
Towards Reinforcement Learning
for In-Place Model Transformations
Martin Eisenberg, Hans-Peter Pichler, Antonio Garmendia, Manuel Wimmer

CDL-MINT, Institute of Business Informatics - Software Engineering
Johannes Kepler University Linz

Linz, Austria
{firstname.lastname}@jku.at

Abstract—Model-driven optimization has gained much interest
in the last years which resulted in several dedicated extensions for
in-place model transformation engines. The main idea is to exploit
domain-specific languages to define models which are optimized
by applying a set of model transformation rules. Objectives are
guiding the optimization processes which are currently mostly
realized by meta-heuristic searchers such as different kinds of
Genetic Algorithms. However, meta-heuristic search approaches
are currently challenged by reinforcement learning approaches
for solving optimization problems.

In this new ideas paper, we apply for the first time reinforce-
ment learning for in-place model transformations. In particular,
we extend an existing model-driven optimization approach with
reinforcement learning techniques. We experiment with value-
based and policy-based techniques. We investigate several case
studies for validating the feasibility of using reinforcement
learning for model-driven optimization and compare the perfor-
mance against existing approaches. The initial evaluation shows
promising results but also helped in identifying future research
lines for the whole model transformation community.

Index Terms—Model Transformations, Reinforcement-
Learning, Model-based Optimization

I. INTRODUCTION

In recent years, Artificial Intelligence (AI) methods have been
applied for model transformations (MTs) [1]–[8]. Specifically,
model-driven optimization has recently gained much inter-
est [1]–[6]. The core idea is to optimize models by applying
a set of MT rules. This process is usually guided by meta-
heuristic searchers such as Genetic Algorithms (GA) [1]–
[6]. However, meta-heuristic search approaches are currently
challenged by Reinforcement Learning (RL) approaches for
solving particular optimization problems. RL introduces the
concept of an agent. This agent must learn a corresponding
behaviour through trial-and-error interactions [9].

There is already some work that explore RL for specific MT
problems. For instance, the work of Iovino et al. [8] applies
RL to the specific problem of model repair. However, to the
best of our knowledge, there is a lack of research on how
in-place MTs in general may benefit from RL.

In this new idea paper, we apply for the first time RL to gen-
eral in-place MTs. In particular, we extend an existing model-
driven optimization approach for including RL approaches,
considering both, value-based and policy-based approaches.
We investigate several case studies for validating the feasibility
of using RL for in-place MTs and compare the performance

against an existing search-based approach. The initial results
show potential of applying RL for in-place MTs, especially
when combined with search-based techniques. We provide our
solution as an open source project [10]. Finally, based on
our experiences and initial results, we outline several future
research lines for the model transformation community.

The remainder of this paper is structured as follows. In
Section II, we introduce the background for our work, i.e.,
MTs and RL. Then, we present our approach on how to
combine RL and MTs in Section III. Section IV presents some
initial experiments that show the feasibility and performance of
our approach. Finally, we conclude this paper with a roadmap
for future research of the application of RL for MTs.

II. BACKGROUND

We now present the background and related work on MTs as
well as a short introduction to RL.

A. Model Transformation Basics

MT is a key technique in MDE [11], [12]. Generally, MTs
are used to create new models from existing ones (out-place
MTs) or modify existing ones directly (in-place MTs) [13]. In
this paper, we consider in-place MTs.

As a running example, we consider the use of a simpli-
fied Pacman game [14], [15]. Fig. 1 shows the meta-model
excerpt for this example. Based on [15], we reduce the game
features by just modeling grid nodes where the Pacman moves
searching for food, and at the same time, avoids running into
a ghost. In addition, each time the Pacman eats food, the
score value will be incremented. To illustrate in-place MTs, we
choose Henshin [16] as it will be also used for our prototype.
However, the present approach is conceptually not specific to
Henshin. Henshin provides a rule-based MT language. Fig. 2
shows the application of an example Henshin rule to a Pacman
model. At the top, the input model is shown (Pacman is on grid
1, food on grid 3). For this model, the Henshin rule moveRight
may be applied. The result is shown at the bottom of the figure.
It can be observed that the referenced element of reference on
changed from 1:GridNode to 2:GridNode. Playing the Pacman
game in this setting is about finding the best sequence of rule
applications to maximise the score value.

https://doi.org/10.5281/zenodo.5111918


GridNode

0..1

id: int

up down

rightleft
0..1

0..1 0..1Food

Pacman

Ghost

on

1

Score
value: int

Fig. 1. Meta-model excerpt for the Pacman game.

right (M1)

1:GridNode

2:GridNode

3:GridNode

5:Pacman
right

left

on

4:Food
on

1:GridNode

2:GridNode

3:GridNode

5:Pacman

left

on

4:Food
on

(M1’)

Henshin
Rule

Fig. 2. Example Henshin rule.

