Towards a Product Line Architecture
for Digital Twins

Jérome Pfeiffer*, Daniel Lehner!, Andreas Wortmann*, Manuel Wimmer'
* Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW)
University of Stuttgart

Seidenstralle 36, 70174 Stuttgart, Germany
{firstname.lastname } @isw.uni-stuttgart.de

T Christian Doppler Laboratory for Model-Integrated Smart Production (CDL-MINT)

Institute for Business Informatics - Software Engineering
Johannes Kepler University Linz, Science Park 3, 4040 Linz, Austria
{firstname.lastname } @jku.at

Abstract—Digital twins are a new kind of software systems
for which corresponding architectures in different engineering
domains have emerged for enabling the efficient interaction of
software systems with physical systems to realize cyber-physical
systems (CPS). To facilitate the development of digital twins,
various software platforms emerged in recent years, which often
come with a certain architecture for the developed systems
together with a set of domain-specific languages (DSLs) that
help domain experts to configure the platform and implement
the digital twins. This results in a set of architectures and DSLs
which are currently used to realize the various concerns of digital
twins. Thus, creating a comprehensive digital twin for a given
system requires the combination of several architectures and
DSLs, which is challenging as (i) the components of the different
architectures have to be combined on a technological level, and
(ii) the concerns specified with the different DSLs are developed
in isolation which potentially leads to inconsistencies, especially
during the evolution of digital twins.

To tackle these challenges, we outline our vision of a product
line architecture that explicitly specifies the different concerns
of digital twins and their alignment on both, the technological
level considering the different architectural elements as well as
on the language level considering the different language elements.
As a result, glue code that is currently required to compose the
individual features together into particular digital twin systems is
automatically generated. We demonstrate the applicability of this
approach by (i) specifying an example product line architecture
for selected structural and behavioral concerns of digital twins,
and (ii) configuring an existing digital twin based architecture for
self-adaptive systems based on this product line architecture by
(iii) applying the selected platforms realizing these concerns to a
smart room use case. Finally, we discuss expected benefits of the
presented approach, such as plug-&-play of digital twin modules,
as well as sketch out future work to realize the presented vision.

Index Terms—Digital twins, domain-specific languages, prod-
uct lines, software integration

I. INTRODUCTION

Today Digital Twins (DTs) are utilized in many domains,
such as manufacturing [1], injection molding [2], or even
farming [3], leveraging different use cases, such as predictive
maintenance, reactive planning [4], or self-adaptation [5].
As a result, the different usages of DTs have resulted in

software architectures to satisfy these different purposes [6]-
[8]. In these architectures, DTs are leveraged to, e.g., enable
a bi-directional synchronization to a physical system (i.e.,
get/send data from/to the physical system) [1], or to perform
experiments based on a formal description of the expected
behavior of a physical system [9]. Various platforms emerged
to provide tooling to support the development of different
concerns of DTs such as providing access to the structure [10]
or behavior [4]. As features of DTs usually have to be spec-
ified by domain experts which are not necessarily experts in
software engineering, the emerging platforms are often model-
driven, i.e., the software is configured by models conforming
to a Domain-Specific Language (DSL) [10]. Thus, they imply
a certain architecture on the developed systems.

For integrating these different concerns into an overarching
software architecture, glue code needs to be written to glue
the individual parts, i.e., platforms and realized components,
together. This is particularly challenging because different
platforms usually realize DTs with different architectures and
DSLs. Thus, the glue code to integrate different concerns has
to be rewritten for every platform combination on both levels:
(¢) language level to bridge the DSLs and (ii) technology
level to bridge the different software components. Although
there are already approaches to automate the integration of
different DSLs, e.g., [11], or the integration of software com-
ponents, e.g., [12], these solutions currently do not consider
the coupling of both, DSLs and software at the same time.

