
Towards Flexible Evolution of Digital Twins with

Fluent APIs

Daniel Lehner∗†, Antonio Garmendia†, Manuel Wimmer∗†

∗ Christian Doppler Laboratory for Model-Integrated Smart Production (CDL-MINT)
† Institute for Business Informatics - Software Engineering

Johannes Kepler University Linz, Science Park 3, 4020 Linz, Austria

{firstname}.{lastname}@jku.at

https://se.jku.at

Abstract—With the increase of technologies such as the Inter-
net of Things (IoT) and Cyber-Physical Systems, a huge amount
of data is generated by current systems. To gain insights from
this data, it must be combined with meta-information about its
origins. Therefore, Digital Twins (DTs), as a common represen-
tation of a system and its data, are currently gaining traction in
both industry and academia. However, these DTs have of course
to be evolvable in order to reflect the high need of flexibility of the
systems to support extensions, adaptations, customizations, etc.
Evolving the DT representations currently not only involves a lot
of manual effort, but might also lead to loss of data if not done
correctly. To provide dedicated evolution support, we propose a
dedicated framework for realizing evolution strategies between
the schema, instance, and data level of a DT. In particular, we
present a fluent API which allows the flexible but systematic
manipulation of DTs during runtime and demonstrate its usage
for a use case.

Index Terms—Digital Twin, Evolution, Maintenance, Fluent
APIs

I. INTRODUCTION

Nowadays, Cyber-Physical Systems (CPSs) are becoming a

common practice to control physical processes [1]. Specifi-

cally, these processes are often real-time monitored, for which

a large amount of data is generated.

To make sense out of this data, it must be combined with

meta-information about the physical system [2]. Therefore,

Digital Twins (DTs) have emerged over the last years as

a virtual representation of such systems that allow a bi-

directional data flow [3]. Several services can make use of

this virtual representation to provide functionality such as

prediction, simulation, visualization, or system control [4],

[5]. Therefore, a DT usually comprises the current snapshot

of a system, that is further defined by a schema adding the

meta-information perspective. Additionally, historical data can

be stored by the DT for time-series analysis, prediction, or

simulation. Some dedicated support in terms of so-called DT

platforms (e.g., Azure1, Eclipse2, or AWS3) has been proposed

already. Whereas these platforms usually focus on the schema

and snapshot level, they can make use of a so-called Time-

Series Database (TSDB) to store historical data. Some of these

1https://azure.microsoft.com/services/digital-twins/
2https://www.eclipse.org/ditto/
3https://aws.amazon.com/greengrass/

TSDBs even provide support for integrating schemas (e.g.,

Time-Series Insights service by Microsoft4, or the Timescale

database5). However, the schema of a DT is subject to frequent

change in design, because the evolution of the physical system

should also be represented by its DT [6]. A change in the

physical system may trigger an evolution step in the DT.

However, as there are several levels of a DT (i.e., schema,

snapshot, historical data), such an evolution step might trigger

several co-evolution steps at different levels, as shown in

Fig. 1. As the Historical Data of a DT conforms to

the structure imposed by the Snapshot, an evolution of this

Snapshot requires co-evolution adaptations on the Historical

Data to ensure consistency. As the Snapshot must conform to

the Schema of a DT, evolution of this schema also triggers

respective co-evolution steps on the Snapshot level.

(Co)-Evolution

Schema

Snapshot

Historical 

Data

Co-Evolution

conformsTo

Evolution
Schema‘

Snapshot‘

Historical 

Data‘

conformsTo conformsTo

conformsTo

Fig. 1. Overview of evolution levels in a DT.

In the literature, there already exist co-evolution solutions for

models [7]–[9] and relational databases [10]–[12] (e.g. convert

one data type to another). The evolution of DTs has an added

complexity, which is that the logical models (schemas and

snapshots) and the TSDB must be evolved synchronously [2].