B. Related Work

In recent years, search-based orchestration of transformation
rules has been explored. For instance, the Transformation
Tool Contest (TTC) 2016 proposed the Class Responsibility
Assignment (CRA) problem in which a total of eight submis-
sions were accepted1. Most of these proposals rely on the use
of meta-heuristic search, e.g., GA. General frameworks such
as MDEOptimiser (MDEO) [2], VIATRA Optimiser [6], and
MOMoT [1] have been proposed which use a set of transfor-
mation rules and a set of objectives taken into consideration
when searching for good rule application sequences.

In addition to search-based approaches, there exist work that
applies RL to MDE tasks. Specifically, Iovino et al. [8] use RL
for model repair, i.e., to find a quality repair action for each
error in the model. Barriga et al. [17] perform a comparative
study of RL techniques for this problem. Regarding MTs,
Burgueño et al. [7] employ an AI method for automatically
building out-place MTs. They train a neural network using a
data set of input/output pairs.

C. Reinforcement Learning

As a major branch of machine learning (ML), RL techniques
consider problems where one ought to learn a behavior that
maximizes a reward signal [9]. In sequential decision prob-
lems, an agent interacts with an environment and receives feed-
back on the interaction choices in terms of a reward function.
The agent operates and intends to learn a behavioral pattern—a
so-called policy—that defines which step to take in a particular
situation to end up with the most beneficial outcome. This
behavioral pattern can be derived after observing the advantage
of being in each state. The benefit of taking a certain action
in a particular state is given by the reward function.

1http://www.transformation-tool-contest.eu/2016/solutions cra.html

Initially, there is no knowledge base for the agent to estimate
the consequences of decisions [9]. Only after performing
actions and receiving rewards, the agent learns how fruitful
particular actions are in a certain state and combines this
information with the benefit of ending up in a respective
successor state. Relating this to the Pacman game, ideally, the
Pacman follows the path that not only increases the score in
the short term, but turns out most promising for scoring points
in upcoming steps as well. For this, the fusion of immediate
reward and potential future rewards needs to be considered.
In the long run, the agent converges towards a policy with the
sequence of actions that yields the highest achievable reward
in the explored environment.

ML approaches such as RL may introduce novel aspects
to optimization that are not in the scope of traditionally used
Evolutionary Algorithms (EAs) such as GAs. For instance,
solutions produced by the latter algorithms may become ob-
solete after changing the initial problem instance. Instead, RL
methods may reuse their gained experience for future decision
processes in the same problem domain without having to start
the exploration of the search space from scratch. Another
point is the fixed length for the individual solutions in a
population [18] when using GAs. This is not necessary for
RL agents which may use more or less steps before ending
a learning episode. Additionally, crossover in GAs may be
complicated if there are dependencies between consecutive
steps as is the case for MT steps [1]. In fact, promising results
with deep RL were presented for particular optimization
problems [19]. Considering preference-based multi-objective
optimization, algorithms as the one presented by Yang et
al. [20] could omit the need for prior setting of preferences
to guide the search as the trained model provides optimal
solutions for all possible preferences. Overall, EAs and RL
techniques appear to shine under different aspects and their
proper selection as well as their synergy constitute a promising
research endeavour.

D. Synopsis

To the best of our knowledge, the search-based exploration
driven by RL methods in MTs has not been considered so far.
However, other works formulate specific optimization tasks in
a form solvable with RL methods already, but they are missing
a generic formalism that maps the necessary concepts of a
RL problem to the components of a rule-based MT paradigm.
Therefore, we derive such a formalism and employ two RL
types, namely value-based and policy-based, to demonstrate
the feasibility of this work.

III. RL FOR IN-PLACE MTS

Based on the previous discussions, we now present our ap-
proach for applying RL for in-place MTs.

