4Printer1
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Printing4Printer1

name: Printing
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Print4Printer1
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3DPrinter

id: String [1..1]
temp: Float [1..1]
x: Float[1..1]
y: Float[1..1]
z: Float[1..1]

Printer1

id: 1
temp: 45
x: 0
y: 1
z: 0

0..* 0..*

0..1

Fig. 10. Open Behavior Model Pattern applied to the running example

DTML

Model    

cT

hT

M2

M1

M0
«association»

Legend
DTML Digital Twin Modeling Language
TA Temporal Annotation
T Trace
cT current Model Trace
hT historical Model Trace

Temporal annotation-based
history pattern

«instanceOf»
T

(incl. TA concept)

(incl. TA)

Fig. 11. Structure of the Temporal Annotation-based History
Pattern

havior model pattern) means that attributes whose his-
tory should be traced on M0 have to be annotated as tem-
poral in the Behavior. The same is applied to attributes
of the DomainStructure. On M0, the respective traces
contain the current values of attributes that are not an-
notated as temporal and a collection of historical values
of the temporal annotated attributes. These implementa-
tion details apply to both the closed and open behavior
model pattern. In the closed behavior model pattern, the
annotations are simply reused by the DomainBehavior
from the corresponding Behavior on the language level,
whereas in the open behavior model pattern, the annota-
tions are directly applied from the Behavior to the be-
havior traces on M0.

Instantiation on the running example: When apply-
ing this pattern to the running example, the isActive
attribute of the State and the fires attribute of the
Transition are annotated in the Behavior (please re-
call that the fire() operation from Fig. 5 is represented

{abstract}
Structure

DomainStructure

{abstract}
Behavior

StructuralTrace1 DomainBehavior4StructuralTrace1

M0

M1

M2

Entity

attribute1: Type
«temporal» attribute2: Type

attribute1: Type
«temporal» attribute2: Type

Timestamp: Value
Timestamp: Value

…

attribute1: Value attribute1: Value

Timestamp: Value
Timestamp: Value

…

DomainBehavior

attribute2 attribute2

attribute1: Type
«temporal» attribute2: Type

«association»

Legend

«instanceOf» «inheritance»

Fig. 12. Implementation of the Temporal Annotation-based His-
tory Pattern for the Closed Behavior Model Pattern

by the fire attribute that is set to true every time the
respective operation is called as we are in the observa-
tion setting which produces only data-oriented views).
Additionally, the temp attribute of the 3DPrinter in the
DomainStructure is annotated as well. As a result, the
structural and behavioral traces on M0 contain a refer-
ence to the historical values for these annotated elements
(isActive, fires, temp).
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4.2.2 Snapshot-Based History Pattern

Purpose: The Snapshot-Based History Pattern has the
purpose of representing historical execution traces of be-
havioral descriptions of DTs in cases where temporal an-
notations are not provided by DT platforms or the focus
is on querying and reasoning on full model states, and the
evolution of these states over time.

Structure: In this pattern (cf. Fig. 13), snapshots (S)
(as already introduced before for model validation and
verification purposes, e.g., see [20, 18]) are integrated
into the modeling capabilities of DT platforms using the
blueprints proposed in Section 4.1. Each snapshot has
a link to the elements in the model (representing struc-
ture or behavior derived from the DTML) and a link to
another snapshot representing the previous model state.
Thus, on M0, the instantiations of these snapshots for a
particular point in time (St=0, St=1) contain the model
trace for the respective point in time (i.e., MTt=0, MTt=1).
In order to use this snapshot representation to log sys-
tem traces, the individual snapshots on M0 are linked
with each other to navigate from a specific snapshot to
its predecessor and successor.