The current digital twin platforms do not provide dedicated

support for evolution scenarios regarding a DT, especially

when the schema is changed and its existing data has to

co-evolve. Consequently, (i) a lot of manual effort for syn-

chronizing adaptations in the physical system with its virtual

representation is required, (ii) the evolution of the schema

must ensure the compatibility with the current applications,

4https://azure.microsoft.com/services/time-series-insights/
5https://www.timescale.com/



and (iii) unintended data loss may occur, if this synchroniza-

tion is not performed correctly. To avoid this, the maintenance

engineer should perform a set of decisions to manage a

systematic maintenance process. Therefore, in this paper, we

propose a fluent API6 for handling such evolution scenarios

for DTs. We propose a framework that can be integrated into

existing DT architectures only requiring a base interface to

manipulate digital twin elements. This framework provides a

fluent API to support different decisions during maintenance

of a DT. These decisions include migration, versioning, or

completely dropping elements as they are no longer required.

To examplify our approach, we provide a first demonstration

use case.

The remainder of this paper is structured as follows. Sec-

tion II describes a running example of an air quality control

use case, while Section III outlines our approach and shows

its application for the presented use case. Finally, Section IV

concludes with an outlook on future work.

II. MOTIVATION

To motivate our work, we consider an air quality use case

based on the description in [13]. In this use case, the

CO2 values for individual rooms in a building are measured.

Therefore, in each room, a CO2 sensor is connected to a

controller that regularly sends CO2 values to its DT. This DT

runs as a service in the cloud which is a virtual representation

of the schema, snapshot and historical data of the physical

system that can be consumed by different services.

A. Example DT Language

As described above, there exist several languages to describe

DTs for a system. In Fig. 2, we introduce an example DT

language that is used in the remainder of this paper. In this

language, the schema of a system is represented by Types

(e.g., Room, Controller, Sensor) and Properties (e.g.,

co2Value of a Sensor). After doing adaptations, old versions

of these Types and Properties can be casted to VersionedTypes

and VersionedProperties, respectively, to indicate that they do

no longer belong to the most current schema of the system.

The system snapshot is described using Instances (e.g.,

Room101, Raspberry1, the DHT811 CO2 Sensor connected

to Raspberry1 in Room101) and Slots that cover specific

data entries. The current Entry is part of the snapshot,

whereas historical entries can be persisted as historical data.

To distinguish between different entries for the same slot, the

timestamp is stored as well.

B. Evolution Case

After a DT is implemented using a language as described

above, there might be adaptations in the physical system that

have to be reflected by the DT. To keep the DT definition

consistent with the actual system, these changes must be

propagated between all levels of the DT. First, the schema

might be adapted. Based on this schema adaptation, there

might be changes to the instances that already conform to

6https://martinfowler.com/bliki/FluentInterface.html

DT

id: String

Type

name: String

name: String

type: DataType

[0..*] instances[0..*] types

[1..*] properties

[1..1] type

[1..1] type

[1..*] slots

value : String

timeStamp: DateTime

[0..*] entries

Instance

Property
Slot

Entry

Versioned

Property

Versioned

Type

[0..1] 

current

(i) (ii)

(iii)

Fig. 2. Metamodel for representing DT with (i) schemas, (ii) snapshots, and
(iii) historical data.

the previous version of the schema. Deriving these changes

can already be covered using existing approaches. However,

in a DT language, these changes in the schema and snapshot

level must also be reflected in the historical data that is already

stored in a DT. Usually, there are several options of what to

do with this data, that have to be considered by the person

performing the migration. To make this more tangible, we

present an example in the following.

Example: Change property name for measured CO2 values

(cf. Fig. 3): One of such changes might be that after re-

placing an old sensor with a new version, the CO2 values

are reported using the name co2 instead of co2Value

(i.e., co2Value must be changed to co2). Therefore, in

the existing DT schema, (i) a new Property called co2 is

added, and (ii) the existing property co2Value is casted

to VersionedProperty. This change can be automatically

propagated to the snapshot level by creating a slot named co2

for each instance that conforms to CO2Sensor. However, after

adapting the schema and snapshot, the existing CO2 values

that were already measured for these existing instances must

be adapted as well. As there are several alternatives how to

perform this step, this cannot be done automatically. An expert

must decide between the following options: (1) Migrate in-

stances to new schema. Using this option, both historical data

that was measured before the migration, and newly measured

data is available via the Property co2. In this option, copying

the data may require a lot of computational effort. But, the

co2Value property can be deleted afterwards. (2) Version
the previous element in addition to introducing the new one.