A. Approach at a Glance

In order to employ RL methods, the task of finding valuable
MTs can be formulated by means of a Markov Decision
Process (MDP) [21]. Generally, the MDP is defined by a set

http://www.transformation-tool-contest.eu/2016/solutions_cra.html


Agent

Problem Instance
Model

Transformation Rules

Objectives

Transformation
Engine

Environment

Result Models

Fig. 3. Integration of RL into MT Frameworks.

of states S in an environment, a set of actions A(s) executable
in a given state s, a probability distribution P (s′|s, a) over all
possible successor states when performing action a in state
s, and a reward function R(s, a, s′) to asses the benefit of
performing action a in state s and ending up in state s′.

Fig. 3 depicts the MDP adopted to rule-based in-place MTs.
The agent interacts with the environment as it selects a rule
a to which the environment responds with the transformed
model s′ as a result of applying a on the previous model
state. Furthermore, a reward r hints at the value of selecting
rule a. In order to find an optimized version of a model, the
agent needs to choose rules successively that, when executed
on the initial model, produce the result models that optimize
the target objectives. In this sense, the states are models in
their current composition, the actions are rule applications
that modify a models composition. Such modifications may
be feature changes or adding/removing model elements based
on a predefined set of rules. The reward can be assessed as
the change in the objective value after the application of a rule
on a model. Rewards are to be maximized, hence, in case of
a minimization target, the additive inverse of the fitness value
needs to be maximized. Since there is no uncertainty involved
in the MT process, i.e., the successor model s′ after executing
a rule a on a current model s is always identical, the MDP is
deterministic. Hence, there is no probability distribution over
a set of possible successor models.

Further specifications need to be considered in the search
process as follows. First of all, MTs themselves need to be
valid by applying feasible changes to the model. Second,
the transformed model should represent a valid solution to
the given problem. The implementation of T to control the
number of MT steps is arbitrary. However, for the comparison
in Section IV, the termination criterion T corresponds to the
specified transformation lengths TLmax per case that denotes
the solution length of the GA.

The primary endeavour is to find a rule application se-
quence that optimizes the objectives for the resulting model.
Additionally, minimizing the number of transformation steps
required to obtain the optimized target model is desirable,
e.g., to consider resource-intensive operations. In essence, this
poses a multi-objective optimization problem. However, RL-
based agents do not treat both objectives as such, but rather
optimize the primary objective while considering less steps to
achieve the same primary objective fitness as superior. The

extent to which future steps in the transformation chain are
considered is determined with the discount factor γ.

B. Value-based Learning
Value-based methods are model-free RL approaches that try to
derive a value function from the obtained rewards of actions
within certain states. In the variant of Q-Learning, the goal
is to approximate the action-value function Q(s, a) using the
Bellman equation [9], [22]. In case deterministic policies are
applicable, value-based methods are often advantageous be-
cause of their simplicity during implementation and efficiency.

In the context of MT and Q-Learning, the agent has to
remember the encountered model states in a Q-table that con-
sists of applied rules, parameter values, and the corresponding
Q-values. Consequently, we store a map Q(s, a) of applied
rules and parameter values. By remembering the ordered
transformation sequence that lead to a particular model, it can
be reconstructed using the initial model when needed.

Algorithm 1 Q-Learning for In-place MTs
1: Initialize parameters γ, ε
2: Initialize environment ENV with initial model s0, reward
3: function R(s, a), and transformation engine
4: Initialize Q(s, a) ← {}
5: for (max. number of evaluations)
6: Initialize s ← ENV-RESET() . reset to initial state s0
7: while (not T ) . termination criterion
8: if (rand(0,1) ≤ ε), Select next rule a = SEARCH(s)
9: else, Select next rule a = argmaxa Q(s, a)

10: r, s′, T ← ENV-STEP(a) . apply rule a, observe
reward r from R(s, a), result model s′, and if T satisfied

11: Q(s, a)← Q(s, a) + (r+γ∗maxaQ(s′, a)−Q(s, a))
12: s ← s′

13: end while
14: end for

Algorithm 1 adopts Q-Learning [22] for in-place MTs. Pa-
rameters for Q-Learning are: discount factor γ and exploration
probability ε. The RL environment is initialized with the initial
state s0, the reward function R(s, a), and an interface to
consult the transformation engine. The reward function R(s, a)
provides the objective fitness value evaluated on the result
model s′ after applying rule a on a current model s.

For the conducted evaluation, we implemented two general
Q-Learning agents, QBasic and QExplore, both following
the epsilon-greedy action-selection strategy in Algorithm 1
lines 8-9. They differ in their capability to explore neighbor
solutions with SEARCH(s). In the case of QBasic, the next
rule a is chosen randomly by the transformation engine. For
QExplore, a local search is performed to evaluate a set of
possible transformation rules and select the one that maximizes
the reward r. The Q-table update using the Bellman equation
happens on line 11.

