
Towards Blended Modeling and Simulation of DevOps Processes:
The Keptn Case Study

Alessandro Colantoni
Luca Berardinelli

Antonio Garmendia
name.surname@jku.at

Institute of Business Informatics - Software Engineering
Johannes Kepler University

Linz, Austria

Johannes Bräuer
Dynatrace Gmbh
Linz, Austria

johannes.braeuer@dynatrace.com

ABSTRACT
DevOps and Model Driven Engineering (MDE) provide differently
skilled IT stakeholders with methodologies and tools for organiz-
ing and automating continuous software engineering activities
and using models as key engineering artifacts. JSON is a popular
data format, and JSON Schema provides a general-purpose schema
language for JSON. This paper presents our work in progress on
blended modeling and scenario simulation of continuous delivery
pipelines as executable JSON-based models. For this purpose, we
show a case study based on Keptn, an open source tool for DevOps
automation of cloud-native applications, and its language, Shipyard,
a JSON-based process language for continuous delivery pipeline
specification.

CCS CONCEPTS
• Software and its engineering → Syntax; Semantics; Inter-
preters; Integrated and visual development environments;
Domain specific languages.

KEYWORDS
DevOps, MDE, blended modeling, simulation

ACM Reference Format:
Alessandro Colantoni, Luca Berardinelli, Antonio Garmendia, and Johannes
Bräuer. 2022. Towards Blended Modeling and Simulation of DevOps Pro-
cesses: The Keptn Case Study. In ACM/IEEE 25th International Conference
on Model Driven Engineering Languages and Systems (MODELS ’22 Compan-
ion), October 23–28, 2022, Montreal, QC, Canada. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3550356.3561597

1 INTRODUCTION
Over the last decade, DevOps methods and tools have been success-
fully implemented and adopted by companies to boost automation
and the efficiency of the engineering process.

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada
© 2022 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in ACM/IEEE 25th
International Conference on Model Driven Engineering Languages and Systems (MODELS
’22 Companion), October 23–28, 2022, Montreal, QC, Canada, https://doi.org/10.1145/
3550356.3561597.

The momentum of DevOps resulted in a flourishing of techno-
logical solutions to meet the huge market demands 1. This rapid
evolution resulted in a varied landscape of tools [11, 20] for sup-
porting activities of Continuous-software Engineering (CSE) [30]
processes. Consequently, the choice of the right set of DevOps tools
and their integration into frameworks for supporting potentially
arbitrary and customizable activities of an engineering process is a
practical problem faced by DevOps engineers.

In this regard, Bordeleau et al. [8] investigated and elicited sets
of requirements for DevOps frameworks. Among them, they also
consider the need for adequate support for modeling DevOps engi-
neering processes, of the product resulting from the process, i.e., the
software system, and resources (e.g., tools) involved in the accom-
plishment of development and operations phases.

To contribute to the above requirements, we proposed in [15]
DevOpsML, a tool-supported [43] model-driven approach to model
DevOps frameworks as a combination of processes and tools. We
chose SPEM [44] as standard and tool-independent process model-
ing language for process modeling.

However, due to the varied and continuously evolving landscape
of DevOps solutions [11], it is likely that different DevOps tools may
provide their approach defining processes to accomplish DevOps
engineering tasks. In this paper, as a representative DevOps tool, we
choose Keptn [32], an open-source control plane for orchestrating
continuous delivery (CD) and operational processes of cloud-based
applications. Thanks to ongoing collaborations [22, 29], Keptn is
often chosen as the industrial use case for our research endeavors. In
particular, Keptn provides a declarative and event-based integration
approach to tame the complexity of DevOps tool integration. For
this purpose, Keptn relies on a set of JSON documents [35] validated
against a set of given JSON schemas [37].

In [16], we proposed a semi-automated approach, namely JSON-
SchemaDSL, for generating a modeling workbench for JSON-based
domain-specific modeling languages (DSL) atop Eclipse Modeling
Framework (EMF) and related technologies [23, 26–28, 31]. JSON-
SchemaDSL supports the (meta)modeling of JSON schemas and
their instances. In [17], we adopted JSONSchemaDSL to realize a
continuous consistency checking mechanism for JSON documents
used in Keptn.

1https://www.gartner.com/en/newsroom/press-releases/2015-03-05-gartner-says-
by-2016-devops-will-evolve-from-a-niche-to-a-mainstream-strategy-employed-
by-25-percent-of-global-2000-organizations

https://doi.org/10.1145/3550356.3561597
https://doi.org/10.1145/3550356.3561597
https://doi.org/10.1145/3550356.3561597
https://www.gartner.com/en/newsroom/press-releases/2015-03-05-gartner-says-by-2016-devops-will-evolve-from-a-niche-to-a-mainstream-strategy-employed-by-25-percent-of-global-2000-organizations
https://www.gartner.com/en/newsroom/press-releases/2015-03-05-gartner-says-by-2016-devops-will-evolve-from-a-niche-to-a-mainstream-strategy-employed-by-25-percent-of-global-2000-organizations
https://www.gartner.com/en/newsroom/press-releases/2015-03-05-gartner-says-by-2016-devops-will-evolve-from-a-niche-to-a-mainstream-strategy-employed-by-25-percent-of-global-2000-organizations

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Colantoni et al.

In this paper, we further contribute to applying MDE techniques
and practices for DevOps [7] using Keptn as a reference tool for
our case study. The main contributions of this paper are

• Blended modeling [12, 18] of CD pipelines combining the
native JSON textual notation and a dedicated graphical one. A
new Sirius-based [26] graphical editor is under development
on purpose

• Simulation of CD scenarios. An executable operational se-
mantics [9] is implemented in the GEMOC Studio language
workbench [31]. The events collected in the scenario model
drive the simulation of DevOps stages and steps of CD
pipelines as designed and executed in Keptn.

The contributions of this paper leverage the model-driven JSON-
SchemaDSL approach presented in [16] and combine it with the ca-
pabilities offered by the GEMOC Studio for designing JSON schema-
based executable domain-specific modeling language (xDSL).

The rest of the paper is organized as follows. Section 2 sets the
background. Section 3 introduces our bridging approach for blended
modeling and simulation of DevOps processes. Section 4 presents a
case study and a preliminary evaluation of our approach. Section 5
discusses related work, and finally, Section 6 concludes the paper.

