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Abstract—As technologies such as the Internet of Things (IoT)
and Cyber-Physical Systems (CPS) are becoming ubiquitous,
systems adopting these technologies are getting increasingly
complex. Digital Twins (DTs) provide comprehensive views on
such systems, the data they generate during runtime, as well
as their usage and evolution over time. Setting up the required
infrastructure to run a Digital Twin is still an ambitious task
that involves significant upfront efforts from domain experts, al-
though existing knowledge about the systems, such as engineering
models, may be already available for reuse.

To address this issue, we present AML4DT, a model-driven
framework supporting the development and maintenance of Dig-
ital Twin infrastructures by employing AutomationML (AML)
models. We automatically establish a connection between systems
and their DTs based on dedicated DT models. These DT models
are automatically derived from existing AutomationML models,
which are produced in the engineering phases of a system.
Additionally, to alleviate the maintenance of the DTs, AML4DT
facilitates the synchronization of the AutomationML models with
the DT infrastructure for several evolution cases. A case study
shows the benefits of developing and maintaining DTs based on
AutomationML models using the proposed AML4DT framework.
For this particular study, the effort of performing the required
tasks could be reduced by about 50%.

Index Terms—AutomationML, Digital Twin,
Model-Driven Engineering

Cloud, IoT,

I. INTRODUCTION

With the steady growth of autonomous systems and Internet of
Things (IoT) applications, Cyber-Physical Systems (CPS) are
becoming ubiquitous in everyone’s daily life. In the context
of industrial applications, companies are increasingly adopting
Cyber-Physical Production Systems (CPPS) and shop floor au-
tomation technologies [1], [2]. As a result, new paradigms for
managing and supervising these systems have emerged, with
Digital Twins (DTs) as a key enabler of such systems [3]. DTs
facilitate a wide range of functionalities, such as monitoring
physical assets, improving the understanding of the overall
system (e.g., through visualization), and triggering system im-
provement by supporting predictive maintenance [4]. Previous
work has described how different functionalities of DTs use
engineering models as common source of information [5], and
to automatically collect data from the running system [6]. In
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general, Model-Driven Engineering (MDE) for DTs is gaining
interest [7], [8], and also shows to satisfy DT stakeholder
requirements [9]. However, besides the benefits of applying
MDE to DTs, several challenges remain, making it difficult to
apply DTs in practice [10]. One of these challenges is con-
necting runtime data sent by devices with existing engineering
models. Particular services and architectural components are
necessary to enable this integration of data into engineering
models and to allow the synchronization between physical
devices and their DTs.

One currently emerging solution are DT platforms, offered
by various service providers, such as Azure Digital Twins',
AWS Greengrass?, or Eclipse Hono/Vorto/Ditto®. They provide
extensive tool support and software services that can be com-
bined, relying on a common definition of physical devices and
their data. However, these definitions are currently proprietary
and prevent cross-platform reusability, or the combination of
services from different vendors. Moreover, these platform-
dependent solutions do not provide support for reuse of
existing information available in engineering models. This
shortcoming leads to duplicate work for creating and updating
both the engineering models and the definition of DTs.

In order to tackle these challenges, the AMLADT frame-
work is proposed. AMLADT builds on a platform-independent
metamodel for DTs, which is derived from studying the afore-
mentioned DT platforms (bottom-up view) and object-oriented
conceptual modeling approaches (top-down view), to keep in-
formation between different services consistent. Additionally,
AMLADT facilitates the automated generation of DT models
from existing engineering models defined in AutomationML.
AMLADT aims to reduce the effort of creating and maintain-
ing DTs by (¢) automatically keeping information consistent
between different services, and (i4) providing reusability by
transforming engineering models to DT models. We evaluate
the feasibility of using existing engineering models as input for
the presented AML4DT framework, and compare the effort of

Uhttps://azure.microsoft.com/services/digital-twins

Zhttps://aws.amazon.com/greengrass

3https://www.eclipse.org/ditto, https://www.eclipse.org/vorto, https://www.
eclipse.org/ditto



creating and maintaining DTs with the AML4DT framework
against using the tool support directly offered on the platform-
specific level by an exemplary DT platform.