To tackle this challenge, we present our vision of a product
line architecture [13] that explicates and aligns different con-
cerns of DTs as DT features. This product line can be used
to integrate DT features into different software architectures
based on the specific available platforms and their imposed ar-
chitectures for particular features. The novelty of this approach
lies in the integrated reuse of both DSLs and software com-
ponents for building new architectures that leverage common
features of DTs. We showcase our idea with an initial product
line architecture of DTs in the context of self-adaptive systems.
More precisely, this product line architecture describes (i) the
system structure and data of a physical system using a monitor,

Behavior
Model !

: | MontiArc

Planner

Feedback Solution

&2

Structural
Model

Quewﬁ] Data

Lake
Fig. 1. An exemplary software architecture for digital twins realizing the
MAPE-K loop based on [5].

Executor Structural

Model

Feedback
Raw

executor, and a structural DSL based on platforms provided
by Microsoft Azure!, Amazon Web Services?, and Eclipse3,
as well as (i7) the behavior of a physical system described
in a state chart used by a planner. We demonstrate how a
chosen structural and behavioral platform is configured for
the example of a smart building use case.

II. MOTIVATING EXAMPLE

The approach presented in this paper is demonstrated in the
exemplary context of DT architectures realizing self-adaptive
systems using the MAPE-K pattern [14]. A reference software
architecture realizing this pattern is depicted in Fig. 1 [5]. Such
DT architectures consist of four components. A Monitor
receives the data emitted from the cyber-physical system
(CPS), and converts it into a digital shadow, an abstraction of
the actual data. The Analyzer then receives these shadows
and identifies potential anomalies in the data, and subsequently
notifies the planner to react on this anomaly. The Planner
creates a plan to correct the anomaly and sends the plan
to the Executor, which then sends a control command
that is processable by the connected CPS. Additionally, the
Planner stores successfully executed plans in the knowledge
base. In [5], this architecture is realized with MontiArc [15],
a component & connector architecture description language.
It uses component types with interfaces consisting of typed
ports, that are connected by unidirectional connectors for trans-
mitting data. Components can be decomposed into multiple
connected subcomponents. Specific to this architecture is the
usage of different modeling languages to configure each of the
components. For instance, the Monitor and Executor use
data and constraint models, e.g., class diagrams to interact with
the CPS. Furthermore, the Planner has a behavior model,
e.g., a statechart to react on erroneous behavior of the CPS
recognizable through the data. Thus, there is (¢) a relation

Thttps://azure.microsoft.com/products/digital-twins/
Zhttps://aws.amazon.com/iot-twinmaker/
3https://www.eclipse.org/vorto/

Azure DT Structure Module =]

sc LC A N
A1 | Grammar '
~Azure DT 7 ! !
. \ M
Monitor DTDL : dl:@ :
! 1
—1Azure DT, ' |
Transformations!
Executor \ - !
\\ 1 :
1 ! 1
1 uses ! !

U AN : 1

N Well- '

1| interface Thermostat { DTDL | formedness !
2 tags { ["id", "dtmi:id:Thermostat;1"], | Rules :
3 ["context", "dtmi:context;2"] } Nemm g ‘
4 property timeSeries double temp; J
5 function setTemp (double t); conformsTo
6f }

Fig. 2. Implementation of a DT module comprising software and language
components for Microsoft Azure Digital Twin Definition Language (DTDL).

between the software components of the architecture that send
data to another, e.g., the monitor sends digital shadows to the
analyzer, and (1) a relation between the models that are used
by these components, i.e., the statechart using the types defined
in the data models, to react on values on the data. Thus, when
exchanging the Planner using statecharts with a Planner
using, e.g., PDDL [16] or other planning formalisms, not
only the planner and its specification have to be replaced, but
also the glue code that aligns the planning DSL and software
with other parts of the architecture needs to be updated, i.e.,
(¢) relations from statecharts to other models, (i) relations
from the statechart language to other DSLs, and (éii) the
code in components that send data to the Planner (ie.,
the Analyzer sends the goal information). This is also the
case when replacing a data modeling language such as class
diagrams with, e.g., the proprietary data modeling languages
of cloud vendors that are emerging [10], [17]. This exchange
is complex, and thus, cost- and time-intensive as the engineer
has to understand the specifics of both, software and language
implementations and their reuse to realize their combination.