DTML

Model

MTt=0

S

St=0

M2

M1

M0 «association»

Legend
DTML Digital Twin Modeling Language
MTt=0 Model Trace at time = 0
S Snapshot
St=0 Snapshot Instance at time = 0

Snapshot-based history pattern

«instanceOf»

St=1MTt=1

Fig. 13. Structure of the Snapshot-based History Pattern

Consequences: Applying this pattern induces some
additional modeling effort for creating snapshots. Ad-
ditionally, all snapshots are instantiated and loaded in-
memory, which means reduced scalability with respect to
the size of the execution trace. However, explicitly storing
connections between elements in historical states enables
querying and reasoning about a particular model state or
the evolution of model states over time.

Implementation: In this pattern, the snapshots need
to be created on the M0 level based on their definition
at M1. Therefore, structural and behavioral traces must
be orchestrated to snapshots (cf. Fig. 14 for details on
the implementation of this pattern in combination with
the closed behavior model pattern). In the closed behavior
model pattern, the definition of the snapshot is associated

with the DomainStructure and the DomainBehavior on
M1. In the open behavior model pattern, these connec-
tions of the Snapshot on M1 are already defined at the
language level (i.e., Structure and Behavior).

{abstract}
Structure

DomainStructure

{abstract}
Behavior

StructuralTrace1t=0 DomainBehavior4StructuralTrace1t=0

DomainBehavior

M0

M1

M2
Entity

Snapshot

Snapshott=0

«association»

Legend

«instanceOf» «inheritance»

pred.

succ.

StructuralTrace1t=1 DomainBehavior4StructuralTrace1t=1

Snapshott=1

pred.

succ.

Fig. 14. Implementation of the Snapshot-based History Pattern
for the Closed Behavior Model Pattern

Instantiation on the running example: Applying
the current pattern to the running example means
that one snapshot contains the state of Printer1,
the associated StateMachine4Printer1, and the con-
tents of StateMachine4Printer1 at a given point in
time with a reference to the respective predecessor
and successor snapshots. For instance, in one snap-
shot, the Operational4Printer1 trace can be ac-
tive, the Print4Printer1 trace is not firing, and
the Printing4Printer1 trace is not active. In the
successor snapshot, the Print4Printer1 is now fir-
ing, changing Operational4Printer1 to non-active and
Printing4Printer1 to active.

5 Demonstration Case: Digital
Twin of a 3D Printer

We applied the patterns presented above to two different
use cases to validate their applicability, demonstrate their
trade-offs, and provide the resulting models in an online
repository9. The purpose of this section is to demonstrate
the applicability of the patterns using an excerpt of the
models in the mentioned repository. More precisely, we
present the application of the open and closed behavior

9 https://github.com/cdl-mint/at-journal

https://github.com/cdl-mint/at-journal
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model patterns to the aforementioned 3D Printer running
example and its realization in the Microsoft Azure DT
platform. We also compare the modeling effort required in
both patterns to create the 3D printer model as outlined
in Section 3.

5.1 Setup

We create a reference implementation of the class and
state machine diagram outlined in Fig. 3 using the Eclipse
Modeling Framework10 (EMF). It serves as base infor-
mation to be projected from the four-layer metamodeling
stack (Fig. 1) to the presented patterns. The EMF mod-
els are then translated to represent the same information
in a DT platform. To this end, we show the application
of both the closed behavior model pattern and open be-
havior model pattern by creating the respective DTDL
models for the Microsoft Azure DT Platform.

In DTDL, a set of metamodel classes constitutes the
elements for modeling the parts of the DT infrastructure
and their interconnections. Thereby, the Interface class
defines the contents of any DT, that is, e.g., its com-
ponents, properties, and relationships. Take the defini-
tion of the 3DPrinter in Listing 1 for an example. It in-
cludes properties for the temperature and coordinates of
the axis positioning system. Furthermore, the Command
class is used to describe operations supported by the DT.
This allows for a higher-level view of an asset’s functional-
ity that is decoupled from the underlying behavior, in this
case, the state machine of the printer. A Relationship
denotes a link to another DT. Temporal information, i.e.,
properties that will be emitted and ingested regularly at
runtime, such as the temperature and axis properties, are
declared using the in-built Telemetry class. To this effect,
emerging data can be persisted and leveraged for analysis,
e.g., using the Time Series Insights database11.