The remainder of the paper is structured as follows. In
Section II, the background for this work and related ap-
proaches are discussed. Next, a motivating example and de-
rived challenges are described in Section III. In Section IV,
the approach is presented by providing a detailed description
of the framework and its constituent parts. It is evaluated by
a case study in Section V. Finally, our work with an outlook
on future work is concluded in Section VI.

II. BACKGROUND & RELATED WORK

In this section, a brief overview of relevant background and
related work is provided.

A. Background

The concept of Digital Twins was first introduced almost two
decades ago by Michael Grieves [11]. A DT is a dynamic
virtual model of a system, processor, or service, with data (e.g.,
sensor data) from physical systems or processes integrated
into it. By integrating the digital and physical worlds, the DT
enables real-time monitoring of systems and processes and
helps, for example, to reduce downtimes and detect errors at an
early stage [12]. Another related concept are Digital Shadows
(DS). DSs represent a subset of DTs, which are only concerned
with connecting the physical device to the virtual model, but
not the other way round [13]. In this paper, the approach is
using the functionality of a DS (cf. Section V). However, it is
refered as DT, since the mentioned concepts also apply, and
can be easily extended beyond DS capabilities, e.g., by adding
communication channels from the DT back to the device.

Besides the terms DS and DT, in the context of Indus-
try 4.0 (I4.0), the term Asset Administration Shell (AAS) is
also often discussed, providing the virtual representation and
business functionality through operations of the 14.0 compo-
nent [14]. Interactions, which are required during operation
for detailed control and observation of the process flow, are
exchanged between the different AASs of the components.
Wagner et al. [15] use both terms (DT and AAS) synony-
mously, since they converge against each other. Furthermore,
approaches have emerged that leverage Model-Driven Engi-
neering in this context [10].

Model-Driven Engineering (MDE) applies the abstraction
power of models to tackle the complexity of systems [16],
[17], and thus, is by definition related to the concept of
DTs [10]. The central artifact of MDE are formal models
to address engineering as well as to drive adoption and to
ensure the coherence of model-driven techniques. The process
automation as well as traceability of engineering artifacts
is supported by various techniques such as transformations,
validation, verification, and code generation.

AutomationML (AML)* is an open, XML-based, data
exchange standard widely used in the automation and manu-

“https://www.automationml.org

facturing industry to describe complex structures and geome-
tries [18]. In context of MDE, AML is successfully applied
as part of a workbench supporting model validation and auto-
mated code generation [19]. It provides an interchange format
capable of accommodating different types of engineering data,
with a clear distinction between system resources, products,
and production processes.

B. Related Work

Based on this background related work is discussed.
Beisheim er al. [20] show how languages, such as Au-
tomationML, can be integrated into the RAMI 4.0 reference
framework. Zhang et al. [21] present an approach for CPPS
information modeling based on DTs and AutomationML. They
show that AML can be successfully used with various encap-
sulated manufacturing service and integrate the corresponding
virtual manufacturing resources (DTs). Pauker et al. [22] set
out the challenge of seamless communication between the
different manufacturing services. For this purpose, OPC-UA
is often used in the CPPS domain, but due to the inherent
implementation complexity, the full capabilities are not ex-
ploited. They overcome this complexity issue by enabling an
automatic model transformation of UML class diagrams into
OPC-UA information models. Bibow et al. [7] use a domain-
specific language to specify the communication between DTs
and CPPS via OPC-UA. In their approach, they focus on
events that may occur in the CPPS. In contrast to these
approaches with OPC-UA, our approach aims to provide a
general architecture, which can be used to realize DTs and
support their evolution.

With regards to modeling DTs, Schroder et al. [23] propose
the use of higher-level models such as AML models for com-
munication and data exchange between systems that make use
of DTs. In a follow-up work [24], they suggest a methodology
to deploy DTs based on these AML models. The AML model
is used as input for automatic generation of web services
and visualization of DTs. In contrast to our work, while their
focus is on the DT design using model-driven techniques, they,
however, do not explicitly take into account the maintenance
and evolution aspect. Kirchhof et al. [9] propose a model-
driven approach for explicitly modeling DTs, CPS and their
integration to facilitate systematic engineering.

