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Abstract—With JSON’s increasing adoption, the need for
structural constraints and validation capabilities led to JSON
Schema, a dedicated meta-language to specify languages which
are in turn used to validate JSON documents. Currently, the
standardisation process of JSON Schema and the implementation
of adequate tool support (e.g., validators and editors) are work
in progress. However, the periodic issuing of newer JSON
Schema drafts makes tool development challenging. Nevertheless,
many JSON Schemas as language definitions exist, but JSON
documents are still mostly edited in basic text-based editors.

To tackle this challenge, we investigate in this paper how
Model-Driven Engineering (MDE) methods for language en-
gineering can help in this area. Instead of re-inventing the
wheel of building up particular technologies directly for JSON,
we study how the existing MDE infrastructures may be uti-
lized for JSON. In particular, we present a bridge between
the JSONware and Modelware technical spaces to exchange
languages and documents. Based on this bridge, our approach
supports language engineers, domain experts, and tool providers
in editing, validating, and generating tool support with enhanced
capabilities for JSON schemas and their documents. We evaluate
our approach with Shipyard, a JSON Schema-based language
for the workflow specification for Keptn, an open-source tool for
DevOps automation of cloud-native applications. The results of
the case study show that proper editors and language evolution
support from MDE can be reused and, at the same time, the
surface syntax of JSON is maintained.

Index Terms—JSON, JSON Schema, MDE, DevOps, Tool
Interoperability

I. INTRODUCTION

The JavaScript Object Notation (JSON) [[1] was first intro-
duced as a lightweight data-interchange format. However,
because of its widespread use, especially among Web de-
velopers, it is nowadays applied in many application areas
(e.g., declarative interfaces specifications, Rest API messaging,
storing, etc.). With the considerable spread of the use of JSON,
developers noticed the need to be aware of the structure of a
document [2]] and to have available validation mechanisms. In
this sense, there were initiatives that emerged to mitigate this
problem, such as OpenAPI [3|] and RAML [4]]. Nevertheless,
these technologies were designed to standardize RESTful
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APIs; therefore these solutions are not applicable to other areas
that make use of JSON documents.

To the best of our knowledge, the JSON Schema [5]
initiative is the major approach that aims to provide a general-
purpose language to validate JSON documents. It is a dedi-
cated language to define the structure of JSON documents.
Currently, the standardisation process of JSON Schema (by
the IETF) is work-in-progress. Because of this process, newer
specifications are released every six months. The continuous
evolution of JSON Schema as draft standard in the ongoing
standardisation process is of course important and required,
but it also puts some challenges on developing tool support
for editing and validating JSON documents [6] such as dealing
with ambiguities in the specifications [7]. Therefore, JSSON
documents are still mostly edited in generic text-based editors.

In this paper, we tackle this problem from a Model-Driven
Engineering (MDE) perspective. As such, JSON and JSON
Schema are part of a new emerging technical space called
JSONware [|8]] in addition to consolidated ones such as Mod-
elware [9]. Instead of building up a tooling infrastructure from
scratch for JSONware, we aim to reuse existing support from
Modelware. We propose a semi-automatic bridging approach
among JSONware and Modelware with the intent of improving
the textual editing and validation of JSON documents via
state-of-the-art MDE practices [10] based on Eclipse-based
technologies (EMF, Xtext, OCL). At the same time, we aim
at keeping the approach transparent to JSONware users by
preserving the native JSON concrete syntax, and by this,
compatibility with existing JSON-based tools [6]]. We report in
this paper the results of an industrial case study. Shipyard [[11]]
is a JSON Schema-based language that is used to define
workflows in the DevOps area. Shipyard is already available
in several versions with a growing user base. Our results show
that it is possible to derive editing and validation support
based on model-driven technologies for JSON Schema-based
languages and to benefit from the knowledge in the field of
evolution concerns in language engineering such as the well-
known metamodel/model co-evolution problem.
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The rest of the paper is organized as follows. Section
introduces the background on JSON and JSON Schema as
well as on MDE technologies used in this paper. Section [II|
introduces our bridging approach between JSONware and
Modelware. Section [[V|evaluates our approach with the Ship-
yard language. Section [V] discusses related work, and finally,
Section concludes the paper sketching current limitations,
potential improvements, and future research directions.

II. BACKGROUND

The goal of this section is to provide a short introduction
to JSON and JSON Schema, as part of the new emerging
JSONware. Since we propose a bridge to Modelware, we
briefly summarize the main building blocks of this technical
space as well. Finally, we review the term technical space and
provide the motivation for this work.

A. JSONware: JSON and JSON Schema

JSON [1] initially emerged as a lightweight and human-
readable data serialization and messaging format for support-
ing information exchange. JSON can represent four primi-
tive types, i.e., string, number, boolean, and null, and two
structured types, i.e., objects (delimited by curly braces) and
arrays (delimited by squared brackets). Two exemplary JSON
artefacts are shown in Lst. [l and Lst. 2

Listing 1. A JSON schema example.

{
"$schema": "http://json-schema.org/draft-07/schema#"
"type":"object",
"properties":{
"name":{"type":"string"},
"surname":{"type":"string"}
Iy
"additionalProperties":true
}

Listing 2. A JSON schema instance, i.e., JSON document, example.
{
"name": "Alessandro",
"surname": "Colantoni"
"affiliation": {
"universityName":
"city":"Linz"

"Johannes Kepler University",

}

Data is stored in name/value pairs separated by commas,
while curly braces hold objects and square brackets hold
arrays. Several (un)marshallers are availableﬂ which parse and
read/write memory representations of an object from/to JSON
documents. As a plain textual artefact, a JSON document can
be manually edited in any text editor.