In the following, we describe the design-time elements
required to model the behavior of the 3D printer and
how it is linked to the structural model in Listing 1. We
thereby apply the open and closed behavior model pat-
tern in the DTDL, in contrast to modeling this example
in EMF. Thereafter, the created DTDL models are im-
ported into the Azure DTs Explorer12 in order to validate
their usage within the DT platform provided by Microsoft
Azure. To assess the modeling efforts, we also determine

10 https://www.eclipse.org/modeling/emf/
11 https://azure.microsoft.com/en-gb/products/time-series-
insights/
12 https://azure.microsoft.com/products/digital-twins/

the number of modeling elements required for the com-
plete realization of the 3D printer example.

5.2 Twin Model at Design-Time

Next, we describe the application of the closed and open
behavior model pattern in combination with the temporal
annotation history pattern for realizing the conceptual
description of a system.

Closed behavior model. Listing 2 shows an ex-
cerpt of the interfaces necessary for modeling the 3D
printer and its state machine according to the closed be-
havior model pattern. The class 3DPrinter corresponds
to the definition in Listing 1, but additionally derives from
Class and holds a relationship to PrinterStateMachine.
Consequently, printer instances can only refer to state
machines of this type, whose function as such is defined
via the type relation to StateMachine. Both 3DPrinter
and PrinterStateMachine form the base elements to de-
rive structural and behavioral twin representations, re-
spectively. The latter is defined by relations to states and
transitions, specifically, the ones shown in Fig. 3b, e.g.,
Operational, which also contain the corresponding prop-
erties of interest. Again, the semantic assignment is done
via type relations. Following the closed behavior model
pattern, as with the restriction of printer instances to
PrinterStateMachines, the relationships between states
and transitions of the latter are rigid. Hence, based on the
definitions of corresponding relationships for a transition,
it can only lead from the defined incoming state to the
defined outgoing state. This is ensured by the semantic
type assignment of behavioral elements via corresponding
relations (cf. {unsettable} in Fig. 8) within class defini-
tions rather than deriving from the general type classes.
Although the inheritance of an interface is supported in
DTDL, e.g., Operational as a descendant of State or
PrinterStateMachine as a descendant of StateMachine, it
would no longer limit the scope to the intended workflow
for printer instances in the runtime model.

Open behavior model. The interfaces for realizing
the open behavior model pattern are defined in Listing 3.
Here, the general types Class and StateMachine consti-
tute the base elements to derive structural and behavioral
twin representations. The former relates to the latter with
the relationship stateMachine, thereby allowing for a be-
havior model to be defined for any descendants extending
the Class interface, e.g., 3DPrinter. Accordingly, those
classes that represent the twin of an asset in the present
domain are to be derived from Class. The state machine is
described by relations to State and Transition, which

https://www.eclipse.org/modeling/emf/
https://azure.microsoft.com/en-gb/products/time-series-insights/
https://azure.microsoft.com/en-gb/products/time-series-insights/
https://azure.microsoft.com/products/digital-twins/
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Meta-Level # Elements
M2 6 Classes / 9 References / 12 Attributes
M1 37 Objects / 66 Links / 77 Values

Table 1. Elements required for modeling the structure and behav-
ior of the 3D printer example in EMF on the meta-model (M2)
and model (M1) level

Pattern # Interfaces # Interface Contents
Open 5 18
Closed 28 123

Table 2. #Interfaces (top-level elements) and Interface Contents
(Properties, Telemetries, Commands, and Relationships) for mod-
eling the proposed open behavior model pattern (cf. open) and
closed behavior model pattern (cf. closed) in DTDL

carry the relevant properties and telemetries. However,
using the open behavior model pattern, the actual behav-
ioral elements depending on the domain are not specified
at this level. The specification for the printer, i.e., the
states and transitions reflecting the dedicated workflow,
is only done at the instance level.