Although these approaches already show that AML can
be used to model and create DTs, our work contributes to
this state-of-the-art by (i) proposing a dedicated, platform-
independent metamodel for explicitly modeling DTs, and
(i) providing dedicated support for system evolution.

ITI. MOTIVATING EXAMPLE & CHALLENGES
In this section, a concrete motivating example is outlined to
make the identified challenges explicit.
A. Motivating Example

Consider a system setup to collect COs measurements us-
ing sensors located in rooms within several buildings. The
system is designed to provide users with recommendations



on when to ventilate to reduce CQO;, levels, which can in-
crease work performance and comfort and significantly de-
crease virus infection rates. In order to equip these buildings
with such sensors, a building operator buys hardware, more
specifically, CO2 sensors and controllers that retrieve and
process the COs measurements from the sensors. For per-
forming recommendations and gaining insights into the overall
CO4 concentration of the entire office building, a platform
needs to be established that provides information about the
rooms and their COs levels. Thus, a DT representation of the
building, its rooms and sensors is needed. This platform is used
to collect data, show measurements, and perform analyses to
recommend actions.
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Fig. 1. Overview of the motivating example and the resulting challenges

In order to establish such an infrastructure, different ele-
ments are required (cf. Fig. 1). The System with its dif-
ferent components has to be specified, e.g., based on an
Engineering Model such as an AML model. This model
defines the structure and relations of the various components
and enables transferring them to heterogeneous engineering
tool landscapes. Fig. 2 shows an excerpt of the AML model
of our CO2 measurement example.

4 @& SystemUnitClassLib
4 [j Room
0 AirQualityController {Class: Relationship }
4 g AirQualityController
=2 jnterface_to_room
4 [ CO25ensor

Fig. 2. Excerpt Engineering Model (AML SystemUnitClassLib)

For each component of the implemented system, a DT is
created to collect the specific information from the system.
This DT is implemented using specific platform-dependent
tooling. Defining this DT in a platform-independent format via
a dedicated Digital Twin Model provides abstraction
from the used platform and enables platform-independent
reuse of the modeled information. By explicitly modeling the
DT, even information from engineering models could be au-
tomatically reused when creating such DT Models. However,
there are some challenges regarding implementation the setting
above.

B. Identified Challenges

The setup described involves several manual steps to enter
information into a DT platform and keep it consistent between
different services. In previous work, different types of services
that are required to run a DT are discussed [5]. Even after the
initial setup is finished, subsequent updates require additional
changes to the different services. For example, if the name of
a controller device is changed, this change must be performed
(7) on the DT, (i) on the controller itself to send data to the
DT, and (7i7) in every service that makes use of data received
from this controller, e.g., a time-series database.

To reduce the effort of setting up and maintaining DTs, the

following two challenges are stated that are tackled in this
work.
Challenge 1 (C1): Explicitly Modeling DTs. To automat-
ically construct and evolve DTs, they should have an open
specification. In existing DT platforms, DTs are directly
implemented in a platform-specific manner. As an example,
Listing 1 shows the JSON code to realize a part of the
motivating example in the MS Azure Digital Twin platform'.
Although this is of course an option, it clearly misses to reuse
already defined information in models.

Listing 1. Example JSON Code for a room DT representation
[{ : “Interface”, ”Room” ,
”dtmi:Room;1”,
[{
: [”Relationship™],
“airQualityControllers”,
”dtmi:Room: airQualityControllers;1”,
”dtmi: AirQualityController;1”,
true ,
“airQualityControllers”}],
7dtmi:dtdl:context;2” },

{ : ”Lobbyl100”,
: { : 7dtmi:com:
example :Room;2” }},
[{
“rell”,
{ : ”Raspberryl”,

”airQualityControllers”

P4
H
Challenge 2 (C2): Reusing Engineering Models for DT
Generation. Various service providers already offer DT plat-
forms. However, currently there is a lack of standards and
reuse of engineering models. Knowledge provided by such en-
gineering models should be reused for DTs. There are already
approaches that realize this, e.g., for simulation models [25].
However, an adequate mapping from industry standards to DT
models used by DT platforms is needed to enable automated
transformation and generation, thus to reduce redundant man-
ual effort.
IV. AML4DT FRAMEWORK