C. Policy-based Learning
Policy-based methods are also model-free RL approaches that
aim to directly learn a policy through function estimation



without consulting a value function. This function estimation
can be done by using an artificial neural network (ANN) that
aims to maximize the expected reward [9], [23]. In contrast to
the afore presented general value-based approach, we perform
a specific application of the policy-based approach for one MT
and leave its generalization as subject to future work.

In particular, we apply the Policy Gradient (PG) Theorem
with the REINFORCE [23] algorithm to the MT-based Pacman
game. The PG agent learns a parametrized policy function
to select one of the four possible step directions. Due to the
use of an ANN and a gradient ascent learning strategy for
finding the policy function, an appropriate encoding of the
model state is necessary. The transformation of models into
a format applicable to ANNs demands a proper encoding
as the one presented by Burgueño et al. [7]. Therefore, we
stick to a simple one-hot encoding of the board state and
additional information such as the distance to the next food in
each direction. Using a model containing a 8x8 play grid, the
ANN receives already 201 inputs and provides a probability
distribution over four outputs with softmax activation in the
output layer. For the reward function, the agent receives a
reward of 30 and -150 whenever the eat or kill rule is applied,
respectively. Each step yields a negative reward of -5 and
eating the last food on the grid issues an additional reward
of 150. There are ten nodes with food and three with a ghost.

D. Prototypical Implementation

We use the open-source library DeepLearning4J [24] together
with ND4J [25] to implement the PG approach. The RL
algorithms are embedded in the MOMoT [1] framework (based
on EMF and Henshin) which is used to conduct the case
studies in the following section. Our tool is available at [10].

IV. EVALUATION

We now apply the presented approach for several cases by
following the case study research methodology [26].

A. Research Questions

RQ1: Applicability: Are RL methods suitable for solving in-
place MTs in general? In particular, we are interested in the
limitations in applicability of value-based and policy-based
approaches as well as in the required preparation steps needed
to enable their usage.
RQ2: Performance: What are the advancements for MTs
brought forth by RL methods in terms of objective optimiza-
tion? In particular, we are interested in comparing RL with
search-based approaches to understand their (dis-)advantages.

B. Setup

To answer the RQs, we evaluate the value-based RL approach
described in Section III-B on three cases and compare their
performance to the Non-dominated Sorting Genetic Algorithm
II (NSGA-II) as it is encoded in the MOMoT framework [1].
In addition, to answer RQ1 concerning value-based vs. policy-
based RL, we use our running example (Pacman) to compare
the PG agent with QBasic. In the following, we introduce the

cases, discuss the metrics used for evaluation, the algorithm-
specific settings, and the hardware/software used to conduct
the experiments.

1) Cases: Stack Load Balancing [1]: The StackModel
consists of multiple stacks that are connected in a circular way
with each stack having a number of loads assigned. With the
rules shiftLeft and shiftRight, a stack can send a load amount to
one of it’s neighbours. In our experiments, we use models with
varying number of stacks and loads and intend to balance the
loads among all stacks, i.e., minimize the standard deviation
of stack loads.

Class Responsibility Assignment (CRA) [1]: In this
problem, the aim is to group features into classes to pro-
duce high-quality object-oriented models. With a single rule
reassignFeature, the features are distributed among classes
to maximize intra-class (cohesion) and minimize inter-class
(coupling) dependencies whereas we combine both metrics in
the objective CRA-Index ought to be maximized. The problem
instances assume each feature to be assigned to one class in the
beginning and vary in complexity with the number of features.

OO-Refactoring [27]: Here we aim to optimize an object-
oriented model by removing duplicate attributes from classes
which may be collected in superclasses instead. Consequently,
createRootClass introduces a new class C with an attribute a
that was previously declared in two subclasses that henceforth
inherit this property from C. The rule extractSuperClass adds a
level to the inheritance hierarchy: A new class C is introduced
and becomes the superclass of classes that share an attribute a
and previously derived from a class S. Class C then declares
a instead of its subclasses and inherits from S. The goal is to
minimize the sum of entities and properties.