Comparison. Concerning modeling effort, the inter-
faces required for the closed behavior model pattern (Ta-
ble 2) are similar to the objects required on M1 in EMF
(Table 1). Furthermore, the required links and values add
up to 143, which is roughly equal to the total number of
content items in the interfaces, which are composed of re-
lationships and properties. This results from mimicking
the semantics of the EMF implementation as closely as
possible. In the open behavior model pattern, this effort
is reduced considerably, even leading to less interfaces be-
ing created than on M2 alone in EMF. The discrepancy
in the modeling effort between open and closed behav-
ior model pattern (Table 2) becomes even more evident
when considering the number of interface contents that
must be created in DTDL to create the model for the 3D
printer example.

5.3 Twin Instance at Runtime

Regardless of whether the open or closed design pattern
is used, the DT infrastructure will superficially host the
same DT instances at runtime. However, each pattern
yields different type assignments in the behavioral model
and the therewith associated consequences discussed in
Section 4. Fig. 15 shows an excerpt respectively for the
instantiated models provided in Listing 2 and 3, to real-

ize the running example. In both cases the environment
comprises a single printer “p1” whose internal workflow is
represented by its state machine “psm1”. States and tran-
sitions of the latter such as Operational, Print, and Print-
ing (cf. Fig. 3b), are each dedicated to a DT instance. Fol-
lowing the closed behavior model pattern, Fig. 15a shows
these instances being initialized using their respective in-
terfaces, and connected in conformance with the typed re-
lations of the transition print, that is, to state instances
operational and printing. In Fig. 15b, the same is
shown for the open behavior model pattern, with all the
behavior-related instances and relations based on the gen-
eral classes State, Transition, and StateMachine.

Listing 2. JSON Code excerpt for the running example; closed
behavior model pattern

{ " @type " : " I n t e r f a c e " ,
" displayName " : " StateMachine " ,
" @id " : " dtmi : com : cd l : StateMachine ; 2 " } ,

{ " @type " : " I n t e r f a c e " ,
" displayName " : " State " ,
" @id " : " dtmi : com : cd l : State ; 2 " } ,

{ " @type " : " I n t e r f a c e " ,
" displayName " : " 3 DPrinter " ,
" @id " : " dtmi : com : 3 DPrinter ; 2 " ,
" contents " : [ {

" @type " : " R e l a t i o n s h i p " ,
" t a r g e t " : " dtmi : com : PrinterSM ; 2 " ,
"name" : " pr interStateMachine " } ,
. . . ] } ,

{ " @type " : " I n t e r f a c e " ,
" displayName " : " Pr interStateMachine " ,
" @id " : " dtmi : com : PrinterSM ; 2 " ,
" contents " : [ {

" @type " : " R e l a t i o n s h i p " ,
" t a r g e t " : " dtmi : com : StateMachine ; 2 " ,
"name" : " type " } , {
" @type " : " R e l a t i o n s h i p " ,
" t a r g e t " : " dtmi : com : Operat iona l ; 2 " ,
"name" : " o p e r a t i o n a l " } ,

. . . ] } ,
{ " @type " : " I n t e r f a c e " ,

" displayName " : " Operat iona l " ,
" @id " : " dtmi : com : Operat iona l ; 2 " ,
" contents " : [ {

" @type " : " R e l a t i o n s h i p " ,
" t a r g e t " : " dtmi : com : State ; 2 " ,
"name" : " type " } ,

. . . ] }

Listing 3. JSON Code excerpt for the running example; open
behavior model pattern

{ " @type " : " I n t e r f a c e " ,
" displayName " : " Class " ,
" @id " : " dtmi : com : cd l : Class ; 2 " ,
" contents " : [ {
" @type " : " R e l a t i o n s h i p " ,
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"name" : " stateMachine " ,
" t a r g e t " : " dtmi : com : cd l :SM; 2 " } ] } ,