Now the AMLA4DT framework is described to address the
aforementioned challenges.
A. Overview

Fig. 3 provides an architectural overview of the AML4DT
framework. It consists of two layers and uses a model-driven
approach to automate the creation and evolution tasks of DTs.
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Fig. 3. Architectural overview of AMLADT

In the Realization Layer, the physical System, which
consists of a multitude of interconnected devices, and its
corresponding DTs are running. The system provides infor-
mation regarding (¢) its own structure (e.g., number, type
and relations between devices), and (i) value streams (e.g.,
continuously measured sensor data). Over a Communication
Middleware, through a standardized interface, the collected
data is sent to the different services of the DT Platform for
further processing. More specifically, (i) the Twin Service
is used to store the current structure of a system at runtime
in the Twin Repository, and (i) the History Service
is used to forward measured sensor data to a Time Series
Database.

The Modeling Layer provides the necessary capabilities
for the automation support. It consists of (i) the models
that represent the respective entities of the realization layer,
(#4) their metamodels, as well as (ii¢) the transformation
between the used metamodels for automation support. To
tackle Challenge 1, a Digital Twin Metamodel (DT-MM)
is proposed that facilitates the creation of models representing
types and instances of DTs. It is used as common source of
information for the software components of the DT platform.
To overcome Challenge 2, AutomationML as representation of
existing engineering models is used and a mapping to DT-MM
via the AML2DTTransformation is provided. As a result, the
automated generation of DT models describing the DT of the
physical system from existing AML models representing the
physical system is supported.

B. AML Metamodel

In order to establish one common source of information
and facilitate the transformation between AML and DT
models, metamodels are required. For creating AML mod-
els representing a physical system, the CAEX metamodel
from previous work is reused (cf. Fig. 4). The reader in-
terested in the full CAEX metamodel is kindly referred to
[19]. Here a short summary is provided. In the metamodel,
both type and instance level are considered. The compo-
nents of the system are represented as InternalElements,
which are instances of SystemUnitClasses, organized in

CAEXFile

[0.4 [0.4 [0.4] (0.7
InterfaceClassLib‘ ‘ InstanceHierarchy ‘ ‘AttributeLib‘ ‘SystemUnitClassLib
[0.4 [0.4] 3 [0.4
W - 0. -
0. 1071 InternalElement [ Attribute | 1% SystemUnitClass
[0.4] lue: Sti [0.4
InterfaceClass IrefBaseSystemUnitPath [0.4] VAUe: String IrefBaseClassPath
:String Lunit: String__| :String
‘ 0.4 %
I r [1.1] Par A e el
Externalinterface(, o o oo oe InternalLin

Fig. 4. Excerpt CAEX Metamodel based on [19]

an InstanceHierarchy. Compositions of components are
represented by building a hierarchy among InternalElements.
An InternalElement might have Attributes as well as links
based on interfaces (ExternalInterface,InternallLink).
The SystemUnitClassLib consists of several SystemUnit-
Classes, each of them may contain InterfaceClasses,
InternalElements, Attributes, or nested SystemUnitClasses.

C. DT Metamodel

Based on our investigations of DT platforms, such as
Azure Digital Twins'!, Eclipse Hono/Vorto/Ditto®, and AWS
Greengrass?, as well as conceptual modeling languages such
as UML, a generic DT Metamodel (DT-MM) is proposed
for representing DTs, their data, as well as their connections
(cf. Fig. 5). The DigitalTwinPlat form is the main element
and describes relevant meta-information to find required parts
of the DT platform. This environment comprises a list of
DT_Types and DT_Instance. DT_Types describe the schema
of DTs and consist of Properties, Relationships to
other DT _Types, and nested DT_Types. Properties represent
data points of the DT and can be writable (i.e., Value
changeable during system execution), loggable (i.e., his-
torical values are persisted in a Time Series Database), and
have a certain DataType (e.g., String, Integer). Relation-
ships specify their cardinality based on the minimal and
maximal occurrence, as well as whether it is writable
during runtime. DT _type, property and relationship inherit
from the abstract VersionableNamedElement. Thus, they

4| DigitalTwinPlatform
v\—‘v
041 o ¢[1..1] type ‘ 0.1 0.4
t— 7] K |1 type (0. - component
component DT_Type )‘ 0.1 Relatlunshlp[ 1P Link o DT_lnstance P
minOccur: Int name: String
r 1.1]target | maxOccur: Int [1..1] target
isWritable: bool

VersionableNamedElement

name: String

Id: String
versionNumber: Int
[0.1]

Property Value
isWritable: bool
— | isLoggable: bool
type: DataType

value: String
timeStamp: DateTime

[1.1] type

Fig. 5. Digital Twin Metamodel (DT-MM)



can be uniquely identified by a persisted id. Additionally, they
have a name and a versionNumber to track changes of the
corresponding element.