Recently, the IETF is promoting a JSON Schema stan-
dard [[12]]. According to the IETF, JSON Schema is “a JSON-
based format for describing the structure of JSON data. JSON
schema asserts what a JSON document must look like, ways to
extract information from it, and how to interact with it.” [13]].
As a schema defines the data structure of JSON documents,
the document is referred to as an instance of a given schema.

I¢ef. e.g., http://json.org)

For instance, Lst. [I] is a JSON Schema, while Lst. 2] is an
instance of Lst. [T] (i.e., Lst. 2] conforms to Lst. [I)).

The main goal of the JSON Schema standard is to pro-
vide users with a language to define constraints on JSON
documents and tools for checking their conformance between
schema instances and the corresponding schema [[7]. In con-
sequence, JSON schema allows defining languages that may
benefit from dedicated tool support. Finally, with the term
metaschema, the IETF refers to schemas against which other
schemas can be validated. A metaschema is self-descriptive,
i.e., validated against itself.

Being a draft standard, JSON Schema undergoes periodic
revisions every six months. Each revision results in a new
JSON Schema Draft including a metaschema. In this regard,
the keyword $schema can be used to suitably link a schema to
the corresponding metaschema. For example, Listing [T| shows
a $schema declaration that refers to the metaschema issued by
the Draft 7 revision.

B. Modelware: (Meta-)Modeling

The core of MDE includes the pillar concepts of model,
metamodel, and model transformation [|10].

Models in MDE are considered as machine-readable arte-
facts. Metamodels define the modeling concepts and their
relationships and provide the intentional description of all
possible models, which have to conform to the associated
metamodel. From a language engineering perspective, a meta-
model represents the abstract syntax of a modeling language.
The standard metamodeling language defined by the OMG is
the Meta Object Facility (MOF) [14]. The Eclipse Modeling
Framework (EMF) [15]] is its most prominent realization
based on Ecore metalanguage. Metamodels define modeling
languages in a purely conceptual way and are independent of
any form of concrete representation. The concrete syntax of a
language assigns graphical or textual elements to metamodel
elements that can be understood by users and, possibly, edited
through model editors [[10]. Xtext, which is used later on in
our bridge in order to deal with the textual concrete syntax of
JSON, is a particular framework to define a text-based syntax
for modeling languages. As models in MDE are considered
as machine-readable artefacts, model transformations are ap-
plicable to transform them to different languages or to modify
the models for particular purposes.

C. Technical Spaces

The term technical space (TS) [9], [16], [17] has been in-
troduced in [18] as “a working context with a set of associ-
ated concepts, body of knowledge, tools, required skills, and
possibilities”. TSs show a recurrent conceptual architecture of
metalayers. Each metalayer defines the representation structure
and a global typing system for the underlying level [18]]. Typ-
ically, TSs are organized in three metalayers (metalanguage,
language, and instance layers). Modelware, as explained be-
fore, fits these three metalayers when MOF/Ecore is used as
the metalanguage. The same is true for JSON Schema-based
languages.
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TSs may differ w.r.t. offered capabilities [|9] and related tool
support. In this paper, we are particularly interested in editing
and validation capabilities and the possibility to automatize the
generations of supporting tools, i.e., editors and validators, for
JSON artefacts by reusing the tools we have in Modelware.
Therefore, we aim to shed some light on the differences and
commonalities of the three metalayers of JSONware (focus on
JSON Schema) and Modelware (focus on MOF/Ecore). Our
hypothesis is that, if there is enough commonality, we are able
to build tool support in Modelware for JSON Schema-based
languages. With the help of the Shipyard case study, we aim
to generate evidence if the hypothesis holds or not.

III. APPROACH

In this section, we present the requirements, an overview
on our approach, a technical perspective, and finally, some
information about our tool support.

A. Requirements

JSON Schema has been proposed as a schema language in
response to the emerging need for validation to qualify a JSON
document as an instance of a given schema . However, JSON
Schema is going beyond its role as a schema language for
defining data formats, as stated by the IETF [5] in each draft
release [13]], [19]. Indeed, it is going to be adopted also as
meta-language for defining domain-specific languages (DSL),
which, in turn, are used by domain experts to edit and vali-
date documents (e.g., for configuring stage-based continuous
delivery pipelines in DevOps environments [11] as is the case
study of this paper, see Section [[V).
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o The Domain Expert creates and manipulates JSON docu-
ments. In JSONware, those artefacts are schema instances
conforming to a given schema.

o The Tool Provider creates tools to support activities in a
given TS. As for any other TS, in JSONware, typical tools
are parsers and editors for any JSON artefaclﬂ The advent of
JSON Schema is now demanding metalayer-specific tools,
i.e., schema and schema-instance editors and validators to
support language engineers and domain experts, respec-
tively.

Next, we explain how our approach deals with these require-

ments.

B. Conceptual Architecture and Workflow

Our approach intends to support the aforementioned use cases
(metaschema specification, schema specification, domain-
specific modeling and validation, and tool support) as depicted
in Fig.[I] For supporting these use cases, our approach follows
two main principles. First, we aim at reusing MDE principles
and practices to support the identified use cases. In particular,
we choose the Eclipse Modeling Framework (EMF) [15] as
the reference MDE framework due to its integration with
the Xtext [20] language workbench for textual DSLs and
the availability of Object Constraint Language (OCL) [21]]
for validation tasks. We also use this setting for building up
the bridge between JSONware and Modelware by explicitly
modeling JSON artefacts and utilizing model transformations.
Second, we keep the full approach transparent for language
engineers and domain experts from JSONware by preserving
the standard JSON concrete syntax [[1]] in generated editors for
schemas and their instances.
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Fig. 1. Actors and use cases of our field of investigation.