{ " @type " : " I n t e r f a c e " ,
" displayName " : " 3 DPrinter " ,
" extends " : " dtmi : com : cd l : Class ; 2 " ,
" @id " : " dtmi : com : cd l : D3Printer ; 2 " ,
" contents " : [ . . . ] } ,

{ " @type " : " I n t e r f a c e " ,
" displayName " : " StateMachine " ,
" @id " : " dtmi : com : cd l :SM; 2 " ,
" contents " : [ {

" @type " : " R e l a t i o n s h i p " ,
" t a r g e t " : " dtmi : com : cd l : State ; 2 " ,
"name" : " s t a t e " } , {
" @type " : " R e l a t i o n s h i p " ,
" t a r g e t " : " dtmi : com : cd l : Trans i t i on ; 2 " ,
"name" : " t r a n s i t i o n " } ] } ,

{ " @type " : " I n t e r f a c e " ,
" displayName " : " State " ,
" @id " : " dtmi : com : cd l : State ; 2 " ,
" contents " : [ . . . ] } ,

{ " @type " : " I n t e r f a c e " ,
" displayName " : " Trans i t i on " ,
" @id " : " dtmi : com : cd l : Trans i t i on ; 2 " ,
" contents " : [ . . . ] }

print
:Print

operational
:Operational

psm1
:PrinterStateMachine

p1
:3DPrinter

:printerSM

:print

:operational :printing

printing
:Printing

(a) Closed behavior model pattern

print
:Transition

operational
:State

printing
:State

psm1
:StateMachine

p1
:3DPrinter

:stateMachine

:transition

:source :target

(b) Open behavior model pattern

Fig. 15. Excerpt of the twin instances for the 3D printer example
in a graph-based notation

6 Discussion and Limitations
This section critically discusses the presented patterns
and the limitations of this work.

6.1 Pattern Comparison

The demonstration of the presented patterns for a spe-
cific case using a current DT platform shows their appli-
cability. In this respect, the 3D printer example leads to
observations concerning initial modeling effort and model
maintenance during design and runtime.

The closed behavior model pattern requires dedicated
modeling effort on M1 by explicitly specifying the behav-
ior model, which is not required by the open behavior
model pattern. On M0, however, the effort is reduced by
the information already available at M1, e.g., default val-
ues for properties, such as whether a state acts as the ini-
tial state for a state machine or not. In contrast, using the
open behavior model pattern, it has to be set manually
for each instantiated state machine for each structural en-
tity on M0. This becomes more significant as the number
of entities to be created increases. Thus, with respect to
the modeling effort and rigor, there is a trade-off between
the initial effort for modeling M1 and the long-term effort
for modeling the runtime on M0. However, model trans-
formations may be developed in order to automatically
populate the model fragments used for representing the
behavior models on M0 for both patterns.

Besides the modeling effort for creating an initial sys-
tem, the patterns further differ with respect to the flex-
ibility they imply towards evolving the created model
(e.g., adding states or changing the starting state of a
state machine). In this regard, the change effort varies
for adapting the DT model to system changes that occur
over time. Please note the flexibility of the open behav-
ior model pattern as the runtime model can be changed
directly on M0. With the closed behavior model pattern,
such changes must first be carried out on M1. Performing
these changes on M1, however, (i) requires redeploying
the model to the DT platform, and (ii) breaks instance-
level relations of the existing elements on M0 to the re-
spective model elements on M1. Accordingly, elements on
M0 have to be adapted as well in order to represent a valid
model again.