Pacman: A simplified version of the Pacman game adopted
from Heckel [14]. The PacMan moves on the grid from node
to node whereby each node is either empty, holds food, or is
inhabited by a ghost. Upon encountering a node with a food,
the eat rule is applied and the score increased. Entering a node
with a ghost ends the game. The goal for the Pacman is to
maximize the score by finding all food pieces.

2) Evaluation metrics: To assess the performance, we cal-
culate the hypervolume (HV) on the objectives of the result
models produced by the algorithms. HV is a set measure for
the extent to which the objective value space is covered by a
Pareto front approximation in relation to a reference set [28].
Commonly used in search-based software engineering, HV
as the only indicator among many reflects the four qualities
convergence, spread, cardinality, and Pareto compliance [29].
Furthermore, HV has a bias towards knee points in non-
dominated solutions, i.e., solutions where the increase in
one objective severely decreases fitness of at least another
one [30]. The authors of [29] recommend the use of HV
for comprehensive evaluation of Pareto sets with less than 10
objectives. As there is no consensus on how to set the reference
points when there is no preference, e.g., for extreme solutions,
we take the combined non-dominated front of all sets in the
respective experiment as reference set. Additionally, we are
interested in the total optimization quality delivered by each



optimizer and compare the best obtained objective fitness value
(BOV) found among the result models.

3) Parameter settings: For NSGA-II, which we consider as
a reasonable baseline for comparison, we set the population
size to 100 individuals in general and, to deal with the high
computational overhead, to 15 for the Refactoring case. For
CRA problem cases with TLmax = 160 and TLmax = 320,
we increase the population to match TLmax as to not limit the
size of the Pareto solution set. We perform crossover for all
descendants in a generation and set the mutation probability
for rules, concerning either changing parameter values of a
rule or removing a rule, to 0.1 and 0.2, respectively.

We use a constant discount factor γ = 0.9 for the RL agents
to prioritize optimization over longer sequences and start the
search with ε = 0.9 to focus on exploration in the beginning. A
constant εdecay decreases ε each time the agent explores with
εdecay = 0.001 until ε reaches a minimum of 0.1, except for
the Refactoring case where only 1000 models are evaluated
per run to deal with the high computation overhead, we use
εdecay = 0.1.

4) Used hardware: We use: a virtual machine of type E2 on
the Google Cloud Platform2 running a Intel(R) Xeon(R) CPU
@ 2.20GHz with up to 16 cores on a Debian GNU/Linux 10
OS, and 128GB physical memory; Java 14.0.2 with an initial
heap size of 1GB and allow the use of up to a maximum
of 100GB in the Eclipse version 4.19; Henshin SDK 1.6.0,
Eclipse Modeling Framework 2.25, and MOMoT 2.0.0.

C. Results

We now present the results of applying the RL implemen-
tations against NSGA-II (MOMoT encoding) on the first
three cases. Experiments are executed 30 times whereby one
execution comprises of 100,000 solution evaluations for Stack
and CRA, and 1000 evaluations for the Refactoring case. The
average performance and best overall solutions are reported in
Tab. I. Subsequently, we discuss the comparison of the value-
based vs. policy-based approach for the Pacman case.

1) Stacks: In the simplest case with five stacks, all algo-
rithms find the optimal distribution of loads after three moves
although only QExplore manages to do so consistently over all
runs. By doubling up the number of stacks, QExplore finds the
lowest objective value of 0.4 with 14 moves and shows overall
higher average HV than NSGA-II. QBasic cannot compete
with increasing complexity. In the cases of 25 and 50 stacks,
NSGA-II and QExplore perform about equally well in terms
of avg HV. However, QExplore provides higher quality given
that the focus is on the best objective values.

2) CRA: Only in the case with 9 features, QBasic shows
higher average performance than NSGA-II. In all other cases,
QBasic performs much worse than NSGA-II and QExplore.
With increasing complexity, the latter shows the best perfor-
mance on avg HV and concering BOV as well as appears with
less variation between independent runs.

2https://cloud.google.com/compute/docs/machine-types

0 60 120 180 240 300 360 420 480 540 600
Time…in…seconds

60

50

40

30

20

10

0

10

20

30

Av
er

ag
e…

R
ew

ar
d

QBasic

PG

Fig. 4. Average reward returned from the RL algorithms.

3) Refactoring: The BOVs are equal for the Several
case, but not on par for Pullup as QBasic fails to find
the optimum when attributes are to be repeatedly moved up
the inheritance hierarchy. Also, HV results indicate that the
exploration capability of QBasic suffers from the reduced
number of evaluations. Considering the standard deviation,
QExplore and NSGA-II perform on the same level.