One of these instances still conforms to the old schema, and

data before the versioning is available via the co2Value

property of this instance. The other instance conforms to the

new schema and data measured after versioning is available

via the co2 property from this instance. This option does not

require any copy effort, but requires to keep the old Property

besides the new one. (3) Drop historical data by deleting

the co2Value Property. This option does not require any copy

operations as the data is simply forgotten.

III. APPROACH

In this section, we present the architecture as well as the

service for evolving DTs and show its application for the

previously introduced evolution case.



<<conformsTo>>

Decision B: Version

Decision A: Migrate

<<Slot>>

co2

<<Instance>>

S1: CO2Sensor

<<Instance>>

S1: CO2Sensor

<<Slot>>

co2

<<Slot>>

co2Value

Timestamp Value

10:01 600 ppm

10:02 620 ppm

10:05 650 ppm

TimeStamp Value

10:05 650 ppm

TimeStamp Value

10:01 600 ppm

10:02 620 ppm

Decision C: Drop

<<Slot>>

co2

<<Instance>>

S1: CO2Sensor

Timestamp Value

10:05 650 ppm

Evolved SchemaInitial Schema

<<Type>>

CO2Sensor

<<Property>>

co2Value

Initial Instance

<<conformsTo>>

<<Instance>>

S1: CO2Sensor

<<Slot>>

co2Value

TimeStamp Value

10:01 600 ppm

10:02 620 ppm

Change <<Type>>

CO2Sensor

<<VersionedProperty>>

co2Value

<<Property>>

co2

Fig. 3. Example of a change property co-evolution.

DT Evolution Engine

DT

System

DT Maintainer

DT Query 

Engine

Data Analyst

Migrate Version

Snapshot

query_data

get_data
send_data

makes evolution decisions

Schema

Historical Data

Drop

DT Evolution Interface

calls

updates

Fig. 4. Proposed Co-Evolution Architecture for DTs.

A. Co-Evolution Architecture

In previous work, we have developed an architecture for

leveraging model repositories for DTs [14]. Inspired by this

work, we designed the following architecture for managing

co-evolutions of DTs that is shown in Fig. 4. In this archi-

tecture, the DT can receive data from the physical system

during its runtime. This data must conform to the schema

imposed by the DT, and is represented by the DT as the

current snapshot. After an update is sent, the previous snapshot

is saved as historical data. A Data Analyst can query

this stored snapshot and historical data using a DT Query

Engine to gain insights from the operation of the running

system. Changes to the schema of a system are performed

by a DT Maintainer. By adapting the schema, the current

snapshot is migrated automatically. For the historical data, a

DT Maintainer must explicitly define whether it should be

dropped, versioned, or maintained, by describing the decision

using the DT Evolution Engine. This DT Evolution

Engine is described in more details in Section III-B. After

the DT Evolution Engine performs the co-evolution of the

system based on this description, the information can be again

retrieved in the expected manner, e.g., by the Data Analyst.

B. DT Evolution Service

Every change in the physical system must also be reflected in

the DT. As there are different levels of a DT (i.e., schema,

TABLE I
DESCRIPTION OF EVOLUTION AND CO-EVOLUTION OPERATIONS FOR

THE KERNEL DT META-MODEL.

Schema Evolution Snapshot Co-Evolution
Operation Elements Operation Elements

Create Type / /
Create Property Create Slot
Update Type.name Create Instance
Update Property.name Create Slot
Update Property.type Create Slot
Delete Type Delete Instance
Delete Property Delete Slot

snapshot, and historical data), each evolution might trigger

several co-evolution operation. To describe possible evolutions

of the schema, evolution operations can be derived from the

general DT language (e.g., as shown by Hermannsdörfer et

al. [15] or Berardinelli et al. [9]). Depending on the performed

evolution operation on the schema level, co-evolution opera-

tions on the snapshot level can be triggered automatically to

ensure consistency. These operations are shown in Table I for

the DT language depicted in Figure 2.

Creating a new Property, or updating the name or schema

of an existing Property, requires to add a new Slot for this

property on the snapshot side. In the update cases, the old

Property should be casted to VersionedProperty afterwards.