DT _Instances are concrete instantiations of DT_Types and
each have a unique name that identifies the DT_Instance
within its DigitalTwinPlatform, as well as a reference to the
corresponding DT_Type. Based on the schema imposed by
the referenced DT_Type, a DT _Instance can contain values,
Links and further DT Instances. A value represents an
instantiation of a property of the corresponding DT_Type. It
contains a specific value that has to conform to the DataType
specified by the corresponding property (for simplification
reasons, a serialized version of the value represented in a
String format is used) and a timeStamp (i.e., DateTime at
which the respective value is measured or has changed). Links
are instantiations of relationships and must have as target a
DT_Instance which conforms to the DT_Type that is target of
the corresponding relationship.

D. Mapping of AML to DT-MM

To realize the mapping from AML to DT-MM, extensions
to the CAEX language by additional libraries are required.
First, two attribute types Loggable and Constant are added
to indicate whether a given attribute is history-aware and
writeable. By default, attributes without a specific type are
mapped to non-loggable writable properties. Second, the Inter-
faceClass Relationship is added to annotate (i) the cardinality
of a relationship (minOccur, maxQOccur), and (i¢) whether a
relationship is writable (isWriteable). If an Externallnterface in
an AML model is not annotated as relationship, it is ignored.

For Externallnterfaces that are contained by InternalEle-
ments, this annotation is not applicable, as the corresponding
link in DT-MM does not require any further specification. The
reference between a link and its corresponding relationship
is established via name equivalence of the respective Inter-
nalLinks.

Based on these extensions, it is possible to perform model-
to-model transformations from AML to DT-MM. Therefore, an
outplace transformation is used, where the elements of AML
are mapped to the components of DT-MM. Table I summarizes
the mappings between the elements of the two metamodels.

E. Prototypical Implementation

For our approach, a prototypical implementation is developed.
Therefore, the Eclipse Modeling Framework (EMF)’ is used,
in particular the Atlas Transformation Language (ATL)® due to
its wide range of functionality and acceptance in the scientific
community for model transformation and Xtend’ for automatic
generation of JSON files needed for the DT platform.
Currently, as a demonstrator, a mapping to Microsoft’s
Azure platform is provided, in particular the Azure Digital
Twins service (ADT)!. The setup of the DTs is based on our
DT model and performed automatically via JSON files. For

Shttps://www.eclipse.org/modeling/emf
Shttps://www.eclipse.org/atl
Thttps://www.eclipse.org/xtend

TABLE I
MAPPING OF THE CAEX METAMODEL TO THE DT-MM

CAEX | DT-MM
SystemUnitClass | DT_Type
SystemUnitClass/Attribute Property

isWritable=true, isLoggable=false

SystemUnitClass/Attribute
Type: Constant

Property
isWritable=false, isLoggable=false

SystemUnitClass/Attribute
Type: Loggable

Property
isWritable=true, isLoggable=true

SystemUnitClass/InternalLink
PartnerSide[A|B]: Relationship

Relationship

InternalElement DT_Instance

InternalElement/Attribute | Value

InternalElement/InternalLink ‘ Link

storing and visualizing historical values, the Azure Time Series
Insights (TSI)® service is used. In the future, the approach will
be extended to other DT platforms.

For system evolution, (¢) adding new DT_Instances, com-
ponents of DT _Instances and Links, (i¢) updating Values
and names of DT_Instances, and (iii) deleting DT _Instances,
components, and Links are supported.

The full implementation and further details are provided on
GitHub’.