As an alternative to temporal annotations to rep-
resent historical traces, a snapshot-based representation
may be used. This can be achieved by defining an addi-
tional interface type on M1 that is associated with objects
whose state should be recorded. Following this approach,
objects would have to be replicated and linked to a new
snapshot instance again and again. As a benefit, queries
about object states including their behavioral states are
supported, providing insights about the complete state of
the system over time in a coherent structure. However,
for each change in the system, the whole snapshot (i.e.,
the current structure and behavior of the system) must
be stored. This may lead to a considerable overhead with
respect to memory consumption compared to storing the
value updates individually for each annotated property,
as would be the case using the temporal annotation pat-
tern.
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With respect to data history and storage, the Azure
DT platform has also implemented a realization13. How-
ever, it only deals with lifecycle events in a rudimentary
way, which include creation and deletion of DTs. Through
our presented patterns, the functionalities are extended
and a variety of states can be reflected.

6.2 Limitations

We now point out limitations with respect to the scope
of our study as well as the potential applicability of the
presented patterns. For this, we discuss the following two
threats to validity types.

Internal Validity. In this work, we do not demon-
strate the application of the patterns using a concrete
runtime simulation nor do we evaluate the resulting so-
lutions using software complexity metrics. Therefore, no
conclusions can be made yet about the quality crite-
ria such as performance, maintainability, and scalability,
with respect to the involved DT infrastructures. Indeed,
the extension of the DT model for behavioral proper-
ties leads to a higher data volume, which consequently
leads to higher data storage and retrieval costs, especially
with respect to the complete representation of the system
state in the snapshot-based pattern. We plan to investi-
gate these aspects and to utilize the obtained behavioral
information in further work. Moreover, the patterns, es-
pecially the closed behavior model pattern, may bene-
fit from multi-level modeling features. Substituting the
instanceOf relationship with an association is clearly a
workaround and only provides meta-information for the
modeling elements but no support from a type system
perspective. Furthermore, certain attributes should have
only values on a certain level and not on others, e.g., the
attribute isActive should only get a value assigned on M0.
Future studies are required to evaluate the application of
multi-level modeling concepts for the presented patterns
such as having more flexible instantiation levels and con-
cepts such as potency to control the usage of attributes
on dedicated levels.

External Validity. In our demonstration of the pre-
sented patterns for state machines, we present some gen-
eral structures which may be also utilized for other be-
havioral modeling languages. However, the general suit-
ability of the presented patterns for other languages such
as other discrete behavior modeling languages, e.g., ac-
tivity diagrams, sequence diagrams, or continuous behav-

13 https://learn.microsoft.com/en-US/azure/digital-
twins/concepts-data-history

ior modeling languages has to be studied in future work.
Especially for the latter, there are optimized modeling
languages and tools for example Modelica14 or Matlab
Simulink15. These languages also have their own mecha-
nisms and support for mapping DTs and handling behav-
ioral simulations of systems16. Besides using other model-
ing languages, targeting other DT platforms with the pre-
sented patterns is required to generate further evidence
that the presented patterns are general enough to be us-
able in other contexts. In particular, the patterns shown
assume the availability of certain modeling concepts in
the target DT platform. This becomes evident in our ex-
ample about the implementation of the closed behavior
model pattern on M1 in DTDL, which does not support
any concept for defining abstract interfaces. In this re-
spect, interfaces like “Class” can also be instantiated in
the runtime model on M0, which is only intended to serve
for the type assignment. Furthermore, it is neither possi-
ble to set property values on M1 nor to declare them as
unchangeable, which means that the relevant property in
the start state, i.e., “isStart” in our example, cannot be
set on M1. Anticipating these limitations, the model as
well as runtime instances could be created in EMF, which
supports these concepts, and then be transformed into the
DTML of the target platform ready for deployment. How-
ever, this raises the question of how the DT model will be
updated as the system changes. For the actual reproduc-
tion, the patterns nevertheless require a minimum set of
concepts, the absence of which must be specifically dealt
with. Moreover, the applicability of the presented pat-
terns in other DT platforms seems promising based on
the results from a previous study [35] about the model-
ing features of DT platforms. However, additional studies
are required to provide evidence that the patterns can be
indeed realized by the modeling features of the other plat-
forms. Finally, future studies are needed to validate the
applicability and performance of the proposed patterns
for the different DT types and architectures as described
in [42].