Updating the name of a Type requires to add a new Instance

for each existing instance that conforms to this new Type. The

old Type should afterwards be casted to VersionedType.

However, for every change on the snapshot level, historical

data for specific instances must be considered as well. There-

fore, different options are possible, as also shown in Figure 3:

1) Migrating historical data requires additional computa-

tional effort for copying entries from one slot to another,

but then, the versioned information on the schema and

instance level can be deleted.

2) Versioning does not require any copy operation for

historical data. Therefore, the old version of the schema

must be maintained using VersionedTypes or Versioned-

Properties.

3) Dropping historical values also does not require any

copy operation, and additionally allows to delete ver-

sioned information on the schema level. However, using

this option, historical data is lost.

All required operations must be implemented in the respective

elements of the DT, based on the used language. For each

change in the physical system, a DT maintainer can then

specify (i) required changes on the schema level, and (ii) what

to do with historical data. To guide the DT maintainer through

this process, the DT Evolution service should provide an

interface for entering decisions that lead to a co-evolution

strategy. Such an interface can be e.g., implemented using

a RESTful interface [16], a fluent API, a command-line

interface [17], or even a chatbot [18].



Listing 1. Evolution Operations for Types
1 context Type op migrateData(src String, trg String):

2 foreach instance in self.allInstances(){

3 data <- instance.getEntriesForSlot(src);

4 instance.createEntries(trg, data);

5 }

6 self.deleteProperty(src)

7

8 context Type op dropProperty(prop String):

9 self.deleteProperty(prop);

10

11 context Type op createProperty(name String):

12 self.getProperties().add(new Property(name))

13 foreach instance in self.allInstances(){

14 instance.addSlot(name);

15 }

16

17 context Type op deleteProperty(prop String):

18 self.getProperties().remove(prop)

19 foreach instance in self.allInstances(){

20 instance.deleteSlot(prop);

21 }

Listing 2. Formulating Decisions using the Fluent Evolution Interface
1 -- version decision

2 CO2Sensor.createProperty(’co2’)

→֒ .versionProperty(’co2Value’);

3

4 -- migration decision

5 CO2Sensor.createProperty(’co2’)

→֒ .versionProperty(’co2Value’)

→֒ .migrateData(’co2Value’, ’co2’);

6

7 -- drop decision

8 CO2Sensor.createProperty(’co2’)

→֒ .versionProperty(’co2Value’)

→֒ .dropProperty(’co2Value’);

C. Demonstration

We now demonstrate the DT evolution service as it can be

used by a DT maintainer to describe co-evolution decisions

based on the afore presented example evolution case. We use

a fluent API approach to describe the three decision types

(migrate, version, drop) in List. 2.

List. 1 shows the evolution operations which are used

by List. 2. The schema evolution is described in List. 2.

In all options, the new property is created via the op-

eration createProperty(′co2′), and the predecessor prop-

erty is casted to a VersionedProperty via the operation

versionProperty(′co2V alue′).
As snapshot co-evolution, a new slot called ′co2′ is auto-

matically added to each instance which is instantiated from

the CO2Sensor type (cf. List. 1, lines 11–15). For versioning

of the historical data, no more additional logic is required.

For the drop option (cf. List. 2, line 8), the co2V alue

VersionedProperty is simply deleted within the operation

self.dropProperty(′co2V alue′). With the deleteProperty

operation, all existing slots (and thus corresponding historical

data) are deleted as well (cf. List. 1, lines 17–21).

For the migration option (cf. Listing 2, line 4), the operation

migrateData(′co2V alue′,′ co2′) is called. This operation (cf.

Listing 1, lines 1–6) reads all historical data from the Ver-

sionedProperty co2V alue, and re-creates the data for the new

co2 Property. After this migration is finished, the co2V alue

VersionedProperty is deleted (in the same way as for the drop

option) as it is no longer needed.

IV. CONCLUSION & NEXT STEPS

In this paper, we introduced a fluent API to manage the

evolution of the schema, snapshot, and historical data of a

DT. In the future, we plan to realize the envisioned DT

Evolution Engine for different DT platforms. By conducting

experiments using several case studies, we aim to explore

trade-offs between the presented evolution strategies as well

as additional ones.