V. EVALUATION

With the evaluation the automation potential should be shown
when using AMLA4DT for developing and maintaining DTs.
The aim is to demonstrate that (¢) the creation of models,
serving as input for AML4DT, is possible with reasonable
effort, (i7) the AMLADT framework can provide required DT
functionality using these models, and (iii) the AML4DT has
automation potential for setting up and maintaining a DT.

For this purpose, the effort required for developing and
maintaining DTs using AMLADT against a traditional ap-
proach not leveraging model-driven techniques is compared.
Thus, a case study is conducted following the guidelines by
Runeson & Host [26].

A. Research Questions

Based on the overall goals, the following research questions
(RQs) are defined.

RQ1 (Feasibility): Is it possible to describe a DT use case
and derive the virtual elements using AML4DT, involving
reasonable adaptation effort to the initial AML model?

RQ2 (Effort of Initial Setup): What is the effort of setting
up the DT infrastructure using AML4DT, compared to a
traditional setup without AML4DT?

RQ3 (Effort of System Evolution): What is the effort of
maintaining the system during evolution using AMLA4DT,
compared to a traditional maintenance without AMLA4DT?

8https://azure.microsoft.com/de-de/services/time-series-insights
9https://github.com/derlehner/etfa2021



B. Case Study Design

Requirements. As a suitable input for our case study, a
system is needed, in which different devices are in relation
with each other and we can observe measurements by
different sensors. It has to be possible to exchange data by a
communication interface. It is necessary to provide a storage
for historical data and to have an application to visualize and
analyze this historical data and metadata.

Use Cases. In our case study, the following two use cases are
used. For each use case, existing AML models are applied,
which are adapted and serve as input for the AML4DT
framework.

Use Case 1 (UCI) extends our motivating example described
in Section III. In this scenario, sensors are connected to
controllers that report CO2 values for a particular room in
a building. The initial setting comprises three rooms, each
equipped with a Raspberry Pi that acts as controller that is
connected to a CCS811 COs sensor. The sensor periodically
captures the CO- measures of the respective room and sends
them to a cloud server that implements a DT using MS Azure
(ADT-service as information basis, TSI-service for querying).
Use Case 2 (UC2) involves computer-controlled transportation
vehicles that, for example, move items during a production
process. The created AML model for these cars is based on
previous work [27]. In our use case, two cars (Carl and
Car2) are used, where Carl is connected to Car2 and can
thereby adjust its speed and direction. Each car consists of
distance sensors, a motor control, and a servo control.

Evaluation Settings and Evolution Cases. To evaluate the
effort of our approach (RQ2/3), the following two settings for
UC1 were deployed and compared.

In the AMLADT setting, our prototypical implementation (cf.
Section IV-E) is used, alongside with the AML model. The
Python script that sends the CO2 values to the cloud uses
information from the AML model (a JSON file deployed on
the Raspberry Pi) to retrieve the correct name of the sensor.
In the traditional setting, only tools and services provided by
Microsoft Azure are used. In addition, two internal variables in
the Python script contain the name of the AirQualityController
that is used for mapping the data correctly in the DT platform.
This means that consistency between the DT platform services
and the controller code has to be ensured manually.

To investigate the required effort for maintaining a system
over time, four evolution cases for both settings are evaluated.
Evolution Case 1 (ECI1): Add a new raspberry. A new Rasp-
berry Pi is added to the system, together with a corresponding
CO4 sensor. In a first step, the Raspberry Pi is used for testing
new functions and is not assigned to a specific room. But data
is sent to the DT.

Evolution Case 2 (EC2): Add raspberry to room. The device
(setup in EC1) is assigned to a particular room (Room201) to
report values for this specific room.

Evolution Case 3 (EC3): Change name of raspberry. DT
evolution may also require modifications of existing elements.
As an example case, the name of one Raspberry Pi is changed.

Evolution Case 4 (EC4): Delete Room. Besides creating and
updating elements, they can also be deleted. As an example,
we delete a room from our system as it is no longer monitored.