2 BACKGROUND
This section briefly introduces MDE, blended modeling, JSON and
JSON Schema, a.k.a. JSONware, our approach JSONSchemaDSL,
and the Keptn tool.

2.1 Model-Driven Engineering
Model-driven engineering (MDE) [10] is an engineering method-
ology that relies on models as purposeful abstractions of complex
(software) systems, which are manipulated during engineering ac-
tivities and, possibly, throughout the whole system life-cycle for
the sake of the highest possible process automation. Model(ing)
and metamodel(ing) [9] are pillar concepts and activities in MDE. A
metamodel defines modeling concepts and their relationships and
provides the intentional description of all possible models, which,
in turn, must conform to the associated metamodel. A metamodel
represents the abstract syntax of a modeling language in a concep-
tual way, independently of any form of notation or concrete syntax,
which assigns textual and/or graphical notation(s) to a modeling
language.

Models are abstractions of reality for a given purpose. In MDE,
they are prescriptive, machine-readable artifacts obtained at the end
of a modeling activity. Models are connected (i.e., model elements
may be linked beyond the boundary of one model) and dynamic
(i.e., models may be analyzed and executed in some form) [4, 9].
Executable models are models provided with an operational seman-
tics defining the meaning of the language by implementing an
interpreter that directly executes the model behavior.

2.2 Blended Modeling
A formal definition of blended modeling has been introduced by
Ciccozzi et al. [13]:

"Blended modeling is the activity of interacting seamlessly with a
single model through multiple notations, allowing a certain degree of

temporary inconsistencies."

From a technical MDE perspective, blended modeling entails the
adoption of a single metamodel and a mix of two or more graph-
ical and/or textual concrete syntaxes. From a user perspective, a
blended modeling environment should be able to cope with tem-
porary inconsistencies across notations by detecting, solving, and
then propagating consistent changes to the underlying model.

In [18], David et al. further characterized the notion of blended
modeling by performing a systematic study of blended modeling in
commercial and open-source model-driven software engineering
tools. The collected tools are classified w.r.t. three main features of
blended modeling, namely i) multiple notations, ii) seamless interac-
tion among such notations, and iii) flexible consistency management
to (temporarily) favor user experience and understandability over
correctness.

In this paper, we contribute to the blended modeling of JSON-
based artifacts by promoting a systematic integration of the native
JSON textual notation with a graphical one.

2.3 JSONware: JSON and JSON Schema
JSON [35] initially emerged as lightweight and human-readable
data serialization and messaging format for supporting information
exchange. Two exemplary JSON artifacts are shown in Lst. 1 and
Lst. 2. Data is stored in name/value pairs separated by commas,
while curly braces hold objects and square brackets hold arrays. As
a plain textual artifact, a JSON document can be manually edited
in any text editor.

Listing 1: A JSON schema example.
{

"$schema": "http://json-schema.org/draft-07/schema#"
"type":"object",
"properties":{

"name":{"type":"string"},
"surname":{"type":"string"}

},
"additionalProperties":true

}

Listing 2: A JSON schema instance, i.e., JSON document, ex-
ample.
{

"name": "Alessandro",
"surname": "Colantoni",
"affiliation": {

"universityName": "Johannes Kepler University",
"city":"Linz"

}
}

The JSON Schema2, promoted and maintained by an active open
community [37], is published by IETF as a draft standard and de-
fined as:

"a JSON-based format for describing the structure of JSON data. JSON
schema asserts what a JSON document must look like, ways to extract
information from it, and how to interact with it." [37].

2By convention, we use JSON Schema (uppercase S) to refer to the standard and JSON
schema (lowercase S), or simply schema, to refer to a particular schema document.

Towards Blended Modeling and Simulation of DevOps Processes: The Keptn Case Study MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

The JSON Schema defines a so-calledmetaschema, i.e., a self-descrip-
tive schema, validated against itself, which is used to validate any
JSON schema. As a schema defines the data structure of JSON doc-
uments, the document is referred to as an instance (e.g., Lst. 2) of a
given schema (e.g., Lst. 1). With JSON Schema, users are provided
with a language to define constraints on JSON documents and tools
for checking their conformance between schema instances and the
corresponding schema [47–49].

2.4 JSONSchemaDSL: Bridging JSONware and
MDE

From aMDE perspective, themetaschema by JSON Schema is a good
candidate for playing a de-facto metalanguage role in an emerging
JSONware technical space [38, 39]. In [40], Maiwald et al. provide
a manual classification of JSON schemas collected in a growing
and curated collection of JSON schemas called Schemastore [36].
This work testifies how JSON schemas are not only used for data
definition and exchange but also for scripting tasks for configuring
application services.

In [16], we elicited the JSONware technical space [38] (JSONware
TS, see Fig.2) and presented the conceptual architecture, workflow,
and technical implementation of JSONSchemaDSL, a model-driven
approach to bridge the JSONware to the EMF TS [38] while pre-
serving the native JSON concrete syntax.

The JSONSchemaDSL is an approach for developing DSLs based
on JSON schema specifications, built atop Eclipse EMF and Xtext.
In [16], given a JSON schema as input, the approach can semi-
automatically generate the Ecore-based metamodel and an Xtext
grammar. The former defines the in-memory representation of a
JSON document as a EMF model and is transparent to domain
experts. The latter is designed to replicate the native JSON textual
concrete syntax and, as such, does not require any MDE-specific
knowledge and is suitable for any JSON users. A configuration
model specifies variations of the generated grammar (e.g., choosing
between JSON arrays or JSON objects).

JSONSchemaDSL reuses the generation capabilities of Xtext. The
generated Xtext-based editors, possibly extended with OCL con-
straints, support editing, parsing, and validation of JSON schemas
and JSON instance documents. From a MDE perspective, JSON-
SchemaDSL enables the (meta)modeling of JSON documents.

As many DevOps approaches are based on JSON, such as Keptn,
discussed next, we have a basis for applying MDE for DevOps
artifacts.

2.5 Keptn
Keptn is an open-source control plane for orchestrating continuous
delivery (CD) and operational processes of cloud-based applications.
It started in January 2019 by the company Dynatrace and then
donated to the Cloud-Native Computing Foundation (CNCF) in
2020.