III. VISION

This section describes our envisioned approach towards
a product line architecture for DTs. This includes a novel
approach for modules for DT architecture implementations
comprising both software components (SC) as well as lan-
guage components (LC) in one module of reuse. These mod-
ules are then generalized into DT features and aligned into
a product line to derive a specific software architecture for
DTs, potentially tailored to a specific use case, and derive
particular implementations based on the selected module im-
plementations.

A. Digital Twin Modules

The main entity of our approach are the DT modules. Each
module consists of (i) language components [11], and (i)
software components that use or are configured by models
conforming to the language component.

Digital Twin

Azure DTDL Structure Module
LC

g

sC

realizes

Statechart-based
Behavior

Structure

.Azure_ DT. - Azure DT .
Monitor Executor

<>

' requires /O\
Basic Statechart (BSC) Module &l
Eclipse Timed Basic LC sC
Vorto loT T™ Statecharts Statecharts 9
4 realizes BSC BSC
St Language Planner
Configuration-Time 1] EES TS
Usage-Time v
Building 1 | statechart TemperatureControl { BSC
2 states Idle, TempTooLow, TempTooHigh;
uses | 3 Idle -> TempTooLow [temp < 19.5] / {setTemp (20)};
Analyzer BSC el - 4 Idle -> TempTooHigh [temp > 20.5] / {setTemp (20)};
Planner 5 TempTooLow, TempTooHighN\c> Idle [temp| >= 19.5 &&
temg <= 20.51/{};:
‘ 6]
[l uses
Azure DT Azure DT ----> ; in:erface :I"I.)eﬁmOftat. { . |
. ags { ["id", "dtmi:id:Thermostat;1"].

Monitor Executor --ES§§'> 3 ["context", "dtmi:context;2"] }
4 property timeSeries double temp;
5 function setTemp (double t);
6 [

Fig. 3. Overview of the envisioned solution comprising a product line. Components are realized through DT modules. By the configuration of the product

line, a specific DT architecture and language is generated.

Fig. 2 shows such a DT module for the structural concern,
i.e., structure of the data exchanged between CPS and DT. The
module comprises a language component for the Microsoft
Azure Digital Twin, that can be used to describe structural
aspects of a CPS [10]. A language component [11] contains
the syntax, in terms of a grammar and semantic definition
including well-formedness rules and code generators, of a
DSL. Language components can be reused and extended by
other language components via their interface. We distin-
guish between a provided interface, i.e., language concepts
that are exposed to be reused, and a required interface that
exposes concepts to be realized by provided extensions of
other language components and enables language evolution,
e.g., new concepts of the Digital Twin Definition Language
(DTDL)*. When composing two language components, a new
language component emerges, where both languages are either
embedded in each other [11], enabling modelers to build
one model that comprises concepts of both languages, or
aggregated [18] where one language can reference concepts of
another language. In this paper, we only showcase aggregation
due to space limitations. Besides, the module comprises a
software component, in our example, a monitor component
that parses data of the CPS using a DTDL model. For
the software component to be compatible with the existing
architecture for MAPE-K DTs, the software component has
to realize the ports imposed by the concern for which it is
intended to be inserted, e.g., the DTDL monitor has to provide

“https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/
dtdlv2.md

the same interface regarding input and output ports, and their
types as the monitor of the architecture in Fig. 1.

B. A Product Line Architecture for Digital Twin Engineering

In our envisioned approach, various DT modules as de-
scribed above are arranged into a product line architecture
for DTs. From this product line architecture, product owners
can select one variant for a specific DT kind, in our example
an architecture realizing the MAPE-K pattern for DTs as
proposed in [5]. Selecting a feature of the product line archi-
tecture requires to select one implementation of the DT module
available for this feature, and thus, effects the reuse of both
language and software components at the same time. After the
selection at configuration-time, the software components are
available in the particular implementation of the architecture,
and the corresponding languages are integrated with each other
via the mechanism of composing language components.