Evaluation Metrics. For RQI, two metrics are used and
evaluated by UC1 and UC2. The required changes represent
the effort that are needed to adapt an existing AML model
so that it can serve as input for AML4DT. The number of
modifications (i.e., tagging existing elements) are counted
that needed to be performed so that the existing model
could be used with AMLADT. The supported DT capabilities
represent the functionality expected from a DT that can
be achieved using the AMLADT framework. Thereby, the
following functionality is analyzed: (¢) visualization of the
system in the DT, (ii) sending data from physical device
to the DT, and (4i4) querying historical data. For each of
these functionalities that is actually available after executing
the AMLADT framework, the value of the supported DT
capabilities metrics is incremented. To answer RQ2 and RQ3,
the number of required changes to certain artifacts is used
to measure the effort for performing particular actions. Each
investigated action is performed for both evaluation settings
and the changes are counted in the process. In the AML4DT
setting, changes have to be performed only on the AML model.
In the traditional setting, changes are performed on the ADT-
service, TSI-service, and in the controller and service code. For
JSON files, each property that has to be created or updated is
counted as one change.

C. Results

In the following, the results of our case study are presented.
Results RQ1. Fig. 6 shows an excerpt InstanceHierarchy of
the AML model belonging to the SystemUnitClassLib used for
the different rooms and their CO4 sensors (cf. Fig. 2). This
AML model was used as input to the AMLADT framework
to automatically generate the DT model. Three changes were
required. The Relationship Class was added to the External-
Interface of room, the Constant type was added to attribute
type and Loggable type was added to attribute co2Value of
CO2Sensor. Using the resulting model, () DTs of the system
could be visualized, (7i) CO5 data could be sent from the
Raspberry Pis to the respective DTs, and (#i7) the historical
CO4 values could be queried using the TSI-service. For UC2,
the realization from AML to the DT platform required 9
changes. Loggable types had to be set to 6 different attributes,

4 "= AirQualityTwins
4 [if] Lobby100 {Class: Room)}
0 AirQualityController {Class: Relationship | 4
F

| Raspberry1 {Class: AirQualityController}
=0 room 4
€] AirQualitySensor {Class: CO2Sensor}
| Room101 {Class: Room}
o AirQualityController {Class: Relationship | 4
| Raspberry2 {Class: AirQualityController} _‘
=6 room 4

b

h

g AirQualitySensor {Class: CO2Sensor}

Fig. 6. Excerpt AML InstanceHierarchy of UCI.



Constant types had to be set to 2 different attributes, and the
Relationship class had to be added to one Externallnterface.
Using the resulting model, as for UCI, all DT capabilities
could be realized. Thus, in both cases, the supported DT
capabilities are 3 out of 3.

Results RQ2. For calculating the effort of the setup procedure,
the overall process was divided into two main parts. First, the
types were added, second, specific instances were created.

In the AMLADT setting, for the setup of types, two Sys-
temUnitClasses (Room, AirQualityController) as well as one
inner SystemUnitClass (Sensor) were added. This aggregated
to 6 changes in the model for adding and renaming them.
To establish the needed relationships, interfaces and their
multiplicity and writable properties were set. To create the type
and the co2value properties for the SystemUnitClass Sensor, 7
additional model changes were required. Based on those types,
the respective InternalElements were created and InternalLinks
between the Externallnterfaces of rooms and controllers were
added and the values of the type property were set for sensors.
Table II shows that the setup for types and instances requires
18 operations each for the AMLADT framework.

In the traditional setting, the ADT-service JSON-files were
uploaded for each type (Room, AirQualityController, Sensor).
To create these JSON-files, various properties had to be
defined for each type. In the TSI-service, a type was added for
sensor, since it contained a history property (co2value) and a
variable was added. To setup instances based on these types,
first in the ADT-service, the rooms and controller were created
and renamed. Links had to be established and values for the
sensors were set. Second, in the TSI-service, an instance for
each sensor was created. In total, the setup of types and
instances required 80 operations (cf. Table II).