Keptn supports a declarative approach to building scalable au-
tomation routines for continuous delivery and operations. Keptn
can invoke services from external DevOps tools and consumes
the generated events while executing continuous delivery. At the

time of writing, the integrated tools support testing, observability,
deployment activities, and web-hooks to web applications3.

To configure the provisioning of services, Keptn relies on declar-
ative artifacts or specifications [14].

In [16, 17], we applied the JSONSchemaDSL approach to three
Keptn specifications, namely Shipyard and SLI/SLO pair, enabling
textual modeling and continuous consistency checking capabilities
for corresponding JSON-based artifacts. In particular:

• Shipyard: The Shipyard specification declares a multi-stage
delivery workflow by defining what needs to be done. A
delivery workflow is based on multiple stages, each with
different task sequences. A task sequence is a set of actions
for a specific delivery or operational process. Following this
declarative approach, there is no need to write imperative
pipeline code.

• SLI and SLO: A service-level indicator (SLI) is a “carefully
defined quantitative measure of some aspect of the level of
service that is provided” [3]. A service-level objective (SLO)
is “a target value or range of values for a service level that is
measured by an SLI [3]. Together, the SLI/SLO specifications
declare a quality gate for a given service. This quality gate
can be leveraged in the delivery or operational process to
measure the defined quality criteria.

At the time of writing, Keptn provides two other JSON-based
specifications, namely CloudEvents and Remediation, to define a
contract for tool integration and a list of remediation actions for a
given service, respectively [14].

3 APPROACH
Fig. 1 depicts the use cases covered by the proposed approach,
extending the use cases (in gray) played by language engineers,
tool providers, and domain experts presented in [16]. In particular:

• The Language Engineer creates and manipulates languages.
With JSONSchemaDSL, she can define the abstract syntax
of JSON-based DSLs. By construction, the native JSON no-
tation is chosen as textual concrete syntax. The language
engineer is expected to provide at least two concrete syn-
taxes for blended modeling, and it is a common choice [18]
to mix textual and graphical ones. An operational semantics
specification can also be specified, obtaining a JSON-based
xDSL

• The Domain Expert creates and manipulates JSON docu-
ments. In JSONware, these artifacts are schema instances
conforming to JSON schemas. Due to JSON, a domain expert
is expected to work with textual artifacts. However, if addi-
tional concrete syntaxes and supporting tools are available
(e.g., a graphical one), she can benefit from a blended model-
ing experience. The JSON documents can also be executed if
an operational semantics and interpreter are provided.

• The Tool Provider implements tools to support activities. Es-
sential tools are textual and graphical editors for blended
modeling and interpreter for execution via operational se-
mantics

3The up-to-date list is available at https://keptn.sh/docs/integrations/

https://keptn.sh/docs/integrations/

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Colantoni et al.

Figure 1: Actors and use cases of our field of investigation.

In this paper, we build atop the outcome of [16] and enrich the
use cases in Fig. 1 with two new capabilities, i.e., blended modeling
and scenario simulation of CD pipelines specified in Shipyard by
Keptn [32]. A bird’s eye view of the technical realization of these
two new capabilities is given in Fig. 24.

A JSON schema is taken as input by JSONSchemaDSL (1), which
generates (2), via a semi-automated process [16], the correspond-
ing Ecore metamodel and Xtext grammar. Thanks to the native
capabilities of EMF and Xtext, tree-based and textual editors for
JSON instance documents are automatically generated, enriched by
JSON schema-specific OCL constraints. The textual editor adopts
the native JSON notation and is meant to be used by domain experts
already acquainted with the JSON notation for their particular engi-
neering activity. In addition, MDE experts can also further inspect
or edit the actual structure of the in-memory representation of the
JSON artifact in EMF using the generated tree-based editor.

A graphical concrete syntax for the given JSON schema is real-
ized via Sirius [26], an Eclipse project which allows the generation
of a graphical modeling workbench for EMF-based models. Lan-
guage engineers and domain experts are expected to agree on the
graphical notation. A graphical editor is then generated for JSON
instance documents. The Sirius-based editor offers the possibility
to visualize and edit the content of a JSON instance document.

It is worth noting that all the editors mentioned above, i.e., tree-
based, textual, and graphical, share the same in-memory represen-
tation based on EMF and can be opened in the same Eclipse IDE.
This capability is necessary to enable a blended modeling experi-
ence of JSON artifacts (4). Indeed, domain experts can seamlessly
choose among three different editors to manipulate the same JSON
Instance document, which, in turn, conforms both to the original

4We invite the reader to refer to [16] for an in-depth explanation of the language
engineering capabilities supported by JSONSchemaDSL.

JSON schema and the generated Ecore metamodel and Xtext gram-
mar. Moreover, by preserving the native JSON notation, the domain
experts can continue using any existing JSON document editor.

Finally, if a JSON schema is provided with executable operational
semantics, any compliant JSON instance documents can be exe-
cuted (5). We implemented an executable operational semantics for
Shipyard using GEMOC Studio. It provides generic components
through Eclipse technologies developing, integrating, and using of
heterogeneous xDSLs via a so-called language workbench. In partic-
ular, the GEMOC Studio integrates Kermeta 3 (K3) [21], an action
language used to implement the execution semantics of Ecore meta-
models, as the ones generated by the JSONSchemaDSL. Kermeta 3
is built on top of the Xtend, a dialect of Java, which compiles into
readable Java-compatible source code. As a result, a Java-compliant
interpreter can be generated for a given JSON schema. The availabil-
ity of executable semantics and interpreters for JSON-based xDSLs
may help (i) domain experts in performing activities and (ii) tool
providers to augment their tools with MDE technologies whenever
JSON schemas are used in model-based DevOps processes [30].

It is worth noting that the JSONSchemaDSL is not a "one size fits
all" approach. It covers domain-independent steps, like representing
the JSON metaschema in Ecore, hidden on purpose from Fig. 2, and
domain-specific ones. The latter must be replicated for each JSON
schema.

The extended capabilities of the JSONSchemaDSL approach (see
Fig.1) benefit both domain experts and tool providers. The former
can choose among a richer set of tools to manipulate JSON artifacts,
in addition to and compatible with any existing JSON-based tool.
The latter can leverage the generation capabilities provided by
model-driven language workbenches, like GEMOC Studio, to give
a richer, domain-specific tool set for JSON artifacts.