Fig.|l|shows a use case diagram of actors and use cases, which

depicts the requirements our approach has to fulfill:

o The Metalanguage Engineer defines and publishes metalan-
guages. In JSONware, this role is currently played by the
IETF, the standardization body for JSON Schema, in charge
of publishing the JSON metaschemas.

o The Language Engineer creates and manipulates languages.
In JSONware, this is a new potential role. This role
is providing JSON schemas, conforming to the JSON
metaschemas, to specify new textual DSLs.
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Fig. 2. General architecture: Artefacts and their relationships.

Fig. [2] depicts the overall architecture of the proposed ap-
proach. To visually qualify the nature of the involved artefacts,
the conceptual architecture is vertically divided into two TSs,
i.e., JSONware and Modelware, and horizontally split in the
three metalayers, i.e., M3, M2, and M1. Directed conformance
relationships (c2) pair artefacts across adjacent metalayers
within the same TS.

2According to the IETF, metaschemas, schemas, and their instances are all
JSON documents (.json).
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Fig. 4. Bridging approach: modeling support (M1) in JSONware (Steps 5 to 8).

The approach uses a workflow consisting of eight steps. In
Fig. [T} such steps are grouped and related to corresponding
use cases and user roles. Each step establishes relationships
between pairs of artefacts bridging JSONware to Modelware
(steps 1,4,5, and 8) and vice versa (steps 4 and 8). Together, the
identified bridging steps realize two-way bridges for language
engineers (steps 4) and domain users (step 8). As a result,
the same schema (M2) and schema instance (M1) can be
seamlessly manipulated within JSONware and Modelware.

First, a bootstrapping activity (steps 1-2) happens at level
M3 when a new JSON metaschema is released by a met-
alanguage engineer. The main outcomes are (i) an Ecore
metaschema metamodel, (i) an Xtext metaschema grammar,
and (é17) an Xtext-based textual editor for modeling and
validating schema artefacts. The Ecore metamodeling activity
is a manual step. The metaschema grammar and schema editor
are automatically generated from the metaschema metamodel
thanks to Xtext [20]]. The involved steps are intended to be
repeated in case of issue of a new JSON Schema Draft by the
IETF (see Fig. 2).

Language engineers edit and validate schemas (steps 3-6).
The schema metamodels, schema grammars, and schema in-
stance editors can be automatically generated for each schema.
Such schema can be edited in the previously generated schema
editor or in any textual editor.

Finally, domain experts can edit and validate JSON doc-
uments as schema instances in dedicated textual modeling
editors to accomplish domain-specific tasks (steps 7-8).

C. Technical Realization

A more detailed view on the bridging process is depicted
by the two workflows shown in Figs. Blfd] For the sake of
presentation, the bridging process has been graphically split

into two sets of activities, completing the bridging at level M2
(steps 1-4, Fig. [B) and M1 (steps 5-8, Fig. ), respectively.
Steps 0-1: The whole activity is triggered when a new JSON
Schema Draft is published by the IETF (step 0), replacing the
previous metaschema. The metalanguage engineer manually
designs two artefacts, a metaschema metamodel in Ecore and
validation constraints in OCL. Fig. 5] shows an excerpt of the
metaschema metamodel based on JSON Schema Draft 7 [19ﬂ
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| JsonSchemaDocument |

AdditionalProperties

schema
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rootschema | 1 keySchemaPairs PatternProperties I_
0
<<abstract>> I !
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ObjectSchema
L ]

keywords, | <<abstract>>
0.* Keyword 4‘

values: EString [0..*
boolean

integer Type
null value: SimpleTypes [1]
number

object Ref
string value: EString [1

BooleanSchema

value: EBoolean [1

<<enumeration>>
SimpleTypes

array

Fig. 5. Excerpt of the metaschema metamodel.

o A JsonSchemaDocument is a hierarchical collection of
schemas. A root schema is the schema that comprises
the entire JSON document. A Schema can be either a
BooleanSchema or an ObjectSchema.

« As the name suggests, a BooleanSchema has only two valid
instances: true and false. This type of schema is used

3The complete metamodel is available at [22].




for opening or closing a schema definition as we will explain

in more detail later on.

« An ObjectSchema is a possibly empty, hierarchical collec-
tion of Keywords.

For each keyword defined in the JSON Schema draft 7 [19],

a distinct metaclass has been created in our metamodel.

Fig. [5] shows a minimal subset of seven Keywords (out of

46 defined in [19]), suitable for introducing the further steps

and the case study (see Section . Some of them (Items,

AdditionalProperties, PatternProperties, and Properties) allow

the hierarchical structuring of a JsonSchemaDocument while

others (Required, Type, and Ref) stops the nesting of Ob-
jectSchemas. In particular:

o Required specifies keys that are mandatory.

e Type assigns a SimpleType to an ObjectSchema and, de-
pending on the chosen SimpleType, a different subset of
the keywords is allowed.

o Ref establishes references among Schemas owned by ar-
bitrary JsonSchemaDocuments, following the companion
JSON Pointer standard [23]].

o [Items assign a Schema to be used for validating the elements
(i-e., the items) of an ObjectSchema of Type array.

o Properties defines explicitly structural features of Ob-
jectSchemas. A KeySchemaPair consists of two elements:
(i) a key attribute holds the property names that will
appear in conforming schema documents, and (i7) a Schema
defining the property structure.

o Similar to Properties, PatternProperties defines structural
features but the key of the KeySchemaPair is provided
as a regular expression. Every key matching the regular
expression must conform to the Schema referenced by the
KeySchemaPair.

o AdditionalProperties controls the handling of properties
whose names are not defined via Properties and Pattern-
Properties, thus greatly influencing the openness, and in con-
sequence, the validation capabilities of schema documents.
Three options may be used: (i) BooleanSchema is false,
no properties will be allowed in addition to those explicitly
declared; (i) BooleanSchema is true, any well-formed
JSON document can be added to a schema documen (4i7)
an ObjectSchema is chosen, it will be used to validate such
additional properties.