ACKNOWLEDGEMENTS

Work partially funded by the Austrian Science Fund (P 30525-

N31) and by the Austrian Federal Ministry for Digital and

Economic Affairs and the National Foundation for Research,

Technology and Development (CDG).

REFERENCES

[1] S. Biffl, A. Lüder, and D. Gerhard, Multi-Disciplinary Engineering for

Cyber-Physical Production Systems. Springer, 2017.
[2] A. Mazak, S. Wolny, A. Gómez, J. Cabot, M. Wimmer, and G. Kappel,

“Temporal models on time series databases,” JOT, vol. 19, no. 3, pp. 3:1–
15, 2020.

[3] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital
twin in manufacturing: A categorical literature review and classification,”
IFAC-PapersOnLine, vol. 51, no. 11, pp. 1016–1022, 2018.

[4] D. Jones, C. Snider, A. Nassehi, J. Yon, and B. Hicks, “Characterising
the digital twin: A systematic literature review,” CIRP-JMST, vol. 29,
pp. 36–52, 2020.

[5] V. Kuliaev, U. D. Atmojo, S. Sierla, J. O. Blech, and V. Vyatkin,
“Towards product centric manufacturing: From digital twins to product
assembly,” in Proc. of INDIN, pp. 164–171, IEEE, 2019.

[6] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of
software in automated production systems: Challenges and research
directions,” Journal of Systems and Software, vol. 110, pp. 54–84, 2015.

[7] M. Herrmannsdörfer and G. Wachsmuth, “Coupled evolution of software
metamodels and models,” in Evolving Software Systems, pp. 33–63,
Springer, 2014.

[8] R. Hebig, D. E. Khelladi, and R. Bendraou, “Approaches to co-evolution
of metamodels and models: A survey,” TSE, vol. 43, no. 5, pp. 396–414,
2016.

[9] L. Berardinelli, R. Drath, E. Maetzler, and M. Wimmer, “On the
evolution of CAEX: A language engineering perspective,” in Proc. of

ETFA, pp. 1–8, IEEE, 2016.
[10] K. Herrmann, H. Voigt, A. Behrend, J. Rausch, and W. Lehner, “Living

in parallel realities: Co-existing schema versions with a bidirectional
database evolution language,” in Proc. of SIGMOD, pp. 1101–1116,
2017.

[11] E. Domı́nguez, J. Lloret, Á. L. Rubio, and M. A. Zapata, “Medea: A
database evolution architecture with traceability,” Data & Knowledge

Engineering, vol. 65, no. 3, pp. 419–441, 2008.
[12] C. A. Curino, H. J. Moon, and C. Zaniolo, “Graceful database schema

evolution: the prism workbench,” in Proc. of VLDB, pp. 761–772, 2008.
[13] D. Lehner, S. Wolny, M. Vierhauser, W. Narzt, and M. Wimmer,

“AML4DT: A Model-Driven Framework forDeveloping and Maintain-
ing Digital Twins with AutomationML,” in Proc. of ETFA, IEEE, 2021.

[14] D. Lehner, S. Wolny, A. Mazak-Huemer, and M. Wimmer, “Towards
a reference architecture for leveraging model repositories for digital
twins,” in Proc. of ETFA, pp. 1077–1080, IEEE, 2020.

[15] M. Herrmannsdoerfer, S. D. Vermolen, and G. Wachsmuth, “An exten-
sive catalog of operators for the coupled evolution of metamodels and
models,” in Proc. of SLE, pp. 163–182, Springer, 2010.

[16] L. Richardson and S. Ruby, RESTful web services. ” O’Reilly”, 2008.
[17] B. D. Davison and H. Hirsh, “Toward an adaptive command line

interface,” in Proc. of HCI (2), pp. 505–508, 1997.
[18] H. Ed-Douibi, G. Daniel, and J. Cabot, “OpenAPI Bot: A Chatbot to

Help You Understand REST APIs,” in Proc. of ICWE, pp. 538–542,
Springer, 2020.


	Introduction
	Motivation
	Example DT Language
	Evolution Case

	Approach
	Co-Evolution Architecture
	DT Evolution Service
	Demonstration

	Conclusion & Next Steps
	References