4 BLENDED MODELING AND SIMULATION OF
CONTINUOUS DELIVERY PIPELINES

This section describes the blended modeling and scenario simula-
tion for CD pipelines specified in Shipyard. The case study extends
the one presented in [16] to show an application of the approach
in Fig. 2, combining JSONSchemaDSL and GEMOC Studio.

Thanks to JSONSchemaDSL, each Keptn specification can be
engineered as a fully-fledged DSL. Subsequently, the corresponding
JSON document can be edited and visualized by the generated
textual and graphical editors.

In [16, 17], we applied the JSONSchemaDSL to Shipyard and
SLI/SLO specifications obtaining the following artifacts and tools:

• Ecore metamodels and Xtext grammars for Shipyard and
SLI/SLO specifications

• Xtext-based textual editors, with additional OCL constraints,
for Shipyard and SLI/SLO

• A continuous consistency checking mechanism between
explicitly linked Shipyard and SLI/SLO models, based on
Viatra, an open-source model query, validation, and trans-
formation framework supporting the efficient evaluation of
model queries on EMF models [50]

In this paper, we further extend the case study for Shipyard,
obtaining the following additional artifacts and tools:

• Sirius-based Shipyard graphical editor

Towards Blended Modeling and Simulation of DevOps Processes: The Keptn Case Study MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Figure 2: JSONSchemaDSL and GEMOC Studio for blended modeling and execution of JSON-based (x)DSLs.

• Shipyard executable operational semantics and interpreter
based on Xtend and Kermeta 3 [21]

As a result, Keptn users as domain experts can benefit from a
blended modeling experience and can simulate CD scenarios. We
further detail these two new capabilities in the following.

4.1 Blended Modeling for Shipyard
Fig. 3 shows a running GEMOC Modeling Workbench, i.e., a xDSL-
specific Eclipse instance used by domain designers, in our case
Shipyard experts, to create, and execute Shipyard models. In Fig. 3,
the view is suitably arranged to show the textual and graphical
editors of a Shipyard model.

A shipyard-sockshop Shipyard model is available from the official
Keptn documentation5. The shipyard-sockshop consists of three
consecutive stages, i.e., development, hardening, and production.
Development and hardening stages contain a delivery sequence of
four tasks: deployment, test, evaluation, and release. The next pro-
duction stage contains a delivery sequence including deployment
and release tasks, a rollback sequence containing a single homonym
task, and a remediation sequence, including remediation and evalu-
ation tasks. If the delivery sequence of the dev stage (dev.delivery)
is activated by the user, and its execution is successful, the delivery
sequence of the hardening stage (hardening.delivery) is triggered.
During the hardening stage, if the delivery sequence is successful,
then the delivery sequence is also triggered in the production stage.
If the latter fails, the rollback sequence is started. In this shipyard-
sockshop example, a remediation sequence, including remediation
and evaluation tasks, is available at the production stage. The above-
described workflow does not trigger the remediation sequence and,
as such, appears disconnected from it. Therefore, if started by the
user, it is executed independently from other stages, sequences, or
tasks.

Fig. 3a shows the shipyard-sockshop CD pipeline as an instance
of the Shipyard DSL in the generated Xtext-based editor, includ-
ing highlighting of Shipyard keywords. Fig. 3b shows the same
shipyard-sockshop CD pipeline in a Sirius-based graphical editor.

5https://github.com/keptn/spec/blob/master/shipyard.md. The example is provided in
YAML. Any YAML document can be automatically converted into JSON format.

Since the Shipyard JSON schema defines a continuous delivery
pipeline as a hierarchical workflow of stages, sequences, and tasks,
the graphical concrete syntax has been designed to resemble a
workflow. It is worth noting that, for the sake of blended model-
ing (single model, multiple notations, see Section 2), we did not
consider as viable solutions the adoption of existing software pro-
cess languages like SPEM [44], BPMN [45], or UML activities [46],
that require the integration (e.g., via model transformations [9]) of
additional metamodels.

Designing the Shipyard continuous delivery workflow directly
in JSON (Fig. 3a) is the typical choice for Keptn users since Keptn
is provided as a MDE-agnostic tool and does not provide Shipyard-
specific graphical editors. Specifying complex Shipyard CDpipelines
in JSON can be verbose and then cumbersome. The current imple-
mentation of the Shipyard graphical editor works as a viewer for
Shipyard CD pipelines. The depicted workflow is automatically syn-
chronized when the Shipyard model is saved. We are working on
offering a full blended modeling experience to Keptn users, which
requires extending the graphical editor with editing capabilities,
following the Sirius implementation guidelines6.

Table 1 provides a preliminary overview of the blended modeling
capabilities for Shipyard, according to the classification framework
proposed by David et al. in [18].

JSONSchemaDSL and the generated tool support for Shipyard are
open-source tools [5, 6]. The tool support for Shipyard xDSL is avail-
able as standalone Eclipse desktop applications. A web-based ver-
sion is left as future work. Candidate technologies to be considered
in Fig. 2 are Eclipse Theia [24], EMF Cloud [25], and GEMOC head-
less [31]. Collaboration can be supported in Keptn via GitOps [51],
as discussed in our previous work [17].

Concerning user-oriented features, two notations, i.e., the JSON
native textual notation (Fig. 3a) and graphical one (Fig. 3b), are
provided to domain experts for Shipyard. These two notations are
used in separated editors, and their overlap is complete: all the in-
formation in the JSON document can be depicted on the diagram or,
if not, shown in property views associated with the model element
selected on the diagram. Tree-based notations (and editors) are not

6See https://wiki.eclipse.org/Sirius/Tutorials/StarterTutorial for a tutorial example.

https://github.com/keptn/spec/blob/master/shipyard.md
https://wiki.eclipse.org/Sirius/Tutorials/StarterTutorial

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Colantoni et al.

Table 1: Preliminary classification of the blended modeling capabilities of the Shipyard model editor based on [18].

considered by [18]. As shown in Fig. 3, it is possible to visualize
both the textual and graphical versions of the model. However, the
generated editors do not yet provide advanced synchronization or
navigation routines (e.g., simultaneous selection of the same model
elements across notations or customized contextual menus).