It is worth noting that the metaschema metamodel has been

manually designed with the intent of (i) preserving the tree-

based structure of JSON documents and string-based typingﬂ
and (i¢) to ease the generation of the corresponding Xtext

grammar (cf. steps 2 and 6).

Constraints of the metaschema metamodel have been man-
ually specified in OCL. It includes constraints necessary to
validate the values of Keywords, e.g., non-negative integers
for minLength, maxLength, minItems, maxItems,
minProperties, and maxProperties.

4The JSON Schema standard [[19] assigns a BooleanSchema t rue to any
ObjectSchema by default.

SFor example, string-based attributes (e.g., values in Required) have been
preferred and to EReferences (e.g., from Required to Properties).

Step 2: An Xtext grammar and a text-based metaschema
editor are generated from the metaschema metamodel from
step 1. The JSON Schema grammar, automatically generated
by the Ecore2Xtext transformation provided by the Xtext
framework, requires manual refactoring by the metalanguage
engineer, which updates the production rules to support the
standard JSON concrete syntax [/1]].

The Xtext-based editor can then be generated, providing
advanced editing capabilities typically supported by an IDE
(e.g., syntax colouring and basic content assist features).
Moreover, the set of OCL metaschema constraints from step
1 can be integrated to enhance its validation capabilities.

Step 3: The language engineer is now equipped with a
dedicated textual editor for JSON schema modeling (e.g.,
Fig. [I0p and Fig. [T0d) and validation (Fig. [[0p and Fig. [I0f).
Thanks to Xtext, the text-based artefact can be parsed into
an equivalent model-based representation . Thus, the language
engineer can also benefit from typical model-driven language
infrastructure capabilities such as syntax highlighting, auto-
completion, and hooks for well-formedness rules, as the OCL
constraints defined in step 1.

Step 4: In our approach, a JSON schema conforms to the
metaschema definition in JSONware (i.e., metaschema.json)
and to the metaschema grammar in Modelware (i.e.,
metaschema.ecore and metaschema.xtext). For this reason,
switching between JSONware and Modelware becomes pos-
sible and the same document can be seamlessly edited and
validated by tools available in both TSs. We will exploit this
possibility in the next step.

Step 5: The schemas from step 4 can now be automatically
translated into (¢) a schema metamodel defined in Ecore, (i7)
schema constraints in OCL, and (4i%) configurations for tuning
the generation of the schema grammar in step 6.
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[ ]
? source
:EReference R3 R4 /,| <objschema>:EClass |
isContainment= true - | |
target \¥ ///
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- ]

isAbstract = true -
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source. — = "\ source
= - - \
eAttributes o —— "
<type>:EAttribute L~
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Fig. 6. Generic structure of EClass Object.

Step 5.1. Schema Metamodel Generation. A model transfor-
mation, implemented in ATL [24], translates a JSON schema
artefact into a schema metamodel. The transformation rules are
outlined in Table [I] (cf. Rules RO-R5), while Fig. [6] shows the
excerpt of a generic schema metamodel in an object diagram
as generated from the transformations rules.




TABLE I
MAPPING FROM METASCHEMA TO ECORE

Rule | Metaschema Ecore
RO JSON Schema Document EPackage
BooleanSchema = false n.a.
Rl Schema BooleanSchema = true JSONDocumentFragment (see Fig.m
ObjectSchema EClass
R2.1 string, boolean, integer, number | EAttribute [1,1] | of containing ObjectSchema (R1), of type EString, EBoolean, Elnt, EDouble, respectively
R2.2 Type | null EAttribute [1,1] | of containing ObjectSchema (R1), of type NullEnum (see Fig. ]l]
R2.3 array EReference (containment) | [0,*] | from containing ObjectSchema (R1) to Items.schema (R1) (see Fig]i]
. EClass (self) abstract=true
R3 Keyword Type | object EReference (containment) | [0,*] | from containing ObjectSchema (R1) to self (R2)
R4.1 Ref EReference (containment) | [1,1] | from containing ObjectSchema (R1) to referenced Schema (R1, via JSONPointer)
R4.2 Properties ESuperType from contained keySchemaPairs.schema (R1) to Type (R3)
R4.3 PatternProperties for each contained KeySchemaPair do (R5)
L . EAttribute [1,1] | key::EString of contained schema ( R1)
Ra.4 AdditionalProperties ESuperType ‘ from contained schema (R1) to Type (R3)
RS KeySchemaPair EAttribute ‘ [1,1] key::EString of contained schema ( R1)
ESuperType from contained schema (R1) to Type (R3)

—  Nullvalue JsonDocumentFragment <<enumeration>>
value: NullEnum[1] NullEnum
null
—— IntegerValue valuet
value: EInt [1] !
ArrayValue vae | <<abstract>> |1 @] KeyValuePair
o Value key: EString [1]

: keyValuePair
4 0.*
| I | |
NumberValue StringValue BooleanValue ObjectValue
value: EDouble [1] value: EString [1] value: EBoolean [1]

Fig. 7. JSONDocumentFragment.