4) PacMan: Fig. 4 depicts the avg reward over time that
is returned every 10 episodes. It shows the superiority of a
domain-specific encoding for the model states. The PG re-
ceives much higher average rewards after a minute of learning
time as it is able to learn a reasonable policy to navigate the
Pacman on the grid. QBasic struggles to adapt its behavior
towards finding nodes with food. It fails to avoid terminal,
and thus, highly undesirable states as shown with the large
negative rewards it receives over the whole runtime.

D. Discussion

Answering RQ1: The presented results demonstrate the fea-
sibility of RL for in-place MTs. The value-based RL methods
fit the needs of single objective, in-place MTs where the
number of transformation steps matters. Our Q-Learning im-
plementations offer general applicability but face limits when
the search space is huge as demonstrated with the Pacman
case. Furthermore, value-based methods store all seen trans-
formations, thus imposing a memory condition. The policy-
based approach learns to choose the proper rule applications
that maximize the score as the Pacman is guided towards
rewarding game states. Moreover, storing transformations is
not required since a parametrized policy function is learned
to select desirable transformations. However, such a neural
network based approach currently requires a specific encoding
of the model states and a dedicated reward function.
Answering RQ2: In our experiments, with RL, the resulting
models provide a similar or better approximation of the Pareto
front provided that an extensive exploration phase is enabled.
This is observable with our QExplore variant which finds the
highest quality models in terms of BOV. Expanding rule by
rule seems to benefit the optimization at different stages and
the convergence towards a global optimum. Nevertheless, the

https://cloud.google.com/compute/docs/machine-types


TABLE I
MEAN HYPERVOLUME (AVG), STANDARD DEVIATION (STD) AND BEST OBJECTIVE VALUE (BOV) OBSERVED OVER 30 RUNS FOR QBasic , QExplore ,
AND NSGA− II (WITH MOMOT ENCODING). THE ARROW NEXT TO THE CASE NAME INDICATES THE OPTIMIZATION GOAL. BOLD NUMBERS MARK

THE BEST MEAN AND BOV FOR EACH SUB-CASE.

Case TLmax Complexity QBasic QExplore NSGA-II
Avg Std BOV / TL Avg Std BOV / TL Avg Std BOV / TL

Stack (↓)
8 5 Stacks .266 .024 0 3 .287 0 0 3 .278 .027 0 3
16 10 Stacks .523 .032 0.98 11 .644 .01 0.4 14 .607 .039 0.75 8
40 25 Stacks .229 .014 10.24 39 .559 .005 5.052 40 .575 .015 6.23 29
80 50 Stacks .129 .007 26.87 80 .538 .007 18.88 80 .513 .029 21.08 51

CRA (↑)

18 9 Features .366 .018 3.0 5 .382 .005 3.0 5 .337 .052 3.0 5
36 18 Features .444 .027 -1.0 20 .675 .014 4.083 12 .541 .055 2.0 11
70 35 Features .429 .015 -17.58 66 .761 .009 -0.2 66 .609 .044 -7.56 23

160 80 Features .325 .013 -83.77 155 .778 .009 -17.17 160 .586 .033 -38.19 52
320 160 Features .251 .012 -195.68 276 .778 .008 -44.58 318 .522 .025 -87.66 99

Refactoring (↓) 10 Several .287 .087 26.4 7 .491 .0 26.4 8 .493 .015 26.4 7
20 Pullup .377 .033 42.1 14 .458 .0 41.1 13 0.454 .006 41.1 13

incremental approach requires continuous interchange with the
transformation engine for the respective next transformation
step. GAs, in contrast, consult the engine mostly once to
generate the initial population (besides computing mutations
and repairs), thus are faster in comparison.

E. Threats to Validity

We now discuss threats that can affect the validity of the
presented case study.

1) Internal Validity: We demonstrated our approach by
using RL techniques to tackle different problems which are
inapplicable for exhaustive methods. For comparison with
other algorithms, we primarily used HV to assess the quality
of found solutions. As the choice of metrics is important, we
adhere to recent recommendations [29] suggesting HV as a
comprehensive quality measure. Reproducibilty is threatened
as the Henshin Engine suggests applicable rules in a non-
deterministic way. This means, the engine returns one rule
of the pool of all possible rules randomly. However, due
to the low variance observable in our experiments with 30
repetitions, we deem this a negligible factor for our results.