Realization-oriented features capture technicalities. JSONSchema-
DSL is based on Xtext [28] that generates a parser for a given JSON
schema. Change propagation across notations happens when the
textual editor saves a valid Shipyard model.

Mechanisms for traceability and inconsistency management
across notations are not yet explicitly supported and are left for
future work.

4.2 Simulation of Continuous Delivery
Scenarios

A Keptn user can decide the starting sequence of a Shipyard CD
pipeline, uniquely identified by its stage and sequence name (e.g.,
dev.delivery). At the time of writing, Keptn users can only execute
and test Shipyard CD pipelines by uploading and running them on
a Keptn runtime via CLI7. Keptn does not provide any means for
simulating the CD pipeline outside the Keptn runtime.

To overcome this limitation, we are extending Shipyard with
an operational semantics implemented in Xtend/Kermeta 3 (Fig.2,
label 5), following the GEMOC Studio guidelines8, obtaining a Ship-
yard xDSL. The goal is to provide an approach for early validation
by simulation of CD scenarios defined in Shipyard, before their
actual executions by the Keptn engine. For this purpose, we de-
fined a minimal Scenario metamodel in Ecore (see Fig.4a). A top-
level ShipyardExecutionSuite refers to the ShipyardRoot, i.e., the

7https://keptn.sh/docs/0.13.x/reference/cli/commands/
8https://download.eclipse.org/gemoc/docs/releases/3.4.0/userguide-lw-make-
language-executable.html

top-level metaclass of the Shipyard schema metamodel as gener-
ated by JSONSchemaDSL. A ShipyardExecutionSuite is composed
of many Scenarios. Each scenario consists of two possibly empty
collections of SequenceEvents and TaskEvents, triggering the Se-
quences and Tasks, respectively (Fig.4b). A simulation scenario
starts from an arbitrary initial Sequence. Each sequence or task
can be correctly executed, fail, or cause a warning, generating a
corresponding passed, failed, or warning event. Fig.3 shows a run-
ning debug session of the shipyard-sockshop driven by the scenario
named Rollback of the associated ShipyardExecutionSuite model
depicted in Fig.3c. In our example, the proposed ShipyardExecution-
Suite comprises four scenarios with the required initial sequence
(in parenthesis), namely: rollback (dev.delivery) which execution
is shown in Fig.3b, hardening evaluation warning (dev.delivery)
and remediation (production.remediation). The rollback scenario
assumes the failure of the production.delivery sequence, while the
hardening evaluation warning scenario includes a warning for the
hardening.delivery.evaluation task. Finally, by default, we assign
a passed event to any sequences and tasks not explicitly referred
to in a ShipyardExecutionSuite model. For this reason, we assume
that all sequences and tasks in the remediation scenario are passed.

Fig3b shows the outcome of a completed debugging session
driven by the events defined in the rollback scenario. Accordingly,
development and hardening stages are successfully executed. Dur-
ing the production stage, the delivery sequence failed to trigger
a successful rollback sequence. The remediation sequence in the
production stage is not executed since the execution started from
the delivery sequence in development stage, and no triggers are
generated during the execution of the Shipyard JSON document in
Fig.3a.

The definition of simulation scenarios for Shipyard CD pipelines
is still under development. For example, we are investigating using
the IEEE XES standard [34] to model more complex event-based
scenarios.

https://keptn.sh/docs/0.13.x/reference/cli/commands/
https://download.eclipse.org/gemoc/docs/releases/3.4.0/userguide-lw-make-language-executable.html
https://download.eclipse.org/gemoc/docs/releases/3.4.0/userguide-lw-make-language-executable.html

Towards Blended Modeling and Simulation of DevOps Processes: The Keptn Case Study MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Figure 3: A Shipyard model can be edited as a JSON document (a), depicted on a workflow diagram (b), and simulated according
to a given event-driven scenario (c).

Figure 4: Scenario (a) and excerpt of the generated Shipyard
(b) metamodels.

5 RELATEDWORK
5.1 On Blended Modeling of JSON Documents
For related work concerning JSONware and MDE of this subject,
the reader should refer to [16].

Blended modeling is a recent research topic. The most recent
work on blended modeling support in commercial and open source
tools is provided by David et al. in [18]. In their work, 5000 aca-
demic papers and nearly 1500 entries of gray literature have been
reviewed. They identified 26 tools representing the current spec-
trum of modeling tools. To the best of the authors’ knowledge, none
of the selected tools address model-driven approaches and blended
modeling concerns related to JSON documents.

5.2 On Simulation of DevOps Processes
In [41], Medvedev et al. propose the performance analysis of a multi-
agent CI/CD pipeline, which is mapped to a queuing multi-channel
system. The simulation is focused on improving the schedule of
CI/CD tasks among server agents to improve the overall perfor-
mance of the CI/CD pipeline.

In [2], Mesmia et al. model a DevOps workflow using the Busi-
ness Process Modeling Notation (BPMN) and manually translate it
into a non-Markovian Stochastic Petri Net (SPN) executable model
for the sake of verification and duration prediction.

In [1], Alonso et al. present the overall architecture and capabili-
ties of the DECIDE DevOps framework for multi-cloud applications.
DECIDE includes a set of modules supporting different CI/CD ac-
tivities. One such module, OPTIMUS [19], runs pre-deployment
simulations to determine the best deployment scenarios, based
on matching the application’s non-functional requirements and
profiles of available cloud services.

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Colantoni et al.

Unlike [1, 2, 41], our solution follows a systematic model-driven
approach, implementing the operational semantics of an existing
non-executable JSON-based DSL, i.e., Shipyard. Moreover, our ap-
proach offers automation capabilities thanks to MDE techniques
and practices [9] by generating supporting tools like editors and
interpreters. This aspect is neglected in [1, 2, 41]. For example, [2]
proposes a translational semantics to stochastic Petri Nets (SPN),
but the transformation to SPN is performed manually.