A new EPackage is generated for each JSONSchemaDoc-
ument (R0O). Continuing with R1, BooleanSchema false
is ignored since it only forbids extensions, as required by
any Ecore-based metamodel. BooleanSchema true allows
arbitrary extensions of JSONSchemaDocuments with well-
formed (i.e.,parsable) JSON fragments. Such fragments are out
of the scope of the conformance relationship (c2) between M1
and M2 artefacts in Modelware and JSONware (see Fig. F).
However, they have to be syntactically validated (i.e., parsed)
as well-formed JSON documents. For this reason, (i) the
metamodel metaschema in Fig. [5] has been extended with the
JsonDocumentFragment metaclass (see Fig. , and (ii) the
BooleanSchema t rue has been mapped to JSONSchemaDoc-
umentFragment.

A separate EClass is generated for each ObjectSchema (R1),
while its structural features depend on the Keywords it con-
tains. If properties are defined (Properties, PatternProperties,
AdditionalProperties), a generic abstract Properties EClass is
generated and extended by the corresponding EClasses (cf.
schema references targeting the Schema metaclass in Fig. [3)),
if any (R3, R4.2, R4.3, R4.4). Such EClasses are further
enriched by different EStructuralFeatures depending on the
assigned SimpleTypes, i.e., (i) EAttributes (boolean, integer,
null, number, string) (R2), and (4¢) containment EReferences
to a newly created EClass for object (R3) and array (R2.3).

Finally, a Ref generates a containment EReference to the
Schema pointed by the JSON Pointer [23|] string saved in the

Ref’s value (R4.1).
As an example outcome of the mapping, Fig. [ shows the
metamodel generated from the JSON Schema of List. [I]

PersonSurname }

surname: EString [1

properties 0.*

<<abstract>>
Properties

~

I PersonAdditionalProperties I‘—>I JsonDocumentFragment I
[Chey: Estring (1] ] |

PersonName

name: EString [1

additionalProperties

Fig. 8. Example of metamodel generated from Lst[T]

The chosen mapping produces a high number of EClasses due

to scalar types (i.e., string, boolean, number, integer, and null),

which generate separate EClasses rather than EAttributes, for

scalability reasons of the generated Xtext grammar (cf. step 6).

Indeed, in each JSON schema, properties are unordered and

a mapping to EAttributes in Ecore would eventually require

the use of unordered groups in Xtext. As a consequence, Xtext

would generate an alternative for all possible combinations for
each group of JSON schema properties (i.e., n! for a group of

n properties) [25]. Our mapping choice requires an a single

alternative for each object’s property (i.e., n for a group of n

properties), thus scaling complexity from factorial to linear.

5.2 Constraints. Schema constraints are specified in OCL.

Their generation is coupled with the schema metamodel gener-

ation by the ATL transformation invoking Xtend [26]] methods.

Constraints are generated for:

o The value of the EAttribute generated by R4.3 and RS for
PatternProperties matching the regular expressions.

o The Keyword Requirecﬂ to check that each EClass, gen-
erated for an ObjectSchema (R1) declaring the keyword
Required, contains at least a child (cf. R4.2, R4.3, R4).

5.3 Grammar Generation Configuration. A grammar proper-

ties model is generated as well. The artefact is required for

defining the textual concrete syntax of the JSON Schema in-

6It does not appear in Table [I| because it has no effect on the generated
Ecore.



stances. The metamodel is presented in Fig. [0 and is available
in [27].

DetailedGrammar

detailedGrammar [ keyValues: EAttribute [0..*]
Js:n(?ram{nar <& keywords: EStructuralFeature [0..¥]
ePackage: EPackage [1] 1 | curlyBracesReferences: EReference[0..*]

bracketsReferences: EReference[0..*]
curlyBracesEClasses: EClass [0..*]

Fig. 9. Metamodel to specify the JSON grammar properties.

Indeed, the generation of a concrete JSON-based grammar
from an Ecore metamodel has variation points. In particular,
decisions have to be taken about:

« zero-to-many relationships, in order to manage them as array
(included between brackets), or as name/value pairs owned
by a JSON Object (included between curly braces).

« EAttribute’s and EReference’s names, whether they have to
be managed as DSL keywords or not.

« EAttribute’s value, whether it has to be considered the key
of a key/value pair or not.

o EClass, whether it has to be considered a JSON Object
(included between curly braces) or not.

The grammar properties models are automatically derived

from the metaschema with an ATL transformation.

Step 6. Similarly to step 2, an Ecore artefact, in this case
the metamodel for a given schema, is processed to generate
an Xtext-based grammar for that particular schema. As in
step 2, the production rules need to be refactored to support
the standard JSON concrete syntax [1]. It is worth noting
that, different from step 2, this grammar refactoring step has
been automated [27]]. We developed an extension of plugin to
generate the Xtext Plugin from an Ecore, to take as input also
the JSON grammar properties model in addition to the Ecore
metamodel [27]. We developed a plugin to generate an Xtext
JSON based grammar [27]]. To do this, we adapted the default
grammar provided by Xtext to generate a JSON grammar. This
plugin takes as an input the JSON grammar properties model
and also, the Ecore metamodel.

Step 7. Similar to step 3 for language engineers, domain
experts are now equipped with a dedicated textual editor for
editing and validating a JSON document conforming to a
schema model (Fig. [).

Step 8. Similar to step 4, JSON documents can now be
treated as models conforming to a given schema available
both in JSONware and Modelware. The bidirectional switch
between JSONware and Modelware is possible and the JSON
document can be seamlessly edited and validated by tools
available in both TSs.

IV. EVALUATION

In the following, we state two research questions (RQ) that are

used to evaluate our proposed approach based on the Shipyard

case study.