7 Related Work
Regarding related work, we first consider work which is
highlighting the need for behavioral models in DTs. Then,
we discuss model-driven approaches for engineering DTs.

14 https://modelica.org/
15 https://www.mathworks.com/
16 https://www.mathworks.com/discovery/digital-twin.html

https://learn.microsoft.com/en-US/azure/digital-twins/concepts-data-history
https://learn.microsoft.com/en-US/azure/digital-twins/concepts-data-history
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Finally, we discuss semantic lifting approaches for run-
time data. For a general overview of the various disciplines
that have adopted DTs, and the applications therein, the
interested reader is referred to [15, 40].

Addressing Behavioral Models for Digital
Twins. The need for the availability of behavioral mod-
els in DT systems is becoming increasingly important.
Rovere et al. [14] outline a supporting infrastructure for
managing DTs, emphasizing the relevance of behavioral
models for enabling simulations and the accessibility of
these models throughout the factory lifecycle. Building on
the DEVS formalism, Niyonkuru & Wainer [34] present
an environment that includes DTs but also foresees a
physical model to support simulations and study behav-
ior under real-world conditions, e.g., time constraints in
real-time systems. Using Reinforcement learning, a model
was learned from data collected at runtime and used
to optimize behavior [13, 43]. Stary et al. [38] take a
human-centric view of DTs by proposing behavioral mod-
els for capturing components and interactions in a Cyber-
Physical System (CPS). They provide a subject-oriented
approach for modeling both the structure and behavioral
aspects of the system, aiming to provide a unified view
for the various stakeholders involved in the design process
of DTs. Tekinerdogan and Verdouw present a design pat-
tern catalog for developing DTs [42]. Different from our
mapping of specific object behaviors, the authors define
the general behavior of DTs using Sequence Diagrams.
In [44], Verdouw et al. discuss the typologies of different
types of DTs which also utilize behavioral models in the
context of smart farming. In contrast to our approach,
the mentioned works address the requirements for DTs in
terms of planning, validation, and implementation at a
conceptual level rather than concrete blueprints for cap-
turing DTs in existing DT platforms.

Model-Driven Digital Twin Engineering. In the
area of MDE for DTs, there are several different ap-
proaches to facilitate their development and deployment.
Whereas Bordeleau et al. [8] give an overview of opportu-
nities and challenges for integrating MDE and DTs, there
are also many concrete implementations available already.
For instance, Muñoz et al. [33] engineer DTs with UML
and apply structural system snapshots for the runtime in-
formation. Binder et al. [7] present an approach that auto-
matically transforms the logical architecture of a system
into the technical implementation using AutomationML
(AML) and evaluate it by a case study according to the
concepts of the Reference Architecture Model Industry
4.0 (RAMI 4.0). Zhang et al. [46] also present an approach
for Cyber-Physical Production Systems (CPPS) informa-
tion modeling based on DTs and AML. They show an

integration of various physical resources into CPPS by
DTs and AML. Mazak et al. [30] take an approach in this
area where the strengths of AutomationML and MDE are
combined to reduce the manual effort required to imple-
ment a runtime data acquisition system and simplify sub-
sequent analyses. In the area of communication and data
exchange between systems and DTs, there are also other
approaches [36, 37] that exploit the use of higher-level
models (e.g., AML models). In addition, these models are
used to generate web services and visualization.