In [1], the authors mentioned MELODIC [33, 42] as the only
related work to support deployment simulation and optimization
of big data applications adopting a model-driven engineering ap-
proach. MELODIC is a comprehensive approach for modeling, de-
ploying, and optimizing of multi-cloud applications. In MELODIC,
the multi-cloud native application is modeled in the Cloud Applica-
tion Modelling Execution Language (CAMEL) and Business Process
Models (BPMs). The CAMEL application model is transformed into
a Constraint Programming Model for mathematical optimization
of the deployment. Our approach builds upon the same MDE prin-
ciples and practices. Our goal is nevertheless different and focused
on JSON-based artifacts already used by existing MDE-agnostic
DevOps tools, like Keptn.

Concerning simulation, the purposes of collected related work
are formal verification [2], performance [41], and overall optimiza-
tion [1, 33] of the deployment process. The Shipyard operational
semantics presented in this work is realized for the functional tests
of CD simulation scenarios. Nevertheless, quality aspects of simu-
lation scenarios can be considered in Keptn by combining SLI/SLO
and Shipyard models as shown in [17].

6 CONCLUSION AND FUTUREWORK
This paper presents a work in progress to enable the blended
modeling and simulation of DevOps processes specified using a
JSON-based DSL. For this purpose, we leveraged and combined in
a pipeline the model-driven capabilities of our JSONSchemaDSL
approach and the GEMOC Studio, enabling the semi-automated
generation of fully fledged executable DSLs and tool support from
JSON schema documents. At the time of writing, the tool support
comprises an Xtext-based textual editor, a Sirius-based graphical
viewer, and a GEMOC-based interpreter. We presented an extended
case study based on Keptn, an open-source tool for DevOps au-
tomation of cloud-native applications. Keptn provides several JSON
schemas or specifications used by Keptn experts to validate DevOps
artifacts to suitably configure the continuous delivery of cloud-
native applications.

In this paper, we are paving the way towards the blended mod-
eling and event-based simulation of continuous delivery pipelines
edited in Shipyard, a JSON schema provided by Keptn. Neverthe-
less, to accomplish such a goal, additional implementation effort
is required. First, a fully operational blended modeling capability
needs the implementation of editing actions into the Sirius-based
viewer, enabling bidirectional propagation of model changes via
the underlying EMF-based APIs. Second, to cope with temporary
inconsistencies, we aim to investigate adopting the GitOps frame-
work [51] as already used in Keptn and discussed in [17], leveraging
the textual JSON model as source of truth.

Finally, as future work, we also aim to provide our JSONSchema-
DSL approach by challenging its capabilities and potential integra-
tion with existing model-driven technologies with extensions of
the Keptn case study, e.g., by developing an ecosystem of (x)DSLs
and linked models based on Keptn specifications.

ACKNOWLEDGMENT
This work was partially funded by the following projects: The EU
Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 813884 (www.lowcomote.
eu); the AIDOaRt project funded by the ECSEL Joint Undertak-
ing (JU) under grant agreement No 101007350 (www.aidoart.eu).
The Austrian Science Fund (P 30525-N31) (https://se.jku.at/lea-
language-engineering-for-analyzable-executable-dsmls/). The Aus-
trian Research Promotion Agency (FFG), program ICT of the Fu-
ture, project number 867535 (https://hybridlux.wu.ac.at/). The re-
search also contributed to the ITEA3 BUMBLE project (18006)
(https://itea4.org/project/bumble.html) .

REFERENCES
[1] Juncal Alonso, Kyriakos Stefanidis, Leire Orue-Echevarria, Lorenzo Blasi, Michael

Walker, Marisa Escalante, María José López, and SimonDutkowski. 2019. DECIDE:
An Extended DevOps Framework for Multi-cloud Applications. In Proceedings of
the 2019 3rd International Conference on Cloud and Big Data Computing, ICCBDC
2019, Oxford, UK, August 28-30, 2019. ACM, 43–48. https://doi.org/10.1145/
3358505.3358522

[2] Walid Ben Mesmia, Mohamed Escheikh, and Kamel Barkaoui. 2021. DevOps
Workflow Verification and Duration Prediction Using Non-Markovian Stochastic
Petri Nets. J. Softw. Evol. Process 33, 3 (mar 2021), 25 pages. https://doi.org/10.
1002/smr.2329

[3] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. 2016. Site
reliability engineering: How Google runs production systems. " O’Reilly Media,
Inc.".

[4] Jean Bézivin. 2005. On the unification power of models. Software & Systems
Modeling 4, 2 (2005), 171–188.

[5] BISE Institute, JKU, Linz. 2022. JsonSchemaDSL. https://zenodo.org/record/
5149206#.YuTp-XZBxD9, last accessed on 31/07/22.

[6] BISE Institute, JKU, Linz. 2022. Shipyard Editors. https://github.com/lowcomote/
shipyard-operational-semantics, last accessed on 31/07/22.

[7] Modeling Languages Blog. 2019. DevOps for models and modeling DevOps.
https://modeling-languages.com/devops-modeling-workshop/, last accessed on
31/07/22.

[8] Francis Bordeleau, Jordi Cabot, Juergen Dingel, Bassem S. Rabil, and Patrick
Renaud. 2020. Towards Modeling Framework for DevOps: Requirements De-
rived from Industry Use Case. In Software Engineering Aspects of Continuous
Development and New Paradigms of Software Production and Deployment, Jean-
Michel Bruel, Manuel Mazzara, and Bertrand Meyer (Eds.). Springer International
Publishing, Cham, 139–151.

[9] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-Driven Software
Engineering in Practice, Second Edition. Morgan & Claypool Publishers. https:
//doi.org/10.2200/S00751ED2V01Y201701SWE004

[10] Loli Burgueño, Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen Lambers,
Sébastien Mosser, Richard F. Paige, Alfonso Pierantonio, Arend Rensink, Rick
Salay, Gabriele Taentzer, Antonio Vallecillo, and Manuel Wimmer. 2019. Contents
for a Model-Based Software Engineering Body of Knowledge. Software and
Systems Modeling 18, 6 (2019), 3193–3205. https://doi.org/10.1007/s10270-019-
00746-9

[11] Necco Ceresani. 2016. The Periodic Table of DevOps Tools v.2 is Here. https:
//blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/, last accessed
on 31/07/22.