« RQ1: Is our approach capable of presenting the different
versions of the Shipyard language initially defined with
JSON Schema?

« RQ2: As the Shipyard language is subject to evolution, can

we support the co-evolution of existing DevOps workflows?
Next, we introduce our case study: the Keptn project and the
Shipyard DSL before we continue with the evaluation of our
approach.

A. Case Description: Continuous Delivery with Keptn and
Shipyard

Keptn is an open-source projectﬂ that provides a control-
plane for orchestrating continuous delivery and operational
processes activities. Continuous Delivery (CD) is part of the
continuous-* holistic endeavor towards Continuous-Software
Engineering (CSE) [28]. In CD, delivery pipelines are ex-
ecutable software delivery workflows designed to automate
the roll out of new software features and updates, useful in
minimizing the amount of manual work needed to release or
maintain software. Multiple problems may occur with delivery
pipelines. Over time, pipelines become complicated because of
mixed information about processes, target platforms, environ-
ments, and tools. Pipelines can be duplicated across different
tools, which may require tool-specific changes resulting in
maintainability problems. Finally, due to the lack of a clear
separation of concerns, users with various roles (such as
developers, DevOps experts, and site reliability engineers) may
employ the pipeline for different purposes. As a result, delivery
pipelines can quickly become an unmanageable legacy code
artifact.

Keptn addresses this problem by separating the processes
from the actual tooling. Thus, the definition of continuous
delivery or operational processes manifests in a so-called
Shipyard configuration. A Shipyard configuration is a JSON
document declaring staged workflows as the basis for the
orchestration conducted by Keptn.

With the advent of JSON Schema, a Shipyard schema is
being developed, elevating it to the role of DSL. It demands
proper tool support for language engineers and domain experts
involved in the editing and validation of the Shipyard DSL
versions and Shipyard configurations in Keptn, respectively.

B. Case Study Execution

In the following, we present two evaluation strategies to
answer the aforementioned research questions by applying our
approach for the Shipyard case: (i) we use our developed tool
support to transform the Shipyard JSON Schema definitions in
order to validate that our tool support is working as expected,
and (i7) we inspect the generated Shipyard metamodels to
reason about the Shipyard language and artefact (co-)evolution

1) RQI: Testing Shipyard DSL Versions: The Keptn project
maintains its companion language Shipyard DSL in a public
repository [11]. Fig. [l1] reconstructs and intertwines the evo-
lution of four versions of the Shipyard schema, with Keptn
releases, and the executions of our approach steps.

7Started in January 2019 by the company Dynatrace and then donated to
the Cloud-Native Computing Foundation (CNCF) in 2020.



a) shipyardV4jschema &2 b) &) shipyardV4Opt.ecore C) samples2.shipyardV4
1249 "Task": { B ShipyardSpec “name": "delivery",
125 "required”: [ B Stage 14= "tasks”: [
12 “name”, v B Task o {
L properties &% Task: TaskPropertiesAbstract - " name _deﬁloyment ?
128 1, . 3 5 e properties": {
12 “properties": { «generates» ~ H TaskName -> TaskPropertiesAbstract ey 18 "deploymentstrategy”: "direct"
1 “name": { % name : EString 1 }
131 "type": "string" * ~ H TaskProperties -> TaskPropertiesAbstract « 20 },
1 : {‘:l o §2 properties : TaskPropertiesPropertiesAl 21s {
: . p:operElef ',{ N v [ TaskPropertiesAdditionalProperties -> Ta 22 "name”: "test”,
134 type": "object"”, = key: EStrin 23e "properties”: {
135 "additionalProperties”: trug T Key: 9 24 "teststrategy": "functional"
136 } § additionalProperties ; JsonDocument - )
1 R .
1 "additionalProperties”: false, ) :7 %’
! type”™: "object 2 "name": "evaluation”
2 1,
d) {% shipyardV3jschema 2 P 3 {
123e "Task™: { 31 _"name": “"release”
124= "required": [ 32 i
125 "name",
;fj "properties” E) Description
2 B . .
128¢ “properties": { v & Warnings (2 items)
1299 "name”: { ) 5 The keyword "additionalProperties” should be specified explicitly
ir‘\“ } type”: "string % The keyword “type” should be present
81326 “properties”: { =
133 "additionalProperties": true f) Description
13 ¥ ~ @ Errors (2 items)
136 "additionalProperties”: false, @ Sequence requires the property tasks
137 "type": "object” @ Task requires the property properties

Fig. 10. (a) JSON Schema textual model excerpt of shipyardV4 (.jschema), (b) excerpt of generated Ecore for shipyardV4, (c) excerpt of Shipyard model
(.shipyardV4) before last fix, (d) JSON Schema textual model excerpt of shipyardV3 (.jschema), (e) validation results for shipyardV3 (.jschema), (f) validation

results of a Shipyard model (.shipyardV4).

o
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V4 - under development

3721.. 5.-6- 7/8 ..... >

X.y.Z Keptnrelease N Approach Step

Fig. 11. Shipyard DSL evolution timeline.

In particular, at the time of writing, a total of four differ-

ent schema versions have been collected including (i) two
discontinued/archived one (v1 and v2), (i) a current version
shipped together with the latest release of Keptn (v3), and (4i4)
a version (v4) that is under development.
For the whole Shipyard schema evolution, we considered the
JSON Schema Draft 7 [[19] as the only reference metaschema
in JSONware. Therefore, the bootstrapping steps, i.e., the
metaschema design and the generation of the schema editor
(steps 1 and 2 in Fig. 2) have been carried out by the authors
as metalanguage engineers at the beginning of the evaluation
activities. As a result, we obtained a stable schema editor
to carry out schema development and validation activities
(step 3), preserving by construction compatibility with existing
JSON Schema tools (step 4).