Regarding the modeling of DTs, Tao et al. [40] give an
overview of current modeling techniques and tools, and
Atkinson and Kühne [3] point out shortcomings of cur-
rent modeling standards for improving them with respect
to (i) the rigid heterogeneous technology stack and (ii)
the evolving nature of DTs. They propose a multi-level
modeling approach with a universal language as one pos-
sible countermeasure, e.g., to preserve consistency while
accommodating different abstraction levels and to enforce
typing constraints along hierarchy levels. Our suggested
patterns follow this general direction by providing a so-
lution to overcome the hierarchical constraint one faces
with current DTMLs that are set to a 2-level modeling ap-
proach for behavioral models. However, we consider the
usage of multi-level modeling techniques for behavioral
models as an interesting research line, e.g., how to in-
tegrate multi-level concepts in current platforms which
then can be used for developing behavioral modeling sup-
port. Especially, the closed behavior model pattern would
benefit from such approaches. In Bibow et al. [6] events
are logged to detect when, e.g., properties are changed
in a CPPS. For this purpose, a domain-specific language
is specified that defines the communication between the
system and its DT using OPC-UA. Brockhoff et al. [10]
address the intersection of DTs and process mining, em-
phasizing the need for a common view regarding archi-
tectural design. In their proposed architecture they aim
at self-adaptive DTs, therefore adopting a generative ap-
proach that enriches MDE capabilities with process min-
ing techniques to exploit the obtained data. Similar to [6],
they plan to react when predefined changes are detected.
Our approach on the other hand aims at making temporal
aspects traceable by integrating behavior models into the
DT model and providing a general architecture for DTs
with an explicit behavior view that could also support
evolution in the future.

Semantically Lifting Runtime Data. Processing
recorded data against a knowledge base provides another
way to comprehend a system’s behavior or even respond
to it’s evolution. This is based on the formalization of
domain semantics, e.g., using the Resource Description
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Framework17 (RDF). In [4], the authors propose an RDF-
based representation of the Asset Administration Shell, a
standard for describing assets in Industry 4.0. Their vi-
sion entails automated integration of various assets as well
as validation of constraints and reasoning over the data
model. Kamburjan et al. [21, 23] use knowledge graphs
to align the DT with its physical counterpart. To this
end, the DT infrastructure and simulation models are
defined using the Semantic Micro Object Language [22].
A language-based approach bridging simulators with for-
malized domain knowledge is shown in [21]. In [23], the
DT infrastructure is integrated with asset models, which
are descriptions of the physical assets, in order to form
a knowledge graph. The runtime state will be lifted into
this graph to detect changes, and determine and perform
an appropriate reconfiguration of the DT. Adaptation of
structure and simulation models takes place by querying
and manipulating the knowledge graph. In our view, the
behavior could also be tracked from the model properties
and the knowledge graph using this method. With our
pattern, in contrast, the injection of behavioral elements
into the model is done directly, which allows mapping
from other behavioral modeling languages. As a result,
a flexible environment is provided for data processing in
terms of querying, validation, and simulation.

Synopsis. While there have been several efforts of
using model-driven engineering for DTs and interpreting
runtime data on a semantically-enriched level, we are not
aware of any existing work which is integrating the con-
cept of behavioral models in current DT platforms. The
presented work of this paper aims to fill this gap.

8 Conclusions and Future Work
In this paper, we have presented several patterns on how
to augment DT models with behavior, covering design-
time and runtime viewpoints of current DT platforms.
The patterns have been illustrated for state machines and
with a demonstration case using the Microsoft Azure DT
platform.

In future work, we consider the following lines of re-
search. First, we plan to perform studies about the scala-
bility of the presented patterns concerning runtime data
storage and query performance, e.g., of KPIs. Second, in-
tegrating other viewpoints such as process or organiza-
tional viewpoints would allow sophisticated interfaces to
DTs for higher layers of the automation pyramid. Finally,

17 https://www.w3.org/RDF

the usage of multi-level modeling as discussed in [1, 3]
within DT platforms becomes of interest as it would al-
low using several instantiation levels more explicitly. By
this mechanism, more product-line-aware DTs which also
incorporate behavioral models may be envisioned.
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