[12] Federico Ciccozzi, Matthias Tichy, Hans Vangheluwe, and Danny Weyns. 2019.
Blended Modelling - What, Why and How. In 2019 ACM/IEEE 22nd Interna-
tional Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C). 425–430. https://doi.org/10.1109/MODELS-C.2019.00068

[13] Federico Ciccozzi, Matthias Tichy, Hans Vangheluwe, and Danny Weyns. 2019.
Blended Modelling - What, Why and How. In 2019 ACM/IEEE 22nd Interna-
tional Conference on Model Driven Engineering Languages and Systems Com-
panion (MODELS-C). ACM/IEEE, 425–430. https://doi.org/10.1109/MODELS-
C.2019.00068

www.lowcomote.eu
www.lowcomote.eu
www.aidoart.eu
https://se.jku.at/lea-language-engineering-for-analyzable-executable-dsmls/
https://se.jku.at/lea-language-engineering-for-analyzable-executable-dsmls/
https://hybridlux.wu.ac.at/
https://itea4.org/project/bumble.html
https://doi.org/10.1145/3358505.3358522
https://doi.org/10.1145/3358505.3358522
https://doi.org/10.1002/smr.2329
https://doi.org/10.1002/smr.2329
https://zenodo.org/record/5149206##.YuTp-XZBxD9
https://zenodo.org/record/5149206##.YuTp-XZBxD9
https://github.com/lowcomote/shipyard-operational-semantics
https://github.com/lowcomote/shipyard-operational-semantics
https://modeling-languages.com/devops-modeling-workshop/
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.1007/s10270-019-00746-9
https://doi.org/10.1007/s10270-019-00746-9
https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/
https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/
https://doi.org/10.1109/MODELS-C.2019.00068
https://doi.org/10.1109/MODELS-C.2019.00068
https://doi.org/10.1109/MODELS-C.2019.00068

Towards Blended Modeling and Simulation of DevOps Processes: The Keptn Case Study MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

[14] Cloud Native Computing Foundation. 2022. Keptn Specifications. https://github.
com/keptn/spec, last accessed on 31/07/22.

[15] Alessandro Colantoni, Luca Berardinelli, and Manuel Wimmer. 2020. DevOpsML:
towards modeling DevOps processes and platforms. In MODELS ’20: ACM/IEEE
23rd International Conference on Model Driven Engineering Languages and Systems,
Virtual Event, Canada, 18-23 October, 2020, Companion Proceedings, Esther Guerra
and Ludovico Iovino (Eds.). ACM, 69:1–69:10. https://doi.org/10.1145/3417990.
3420203

[16] Alessandro Colantoni, Antonio Garmendia, Luca Berardinelli, Manuel Wimmer,
and Johannes Bräuer. 2021. Leveraging Model-Driven Technologies for JSON
Artefacts: The Shipyard Case Study. In 2021 ACM/IEEE 24th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS). 250–260.
https://doi.org/10.1109/MODELS50736.2021.00033

[17] Alessandro Colantoni, Benedek Horváth, Ákos Horváth, Luca Berardinelli, and
Manuel Wimmer. 2021. Towards Continuous Consistency Checking of DevOps
Artefacts. In 2021 ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C). 449–453. https://doi.org/10.
1109/MODELS-C53483.2021.00069

[18] Istvan David, Malvina Latifaj, Jakob Pietron, Weixing Zhang, Federico Ciccozzi,
Ivano Malavolta, Alexander Raschke, Jan-Philipp Steghöfer, and Regina Hebig.
2022. Blended modeling in commercial and open-source model-driven software
engineering tools: A systematic study. Software and Systems Modeling (June 2022).
https://doi.org/10.1007/s10270-022-01010-3

[19] DECIDE Project. 2020. Optimus Tool. https://www.decide-h2020.eu/content/
optimus, last accessed on 2022-07-31.

[20] Digital.ai. 2022. Periodic Table of DevOps Tools. https://digital.ai/devops-tools-
periodic-table, last accessed on 31/07/22.

[21] Diverse Project. 2022. Kermeta 3. http://diverse-project.github.io/k3/, last
accessed on 31/07/22.

[22] Dynatrace Gmbh. 2021. Modern continuous delivery with Keptn - Talk at Low-
comote Heterogeneous Low-Code Engineering in Industry. https://youtu.be/
Zlt0HolMK08?t=7182, last accessed on 31/07/22.

[23] Eclipse Foundation. 2022. Eclipse Modeling Framework. www.eclipse.org/
modeling/emf/, last accessed on 31/07/22.

[24] Eclipse Foundation. 2022. Eclipse Theia. https://theia-ide.org/ last accessed on
31/07/22.

[25] Eclipse Foundation. 2022. EMF Cloud. https://www.eclipse.org/emfcloud/ last
accessed on 31/07/22.

[26] Eclipse Foundation. 2022. Sirius. https://www.eclipse.org/sirius/, last accessed
on 31/07/22.

[27] Eclipse Foundation. 2022. Xtend. https://www.eclipse.org/xtend/, last accessed
on 31/07/22.

[28] Eclipse Foundation. 2022. Xtext. https://www.eclipse.org/Xtext/, last accessed
on 31/07/22.

[29] Romina Eramo, Vittoriano Muttillo, Luca Berardinelli, Hugo Bruneliere, Abel
Gomez, Alessandra Bagnato, Andrey Sadovykh, and Antonio Cicchetti. 2021.
AIDOaRt: AI-augmented Automation for DevOps, a Model-based Framework
for Continuous Development in Cyber-Physical Systems. In 2021 24th Euromicro
Conference on Digital System Design (DSD). 303–310. https://doi.org/10.1109/
DSD53832.2021.00053

[30] Jokin Garcia and Jordi Cabot. 2019. Stepwise Adoption of Continuous Delivery
in Model-Driven Engineering. In Software Engineering Aspects of Continuous
Development and New Paradigms of Software Production and Deployment, Jean-
Michel Bruel, Manuel Mazzara, and Bertrand Meyer (Eds.). Springer International
Publishing, Cham, 19–32.

[31] GEMOC. 2022. The GEMOC Initiative On the Globalization of Modeling Lan-
guages. http://gemoc.org/, last accessed on 31/07/22.

[32] Dynatrace Gmbh. 2022. Keptn Repository. https://keptn.sh/, last accessed on
31/07/22.