We started to transform the Shipyard schema vl1, shipped
with Keptn 0.2.0c, into the corresponding Shipyard meta-
model (step 5), which failed due to misuse of $ref (i.e.,
instance of Ref metaclass in Fig.[5), whose value, despite being

valid w.r.t. the JSON Pointer standard [23]], was pointing to
missing definitions, causing the failure of R5 (missing target
in EReference, see Table |I[)

We used step 3-4, to produce a new version of Shipyard
schema (V2) to fix this issue and succeeded in generating
the first Shipyard metamodel (step 5). The metamodel was
manually inspected for potential inconsistencies. In particular,
given the mappings in Table [Il we were expecting a single,
connected graph of EClasses. Instead, we realised that the root
schema was disconnected from the rest of the metamodel. We
revised the Shipyard schema (again, step 3-4) and we suc-
ceeded in generating the Ecore metamodel (step 5), Shipyard
Xtext grammar, and editor (step 6) to provide model-based
editing and validation support for Shipyard users (step 7-8,

see Fig. [T0).

Listing 3. Default values for Type and AdditionalProperties.

{
"type" : ["array", "object", "integer", "number",
"null", "string", "boolean"],
"additionalProperties" : true
}

The V2 changes were included, together with other ones
approved by the maintainers of Keptn, into V3, released with
Keptn 0.2.0. We repeated the editing and validation activities
with V3 (steps 3-4). In the meantime, we improved the
validation capabilities of the generated tools by extending
the set of OCL constraints with warnings. Such warnings
detect missing schema keywords (i.e., instances of concrete
subclasses of Keyword metaclass in Fig [3] step 2) like type
and additionalProperties in any schema. If missing,



the chosen JSON Schema standard (i.e., Draft 7 [[19]) assigns

a default value to them (see Lst. [3), which has a great impact

on applied validation rules, accepting any simple type values

and any JSON document fragments in JSON documents, as

Shipyard configurations are.

The warnings, detected on the Shipyard metamodel, caused
new fixes, preventing the generation (and possible maintenance
effort) of a new Shipyard editor and triggered a new, currently
under development Shipyard version (V4), not yet shipped in
any Keptn release. Currently, we are evolving V4 by checking
which Shipyard keywords are required or simply optional.

Fig. [I0] shows the current generated editors for JSON
Schema Draft 7 and Shipyard V4, together with a tree-based
representation of the internal representation based on Ecore
EMF [15].

Answering RQ1: We are able to generate the metamodel-
s/grammars from the existing Shipyard specifications, but it
also turned out to require iterations to refine certain parts in
JSON schemas which may not be required if they are “just”
used as documentation. However, by this iterative process, our
presented approach helps in improving language issues for
future versions.

2) RQ2. Co-evolution Analysis: Shipyard is evolving over
time together with Keptn as it is a cutting-edge technology.
The coupled evolution (co-evolution) of model-driven artefacts
is a typical common research topic for the MDE community. A
classification of metamodel-level changes have been presented
in [29] considering non-breaking changes, breaking resolvable
changes, and breaking non-resolvable changes depending on
their effect on the conformance relationships between M1 and
M2 artefacts and possible (automated) repairing actions.

Thanks to the bridging approach towards Modelware, we
aim at reusing this body of knowledge to tackle the co-
evolution in JSONware in general, and for Shipyard case study
in particular. In this respect, Table [l and Table [IT]] list changes
between two consecutive Shipyard versions, i.e., v2 vs. v3 and
v3 vs. v4, respectively, comparing the artefacts automatically
generated at step 5, i.e., the Shipyard Ecore metamodels and
the companion OCL constraints artefacts. EMF Compare [30]]
and the Eclipse compare editor have been used to perform the
comparison task.

In particular, we found the following results:

e V2 vs. V3: 10 new EClasses and 2 new OCL constraints
have been added in V3, without changing existing meta-
model elements and OCL constraints. The new OCL con-
straints apply to the newly added EClasses. No OCL con-
straints have been added to pre-existing EClasses. Thus, we
classify them as non-breaking changes (7).

e V3 vs. V4: 1 EClass and 2 OCL constraints have been
removed. The removed EClass (SelectorMatchAdditional-
Properties) was allowing arbitrary JSON fragments for the
SelectorMatch schema object. Therefore, v3 Shipyard con-
figurations containing such JSON fragments do not conform
to v4. This change is classified as a breaking change (X),
which is required to have a more precise definition of the
language. Finally, the removal of OCL constraints, since it

TABLE 11
CLASSIFICATION OF CHANGES BETWEEN SHIPYARD V2 AND V3.

Added Ecore EClasses
Selector 1T
SelectorProperties Abstract T
SelectorMatch T
SelectorMatchPropertiesAbstract T
SelectorMatchAdditionalProperties T
SelectorMatchPatternPropertiesO T
Trigger T
TriggerPropertiesAbstract T
TriggerEvent T
TriggerSelector T
Added OCL Constraints
TriggerRequiredevent T
SelectorMatchPatternPropertiesOpatternPropertiesORegex 1
TABLE III
CLASSIFICATION OF CHANGES BETWEEN SHIPYARD V3 AND V4.

Removed OCL Constraints
SequenceRequiredtasks
TaskRequiredproperties

Removed Ecore EClasses
SelectorMatchAdditionalProperties X

loosens the validation step, is considered as a non-breaking

change by default (7).