Results RQ3. For analyzing the maintenance support, the four
different ECs were evaluated for the two evaluation settings.
Table II shows the required operations for each EC based on
the different evaluation settings. In EC1, the corresponding
instance for the controller had to be created in the DT platform.
In the AMLADT setting, this was achieved by adding the new

TABLE 11
CHANGE OPERATIONS FOR AML4DT (CHANGES IN THE AML MODEL)
AND THE TRADITIONAL SETTING (ADT, TSI, AND LOC CHANGES)

Setting AMLADT Traditional

AML ADT TSI  Code
Setup Types 18 3 4 43
Setup Instances 18 18 9 3
Sum for Setup (RQ2) 36 80

\ \
| |
| |
ECI1: Add Raspberry | 2 | 2 2 1
| |
| |
| |
| |
| |

EC2: Add Raspberry to Room 3 3 0 0
EC3: Change name of Raspberry 1 1 1 1
EC4: Delete Room 2 3 1 0
Sum for ECs (RQ3) 9 12
Overall Sum 45 92

InternalElement and adapting its name accordingly. In the
traditional setting, add and rename changes were performed
in the ADT-service, the TSI-service and in the code. For
EC2, the new instance had to be created and renamed, and
a link between room and controller had to be established.
These changes had to be made in both the AML model for
the AMLA4DT setting and the ADT-service for the traditional
setting. In EC3, only the name of the corresponding Inter-
nalElement was updated in the AML model for the AMLADT
setting. In the traditional setting, the renaming had to be
done in the ADT-service, TSI-service and deployed code. For
deleting purpose in EC4, in the AML4DT setting the room and
corresponding controller were deleted from the AML model.
In the traditional setting, elements had to be deleted in the
ADT-service and TSI-service.

D. Discussion

Answering RQ1. For both use cases, it was possible to achieve
all examined supported DT capabilities using our AMLADT
framework. For UCI, this required 3 annotations and for
UC2 9 annotations. This shows that DTs can be described by
AML and that the required infrastructure can be automatically
created by AML4DT.

Answering RQ2. In terms of the required effort, it can be
concluded that our approach did reduce the effort required to
create and set up DTs. The number of changes is reduced by
55%. A key advantage is the single source where changes are
made in our approach compared to the traditional one where
manual changes have to be performed in three different places.
Answering RQ3. Regarding the evolution cases, using
AMLADT yields a 25% decrease in changes compared to the
traditional setting. While the reduction of required changes
was not possible in EC2, for EC3, in which just the name
of the Raspberry was changed, a 67% reduction could be
achieved. In none of the cases, the traditional approach re-
quired fewer changes than AMLADT.

E. Threats to Validity

AMLADT is applicable to real systems, however, our case
study uses only a limited number of devices and development
scenarios. Therefore, generalizability beyond the case study
is not possible. Additional evaluations are required to ensure
that AMLADT is applicable to a wider range of systems. Our
approach is demonstrated using an established DT platform.
To demonstrate applicability to a broader range of technolo-
gies, the approach needs to be extended to support different
platforms as subject of future work. Our case study only deals
with structural changes for evolution. It remains open as future
work, what happens with data, e.g., from deleted devices. In
addition, our evaluation only shows the communication from
DT to the physical hardware. The communication the other
way around needs further investigations.

VI. CONCLUSION AND FUTURE WORK

In this paper, AML4DT is presented, a model-driven frame-
work for development and maintenance of DT infrastructures.



Using a dedicated DT metamodel for abstracting from con-
crete platforms and AutomationML as engineering model,
AMLADT automatically generates the necessary infrastructure
for establishing a connection between hardware devices and
their DT representation linking even back to the engineering
models. The evaluation shows the feasibility of the framework
and its automation potential by applying it to a case study
with multiple sensor devices integrated into the MS Azure DT
platform. Using our framework reduces the effort for setting
up and maintaining DTs by 51% in the used setting. More
specifically, the effort for system setup was reduced by 55%
and the effort for evolving the system was reduced by 25%.

As part of our future work, we aim to extend our frame-
work for supporting emerging initiatives to standardize DT
platforms (e.g., the Industrial Digital Twin Initiative'?) and
find common representations for DTs (e.g., the AML com-
ponent description [28]). Additionally, the metamodel will be
extended, e.g., to cover digital process twins [29] or variability
modeling [30]. Another interesting path is to allow reverse-
engineering of engineering models from DT models. This
would allow the representation of existing DTs by well-known
standards, and further enable the propagation of changes
on the DTs back to engineering models. Besides extending
the proposed framework, we also envision positioning our
approach in the context of a general manufacturing process,
e.g., as shown by Yli-Ojanperi et al. [31].
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