Fig. 3 depicts an excerpt of our envisioned product line
architecture for the creation of MAPE-K DTs. In the upper
part, the product line architecture with its features is depicted.
For the structural description of the underlying system, the
product owner can decide between Eclipse Ditto, AWS IoT
TwinMaker, or Azure DTDL realization. The feature of Azure
DTDL is realized by a module (cf. Fig. 2) comprising a
language component containing the language definition of
DTDL, and two software components for monitor and ex-
ecutor that use models of this language. Besides, the product
line architecture has a feature behavior where either timed-
statecharts [19], with transitions based on timing constraints,

or basic statecharts (BSC) with states, transitions, guard con-
ditions, and actions, for the definition of behavior can be
selected. In our example, the product owner selects the fea-
tures Azure DTDL and basic statecharts at configuration-time.
Afterwards, a DT software architecture (cf. [5]) is generated
that comprises the software components of the modules of
the selected features of our product line. In addition, these
components use models conforming to the languages defined
in the language components of the modules of the selected
features. Furthermore, like the software components that are
able to interact with each other via their interface, the language
components are composed, which has the effect that the
models of the basic statechart language can now reference
DTDL models.

In our example, the DT of a building is created, where
the statechart defines when to increase or decrease the room
temperature, and the DTDL model provides the information
about the datatypes and methods available to do so. Thus, our
approach facilitates the reuse of existing DT software and lan-
guage implementations, by using DT modules, e.g., the Azure
DTDL structure module and basic statechart module. Their
alignment in a product line architecture enables product own-
ers to configure their desired DT features at coconfiguration-
time to generate a DT architecture that comprises the software
and models to realize the selected features for a given physical
system. Hence, the product owner does not need to take care
of how to compose the software components or the modeling
languages that are used by these components.

IV. DISCUSSION & CONCLUSION

In this paper, we presented our envisioned approach to
realize a product line architecture for DT software archi-
tectures. The product line architecture consists of features
for concerns of the DT. These features are realized by DT
modules containing language and software components. We
demonstrated our vision with a product line architecture for
structural and behavioral concerns of a DT architecture realiz-
ing the MAPE-K pattern. This enables developing new digital
twin architectures based on existing software and language
components going beyond the borders of single digital twin
platforms. However, it is up to future work to evaluate our
concept with other DT architectures and their modules.

In the future, we aim to identify abstract commonalities
between the realizations of these concerns, e.g., structural
aspects of DTs are similarly described [10], and derive generic
software components and languages to further extend them
with use case specifics for enabling portability. Moreover, we
aim to clarify the constituents of the interface of DT modules
to finally connect and compose these modules as well as
to extend our product line architecture with more features
for DTs [20]-[22]. Finally, our approach may be generalized
beyond the application of DTs.

ACKNOWLEDGEMENT

This work has been supported by the German Federal Min-
istry of Economic Affairs and Climate Action (BMWK, SofD-

Car — 19S21002L), as well as the Austrian Federal Ministry
for Digital and Economic Affairs and the National Foundation
for Research, Technology and Development (CDG).

REFERENCES

[1] W. Kiritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital
twin in manufacturing: A categorical literature review and classification,”
IFAC-PapersOnlLine, vol. 51, no. 11, pp. 1016-1022, 2018.

[2] P. Bibow, M. Dalibor, C. Hopmann, B. Mainz, B. Rumpe, D. Schmalz-
ing, M. Schmitz, and A. Wortmann, “Model-driven development of a
digital twin for injection molding,” in CAiSE. Springer, 2020, pp. 85—
100.

[3] R. G. Alves, G. Souza, R. F. Maia, A. L. H. Tran, C. Kamienski,
J. Soininen, P. T. Aquino, and F. Lima, “A digital twin for smart
farming,” in GHTC. IEEE, 2019, pp. 1-4.

[4] M. Eisenberg, D. Lehner, R. Sindeldar, and M. Wimmer, “Towards
reactive planning with digital twins and model-driven optimization,” in
ISoLA. Springer, 2022, pp. 54-70.