Answering RQ2: By reusing knowledge from co-evolution
research in MDE [29], the evolution of the Shipyard JSON
schemas could be analyzed to reason about forward and back-
wards compatibility. Existing work from the MDE community
has provided clear guidelines on how to classify the different
changes happening in JSON schemas, however, in order to do
so, it is also required to explicitly model aspects such as the
openness of JSON schemas.

C. Threats to Validity

We now discuss threats that can affect the validity of our study.

1) Internal Validity: The current approach has been devised
involving a still limited number of users. The authors played
all the roles depicted in Fig. [I] As mitigation strategy, we aim
at involving a larger community of language engineers (by
applying the approach to several schemas used in different
domains) and domain experts (starting from the involvement
of the Keptn user community). We compared a limited set of
related tools. Many other tools may provide dedicated features
for JSON artefacts. Our intention, with this paper, is setting
a baseline for dedicated tool support which may be further
explored in the future.

2) External Validity: We cannot claim that the results of
the case study can be generalized for other JSON-based
DSLs as JSON Schema may be used for validating very
large documents. For scalability assessment purposes, we will
investigate larger schema documents as publicly available in
the Schema Store [31].

V. RELATED WORK

Bridging TSs has a long tradition in the MDE research
community. In the following, we summarize the most related
work in this area with respect to the contribution of this paper.



In [32]], Brunelliere et al. focus on the interoperability in a
tool ecosystem providing model-driven bridges between two
or more tools. By leveraging MDE principles and techniques,
the authors express the internal structure of the tools as meta-
models; map related concepts in the different metamodels; and
finally, boost interoperability through model-to-model trans-
formations. We used a similar approach to bridge JSONware
and Modelware since we use Modelware as the major TS for
representing the artefacts and performing the integration.

The work described in [33] proposes an approach and a case
study for bridging technical spaces of different complexities.
They consider the benefits of technical spaces bridging for
tool collaboration instead of competition in order to promote
synergies. While this is also our goal, we have to consider
in our work completely different meta-languages involved and
deal with concrete syntax concerns as well.

Previous work tackled the modernization of XML-based
languages. For instance, in [34]], we presented an approach
to bridge the gap between XMLware, Modelware, and Gram-
marware, via the generation of Xtext-based editors from XSDs
providing editor functionality, customization options for the
textual concrete syntax style, and round-trip transformations
enabling the exchange of data between the involved tech-
nical spaces. Our approach shown in this paper follows a
similar spirit. We bridge the gap between JSONware and
Modelware via the generation of Xtext-based editors from
JSON metaschemas and schemas to edit JSON documents
representing schemas and their instances, respectively. Thanks
to the shared JSON concrete textual syntax among artefacts
from JSONware, the round-trip transformation step is not
required because the same JSON documents conform to the
corresponding metalayer artefact in both JSONware and Mod-
elware. Thus, we are augmenting the JSON artefacts with
Modelware technologies instead of migrating them to a new
TS. In the context of the XML-based language moderniza-
tion work in [35], we proposed a model-based approach to
specify reusable textual styles for domain-specific modeling
languages. This approach can be investigated to define a JSON
style to automatize the refactoring of the generated Xtext
grammars for JSON-based DSLs as future work.

In [36], the authors implemented a JSONSchema to UML
transformation tool. The tool represents a concrete attempt to
bridge JSONware and Modelware for documentation purposes.
In this context, the authors list several open challenges for
mapping JSON Schema to UML. Since UML class diagrams
are considered a superset of Ecore, we faced several chal-
lenges which have been described. Previous work of the same
authors [2], [37] aim at resolving the problem of schemaless
JSON documents which was especially critical before the
emergence of JSON schema. Thus, they proposed to discover
the implicit schema with an iterative process that generated a
model, with an enrichment for every new JSON document to
be analyzed.

In [38], the author collects and discusses requirements for
the implementation of a model-driven editor for JSON docu-
ments and validates them against a given JSON Schema Draft.

Tree-based and form-based views are provided for the edited
schemas. In our work, we provide a TS-oriented approach to
deal with JSON Schema drafts evolution and editor generation.
Moreover, we aim at preserving the JSON textual notation as
common concrete syntax across TS by suitably refactoring
Xtext grammars. In future work, however, the provision of
other kinds of editors may be possible based on our metamodel
definitions and existing tool support in MDE such as EMF
Forms or Sirius.

In [7]], the authors propose a formal grammar for JSON
Schema as an EBNF. The authors identified a fragment
of the functionalities from the full official JSON schema
language and expressed them as a core set of production
rules with which all the remaining functionalities can be
expressed. We have expressed the grammar by deriving it
from an Ecore metamodel, and we plan to compare the two
resulting grammars with the aim to improve and complete
metaschema.ecore artefact in future work.

To sum up, while there have been several approaches for
bridging technical spaces in the past, the bridge we propose
in this paper is novel with respect to previous work as there
was a lack of research in bridging JSONware with Modelware
on all required meta-levels and putting a particular focus on
maintaining the textual concrete syntax.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a systematic approach to
generate specific tooling for JSON artefacts by reusing tech-
nologies from Modelware. The Shipyard case study confirms
that meaningful tool support can be established by exploiting
a bridge between JSONware and Modelware.

However, we also foresee several future research lines that
have to be tackled in order to gain even more benefits from
Modelware for JSON artefacts. We are currently extending the
mapping in order to support the combined schemas of JSON
Schema such as allOf and anyOf. In addition, we are going
to explore the possibility to add OCL constraints to validate
JSON Schemas to ensure the correctness of the transformation
to Ecore. For instance, this could be useful to warn the user
about cases in which the transformation may fail such as it
was the case with Shipyard V1. In the long term, we plan to
offer an automatic generation of other kinds of grammars such
as YAML by combining the presented approach with [35].
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