2) External Validity: The RL algorithms are integrated in
the MOMoT framework which uses Henshin as MT language
to express in-place MTs. The agents in RL obtain and store a
new state through exchange with the environment that receives
applicable rules from the engine as response to a transformable
model. Therefore, both environment and agents would need
to be adapted to comply with the model representation in
order to be used with other MT languages. Moreover, the
solution representation of MOMoT builds on the Solution class
of the MOEA framework3 to save transformation variables
and objectives. Although we used several cases of varying
complexity levels, further experiments are required to identify
strengths and weaknesses of the approach before adding RL
to MDE toolboxes. Furthermore, optimizations considering
multiple objectives to an equal degree are not in the scope
of this work. In that regard, we point to the following future
research lines.

3http://moeaframework.org

V. WHAT IS NEXT?

Based on our initial results, we outline several research lines
(L1-4) for the model transformation community.

L1: Hybrid Search & Learning Approaches. Hybrid
algorithms aim to combine the best of several worlds. We have
already done a first step in this direction as we allow to apply
a local search inside RL. However, further combinations may
be tested in the future such as applying more sophisticated
searchers for Q-learners before updating the Q-table.

L2: Multi-Objective Optimization. Currently, we use
single-objective formalization for RL, also for problems which
may be better formulated as a multi-objective optimization
problem. Multi-objective RL may be applied for MTs as has
been done with search-based approaches providing dedicated
support for multiple objectives.

L3: Specific vs. generic RL. In our current solution,
we provide a generic encoding for value-based RL. How to
abstract and encode models for policy-based RL and further
neural network based architectures is an important line to be
explored in the future. In addition, RL for general in-place
MTs should be compared with RL for specific problems.

L4: Further Empirical Studies. We studied an initial set
of cases in our evaluation. However, further studies have to
investigate how much computation power and memory are
needed to apply RL for in-place MTs. Additional studies
on comparing learning and search approaches or different
learning approaches, architectures, and encodings are needed.
Comparisons between model-based solutions as presented in
this paper vs. non-model based solutions (such as pixel-based
solutions) may lead to interesting scalability, comparison, and
reproduction studies. Finally, reusing of learned policies for
different models is an important topic for future studies.

ACKNOWLEDGMENT

Work partially funded by the Austrian Science Fund (P 30525-
N31) and by the Austrian Federal Ministry for Digital and
Economic Affairs and the National Foundation for Research,
Technology and Development (CDG).



REFERENCES

[1] R. Bill, M. Fleck, J. Troya, T. Mayerhofer, and M. Wimmer, “A local
and global tour on MOMoT,” Softw. Syst. Model., vol. 18, no. 2, pp.
1017–1046, 2019.

[2] A. Burdusel, S. Zschaler, and D. Strüber, “MDEoptimiser: a search
based model engineering tool,” in Companion Proceedings of the 21st
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems (MODELS). ACM, 2018, pp. 12–16.

[3] A. Burdusel and S. Zschaler, “Towards Scalable Search-Based Model
Engineering with MDE Optimiser Scale,” in Companion Proceedings
of the 22nd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (MODELS). IEEE, 2019, pp.
189–195.

[4] A. Burdusel, S. Zschaler, and S. John, “Automatic Generation of Atomic
Consistency Preserving Search Operators for Search-Based Model En-
gineering,” in Proceedings of the 22nd ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS).
IEEE, 2019, pp. 106–116.

[5] S. John, A. Burdusel, R. Bill, D. Strüber, G. Taentzer, S. Zschaler, and
M. Wimmer, “Searching for Optimal Models: Comparing Two Encoding
Approaches,” J. Object Technol., vol. 18, no. 3, pp. 6:1–22, 2019.

[6] H. Abdeen, D. Varró, H. A. Sahraoui, A. S. Nagy, C. Debreceni,
Á. Hegedüs, and Á. Horváth, “Multi-objective optimization in rule-
based design space exploration,” in Proceedings of the ACM/IEEE
International Conference on Automated Software Engineering (ASE).
ACM, 2014, pp. 289–300.

[7] L. Burgueño, J. Cabot, and S. Gérard, “An LSTM-Based Neural Net-
work Architecture for Model Transformations,” in Proceedings of the
22nd ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS). IEEE, 2019, pp. 294–299.

[8] L. Iovino, A. Barriga, A. Rutle, and R. Heldal, “Model Repair with
Quality-Based Reinforcement Learning,” J. Object Technol., vol. 19,
no. 2, pp. 17:1–21, 2020.