[5] T. Bolender, G. Biirvenich, M. Dalibor, B. Rumpe, and A. Wortmann,
“Self-adaptive manufacturing with digital twins,” in SEAMS. IEEE,
2021, pp. 156-166.

[6] E. Ferko, A. Bucaioni, and M. Behnam, “Architecting digital twins,”
IEEE Access, vol. 10, pp. 50335-50350, 2022.

[71 M. Caporuscio, F. Edrisi, M. Hallberg, A. Johannesson, C. Kopf,
and D. Perez-Palacin, “Architectural concerns for digital twin of the
organization,” in ECSA. Springer, 2020, pp. 265-280.

[8] M. M. Bersani, C. Braghin, V. Cortellessa, A. Gargantini, V. Grassi, F. L.
Presti, R. Mirandola, A. Pierantonio, E. Riccobene, and P. Scandurra,
“Towards trust-preserving continuous co-evolution of digital twins,” in
ICSA-C. IEEE, 2022, pp. 96-99.

[9] M. Schluse, M. Priggemeyer, L. Atorf, and J. Rossmann, “Experi-
mentable digital twins - streamlining simulation-based systems engi-
neering for industry 4.0,” IEEE TII, vol. 14, no. 4, pp. 1722-1731,
2018.

[10] J. Pfeiffer, D. Lehner, A. Wortmann, and M. Wimmer, “Modeling
capabilities of digital twin platforms-old wine in new bottles?” in
ECMFA, 2022.

A. Butting, J. Pfeiffer, B. Rumpe, and A. Wortmann, “A compositional
framework for systematic modeling language reuse,” in MODELS, 2020,
pp. 35-46.

T. Vale, I. Crnkovic, E. S. de Almeida, P. A. da Mota Silveira Neto,
Y. C. Cavalcanti, and S. R. de Lemos Meira, “Twenty-eight years of
component-based software engineering,” J. Syst. Softw., vol. 111, pp.

128-148, 2016.

D. Batory, “Product-line architectures,” in Smalltalk and Java Confer-
ence, 1998.

[14] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41-50, 2003.

A. Haber, J. O. Ringert, and B. Rumpe, “Montiarc-architectural model-
ing of interactive distributed and cyber-physical systems,” arXiv preprint
arXiv:1409.6578, 2014.

C. Aeronautiques, A. Howe, C. Knoblock, I. D. McDermott, A. Ram,
M. Veloso, D. Weld, D. W. SRI, A. Barrett, D. Christianson et al.,
“PDDL-The Planning Domain Definition Language,” Tech. Rep., 1998.
D. Lehner, J. Pfeiffer, E.-F. Tinsel, M. M. Strljic, S. Sint, M. Vierhauser,
A. Wortmann, and M. Wimmer, “Digital twin platforms: requirements,
capabilities, and future prospects,” IEEE Software, vol. 39, no. 2, pp.
53-61, 2021.

[18] J. Pfeiffer and A. Wortmann, “Towards the black-box aggregation of
language components,” in MODELS-C. IEEE, 2021, pp. 576-585.

Y. Kesten and A. Pnueli, “Timed and hybrid statecharts and their textual
representation,” in FTRTFT. Springer, 1992, pp. 591-620.

M. Dalibor, N. Jansen, B. Rumpe, D. Schmalzing, L. Wachtmesister,
M. Wimmer, and A. Wortmann, “A cross-domain systematic mapping
study on software engineering for digital twins,” J. Syst. Softw., p.

111361, 2022.

S. Koch, E. Hamann, R. Heinrich, and R. H. Reussner, “Feature-based
investigation of simulation structure and behaviour,” in ECSA. Springer,
2022, pp. 178-185.

I. Ruchkin, S. Samuel, B. Schmerl, A. Rico, and D. Garlan, “Challenges
in physical modeling for adaptation of cyber-physical systems,” in WF-
IoT. IEEE, 2016, pp. 210-215.

(11]

(12]

[13]

[15]

[16]

(17]

[19]

[20]

[21]

[22]