[33] Geir Horn and Pawel Skrzypek. 2018. MELODIC: Utility Based Cross Cloud
Deployment Optimisation. In 2018 32nd International Conference on Advanced
Information Networking and Applications Workshops (WAINA). 360–367. https:
//doi.org/10.1109/WAINA.2018.00112

[34] IEEE. 2016. IEEE Standard for eXtensible Event Stream (XES) for Achieving
Interoperability in Event Logs and Event Streams. IEEE Std 1849-2016 (2016),
1–50. https://doi.org/10.1109/IEEESTD.2016.7740858

[35] JSON. 2021. JSON Web Page. http://json.org/, last accessed on 31/07/22.
[36] JSON Schema . 2022. Schema Store. https://www.schemastore.org/json/, last

accessed on last accessed on 2022-07-31.
[37] JSON Schema. 2021. JSON Schema Web Page. http://json-schema.org/, last

accessed on 31/07/22.
[38] Ivan Kurtev, Jean Bézivin, and Mehmet Aksit. 2002. Technological spaces: An

Initial Appraisal. CoopIS, DOA (2002).
[39] Ralf Lämmel. 2018. Software languages: Syntax, semantics, and metaprogramming.

Springer.
[40] Benjamin Maiwald, Benjamin Riedle, and Stefanie Scherzinger. 2019. What

Are Real JSON Schemas Like?. In Advances in Conceptual Modeling, Giancarlo

Guizzardi, Frederik Gailly, and Rita Suzana Pitangueira Maciel (Eds.). Springer
International Publishing, Cham, 95–105.

[41] Denis Medvedev and Konstantin Aksyonov. 2021. The Development of a Simu-
lation Model for Assessing the CI/CD Pipeline Quality in the Development of
Information Systems Based on a Multi-Agent Approach. MATEC Web of Confer-
ences 346 (01 2021), 03095. https://doi.org/10.1051/matecconf/202134603095

[42] MELODIC. 2022. Melodic Homepage. http://www.melodic.cloud/, last accessed
on last accessed on 2022-07-31.

[43] JKU Institute of Business Informatics. 2020. DevOpsML. https://github.com/
lowcomote/devopsml/tree/1.2.2, last accessed on 31/07/22.

[44] OMG. 2008. Software & Systems Process Engineering Metamodel. https:
//www.omg.org/spec/SPEM/About-SPEM/, last accessed on 31/07/22.

[45] OMG. 2011. Business Process Model And Notation. http://www.bpmn.org/, last
accessed on 31/07/22.

[46] OMG. 2017. Unified Modeling Language. https://www.omg.org/spec/UML, last
accessed on 31/07/22.

[47] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín Ugarte, and Domagoj
Vrgoč. 2016. Foundations of JSON Schema. In WWW ’16. 263–273.

[48] JSON Schema. 2022. JSON Schema Implementations. https://json-schema.org/
implementations.html, last accessed on 31/07/22.

[49] JSON Schema. 2022. JSON Schema Test Suite. https://github.com/json-schema-
org/JSON-Schema-Test-Suite, last accessed on 31/07/22.

[50] Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, and
Zoltán Ujhelyi. 2016. Road to a reactive and incremental model transformation
platform: three generations of the VIATRA framework. Softw. Syst. Model. 15, 3
(2016), 609–629. https://doi.org/10.1007/s10270-016-0530-4

[51] Weaveworks. 2022. GitOps. https://www.weave.works/technologies/gitops/,
last accessed on 31/07/22.

https://github.com/keptn/spec
https://github.com/keptn/spec
https://doi.org/10.1145/3417990.3420203
https://doi.org/10.1145/3417990.3420203
https://doi.org/10.1109/MODELS50736.2021.00033
https://doi.org/10.1109/MODELS-C53483.2021.00069
https://doi.org/10.1109/MODELS-C53483.2021.00069
https://doi.org/10.1007/s10270-022-01010-3
https://www.decide-h2020.eu/content/optimus
https://www.decide-h2020.eu/content/optimus
https://digital.ai/devops-tools-periodic-table
https://digital.ai/devops-tools-periodic-table
http://diverse-project.github.io/k3/
https://youtu.be/Zlt0HolMK08?t=7182
https://youtu.be/Zlt0HolMK08?t=7182
www.eclipse.org/modeling/emf/
www.eclipse.org/modeling/emf/
https://theia-ide.org/
https://www.eclipse.org/emfcloud/
https://www.eclipse.org/sirius/
https://www.eclipse.org/xtend/
https://www.eclipse.org/Xtext/
https://doi.org/10.1109/DSD53832.2021.00053
https://doi.org/10.1109/DSD53832.2021.00053
http://gemoc.org/
https://keptn.sh/
https://doi.org/10.1109/WAINA.2018.00112
https://doi.org/10.1109/WAINA.2018.00112
https://doi.org/10.1109/IEEESTD.2016.7740858
http://json.org/
https://www.schemastore.org/json/
http://json-schema.org/
https://doi.org/10.1051/matecconf/202134603095
http://www.melodic.cloud/
https://github.com/lowcomote/devopsml/tree/1.2.2
https://github.com/lowcomote/devopsml/tree/1.2.2
https://www.omg.org/spec/SPEM/About-SPEM/
https://www.omg.org/spec/SPEM/About-SPEM/
http://www.bpmn.org/
https://www.omg.org/spec/UML
https://json-schema.org/implementations.html
https://json-schema.org/implementations.html
https://github.com/json-schema-org/JSON-Schema-Test-Suite
https://github.com/json-schema-org/JSON-Schema-Test-Suite
https://doi.org/10.1007/s10270-016-0530-4
https://www.weave.works/technologies/gitops/

	Abstract
	1 Introduction
	2 Background
	2.1 Model-Driven Engineering
	2.2 Blended Modeling
	2.3 JSONware: JSON and JSON Schema
	2.4 JSONSchemaDSL: Bridging JSONware and MDE
	2.5 Keptn

	3 Approach
	4 Blended modeling and simulation of continuous delivery pipelines
	4.1 Blended Modeling for Shipyard
	4.2 Simulation of Continuous Delivery Scenarios

	5 Related Work
	5.1 On Blended Modeling of JSON Documents
	5.2 On Simulation of DevOps Processes

	6 Conclusion and Future Work
	References