[9] R. S. Sutton and A. G. Barto, Reinforcement learning - an introduction,
ser. Adaptive computation and machine learning. MIT Press, 1998.

[10] RL4MT, “Reinforcement Learning for In-Place Transformations,” https:
//github.com/RL4MT/RL4MT, 2021.

[11] D. C. Schmidt, “Model-driven engineering,” Computer, vol. 39, no. 2,
p. 25, 2006.

[12] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice, Second Edition, ser. Synthesis Lectures on
Software Engineering. Morgan & Claypool Publishers, 2017.

[13] K. Czarnecki and S. Helsen, “Feature-based survey of model transfor-
mation approaches,” IBM Syst. J., vol. 45, no. 3, pp. 621–646, 2006.

[14] R. Heckel, “Graph Transformation in a Nutshell,” Electron. Notes Theor.
Comput. Sci., vol. 148, no. 1, pp. 187–198, 2006.

[15] E. Syriani, R. Bill, and M. Wimmer, “Domain-specific model distance
measures,” J. Object Technol., vol. 18, no. 3, pp. 3:1–19, 2019.

[16] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin:
Advanced Concepts and Tools for In-Place EMF Model Transforma-
tions,” in Proceedings of the 13th International Conference on Model
Driven Engineering Languages and Systems (MODELS). Springer,
2010, pp. 121–135.

[17] A. Barriga, L. Mandow, J. Pérez-de-la-Cruz, A. Rutle, R. Heldal, and
L. Iovino, “A comparative study of reinforcement learning techniques
to repair models,” in Companion Proceedings of the ACM/IEEE 23rd
International Conference on Model Driven Engineering Languages and
Systems (MODELS). ACM, 2020, pp. 47:1–47:9.

[18] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
Second Edition, ser. Natural Computing Series. Springer, 2015.

[19] K. Li, T. Zhang, and R. Wang, “Deep Reinforcement Learning for Multi-
objective Optimization,” CoRR, vol. abs/1906.02386, 2019.

[20] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm for
multi-objective reinforcement learning and policy adaptation,” in Pro-
ceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS), 2019, pp. 14 610–14 621.

[21] M. van Otterlo and M. A. Wiering, “Reinforcement learning and
markov decision processes,” in Reinforcement Learning, ser. Adaptation,
Learning, and Optimization. Springer, 2012, vol. 12, pp. 3–42.

[22] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[23] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, pp. 229–
256, 1992.

[24] Eclipse Deeplearning4j Development Team, “DL4J: Deep Learning for
Java,” https://github.com/eclipse/deeplearning4j, 2016.

[25] ——, “ND4J: Fast, Scientific and Numerical Computing for the JVM,”
https://github.com/eclipse/deeplearning4j, 2016.

[26] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, p. 131, Dec 2008.

[27] K. Lano and S. K. Rahimi, “Case study: Class diagram restructuring,”
in Proceedings of the Sixth Transformation Tool Contest (TTC), ser.
EPTCS, vol. 135, 2013, pp. 8–15.

[28] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a com-
parative case study and the strength pareto approach,” IEEE Transactions
on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[29] T. Chen, M. Li, and X. Yao, “How to Evaluate Solutions in Pareto-
based Search-Based Software Engineering? A Critical Review and
Methodological Guidance,” CoRR, vol. abs/2002.09040, 2020.

[30] X. Zhang, Y. Tian, and Y. Jin, “A Knee Point-Driven Evolutionary Al-
gorithm for Many-Objective Optimization,” IEEE Trans. Evol. Comput.,
vol. 19, no. 6, pp. 761–776, 2015.

https://github.com/RL4MT/RL4MT
https://github.com/RL4MT/RL4MT
https://github.com/eclipse/deeplearning4j
https://github.com/eclipse/deeplearning4j

	Introduction
	Background
	Model Transformation Basics
	Related Work
	Reinforcement Learning
	Synopsis

	RL for In-place MTs
	Approach at a Glance
	Value-based Learning
	Policy-based Learning
	Prototypical Implementation

	Evaluation
	Research Questions
	Setup
	Cases
	Evaluation metrics
	Parameter settings
	Used hardware

	Results
	Stacks
	CRA
	Refactoring
	PacMan

	Discussion
	Threats to Validity
	Internal Validity
	External Validity


	What is next?
	References

