
Automated Variability Injection for Graphical
Modelling Languages

Antonio Garmendia

Manuel Wimmer

(antonio.garmendia,manuel.wimmer)@jku.at
CDL-MINT, Johannes Kepler University

Linz, Austria

Esther Guerra

Elena Gómez-Martínez

Juan de Lara

(esther.guerra,mariaelena.gomez,juan.delara)@uam.es
Universidad Autónoma de Madrid

Madrid, Spain

Abstract
Model-based development approaches, such asModel-Driven

Engineering (MDE), heavily rely on the use of modelling lan-

guages to achieve and automate software development tasks.

To enable the definition of model variants (e.g., supporting

the compact description of system families), one solution

is to combine MDE with Software Product Lines. However,

this is technically costly as it requires adapting many MDE

artefacts associated to the modelling language – especially

the meta-models and graphical environments.

To alleviate this situation, we propose a method for the

automated injection of variability into graphical modelling

languages. Given themeta-model and graphical environment

of a particular language, our approach permits configuring

the allowed model variability, and the graphical environment

is automatically adapted to enable creating models with vari-

ability. Our solution is implemented atop the Eclipse Model-

ing Framework and Sirius, and synthesizes adapted graphical

editors integrated with FeatureIDE.

CCS Concepts: • Software and its engineering → Soft-
ware product lines; Software design engineering;

Keywords: Model-Driven Engineering, Product Lines, Graph-

ical Modelling Language, Meta-Modelling, EMF

ACM Reference Format:
Antonio Garmendia, ManuelWimmer, Esther Guerra, Elena Gómez-

Martínez, and Juan de Lara. 2020. Automated Variability Injection

for Graphical Modelling Languages. In Proceedings of the 19th ACM
SIGPLAN International Conference on Generative Programming: Con-
cepts and Experiences (GPCE ’20), November 16–17, 2020, Virtual,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

GPCE ’20, November 16–17, 2020, Virtual, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8174-1/20/11. . . $15.00

https://doi.org/10.1145/3425898.3426957

USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3425898.3426957

1 Introduction
Model-Driven Engineering (MDE) [1] promotes models as

the main artefacts of the development process. In this soft-

ware paradigm, models are used to specify, test, simulate,

analyse and generate code for the final application, among

other activities. By focussing on the essential aspects of the

systems to be built, and leveraging on automation, MDE aims

at improving the system quality and reducing the develop-

ment effort [9, 13, 35].

Models are created using modelling languages, which can

be general-purpose, like the UML [31], or domain-specific

(DSLs) [13, 32]. The latter are specialized languages tailored

to a domain, like chatbot development, or mobile user inter-

faces. DSLs offer high-level primitives that permit achieving

more concise, intentional descriptions of the problem than

would be obtained using a general-purpose language. In

MDE, the abstract syntax of DSLs is defined through a meta-

model, which is a model that captures the main primitives

of the language, their properties, relations and constraints.

Regarding their syntax, DSLs can broadly be classified as

textual or graphical. In this paper we focus on the latter.

MDE has proven to be especially effective in narrow, well-

understood domains [13], but it may fall short to handle

a (potentially large) family of systems. In such cases, one

can resort to Software Product Line (SPL) techniques [23] to

avoid modelling explicitly each system of the family. SPLs

permit specifying variation points on a given model, and

hence elude the exponential cost of specifying each model

variant separately [2, 29, 30].

While the combination of MDE and SPLs is appealing, its

technical cost is high. This is so as enabling the creation

of models with variability requires modifying or extend-

ing many MDE artefacts, most notably the meta-model and

graphical editor of the models. Our work aims at automat-

ing this task. For this purpose, we propose a method to de-

clare the elements of the modelling language which admit

variability. Then, our method automatically modifies the lan-

guage meta-model and associated graphical editor to support

the specification of model variability. The modified editor

https://doi.org/10.1145/3425898.3426957
https://doi.org/10.1145/3425898.3426957
https://doi.org/10.1145/3425898.3426957

GPCE ’20, November 16–17, 2020, Virtual, USA A. Garmendia, M. Wimmer, E. Guerra, E. Gómez-Martínez, and J. de Lara

is automatically integrated into a feature-oriented devel-

opment framework to enable the specification of feature

diagrams [11], the selection of configurations, and the gen-

eration of their corresponding model variant. We have cre-

ated a prototype tool, called Verso, which implements these

ideas. The tool is built atop the Eclipse Modeling Framework

(EMF) [27] and Sirius [26], and produces FeatureIDE [16]

plugins integrated with the modified editor.

Overall, this paper makes the following contributions:

(i) a method to specify points of variability for models of

modelling languages, (ii) an automatic mechanism to adapt

existing graphical editors to handle models with variability,

and (iii) automated integration of such adapted editors within

a framework for feature-oriented development.

Paper organization. Section 2 introduces a motivating run-

ning example, and some background on MDE and SPLs. Sec-

tion 3 presents our approach. Section 4 describes our tool and

reports on an initial evaluation. Finally, Section 5 compares

with related approaches and Section 6 concludes.

2 Motivation and Background
In this section, we introduce a motivating running example

(Section 2.1). Then, we explain how DSLs are defined in MDE

(Section 2.2) and introduce basic notions of feature-oriented

variability (Section 2.3).

2.1 Motivation
Flexible assembly lines are production systems that can be re-

configured in different set-ups to produce a variety of goods

or adapt to customer demands [19]. We plan to use Petri

nets for their modelling, given their rich body of theoretical

results for simulation and analysis [17]. This way, we may

specify each configuration of the assembly line as a different

Petri net. However, the set of configurations may be large,

and so, we look for a compact way to represent the common-

alities and variations of the assembly line configurations.

Product lines are especially suited for this purpose.

However, while we have a graphical editor for Petri nets

modelling, the editor does not permit specifying variability

as required in this scenario. Modifying the editor by hand

to support the definition of Petri nets with variability would

be costly, as we would need to: (a) extend the Petri nets

language to identify the language primitives that are subject

to variability; (b) modify the editor to allow specifying the

variants of a Petri model in a compact way; and (c) develop

an environment to select configurations and retrieve specific

Petri net variants. To facilitate these tasks, our objective is

to devise automated mechanisms to adapt existing graphical

editors for a modelling language (e.g., the Petri nets editor)

to enable the definition of model families.

In addition to modelling editors, MDE solutions also com-

prise artefacts likemodel transformations enabling e.g., model

verification or simulation. These could still be applicable on

metamodels

PetriNet

Arc
name: String

content

Place

*

Element

Transition

PTArc TPArc

in
p

u
t

1 in
p

u
t

Token
tokens

*

:Place

:PetriNet

name=“p1”

:Transition

name=“t1”

:PTArc

:tokens

:input

:output

:Token

:content

:content

(a) (b)

(c) (d)

p1 t1 name=“a”

:content

a

1 1 1

transition: Node

:DefaultLayer

:Diagram
Description

:Square

label = semElement.name
colour= BLACK
...

:defaultLayer

:nodes ...

:style

Figure 1. (a) Petri nets meta-model. (b) Excerpt of graphical

concrete syntax definition. (c) Petri net model in abstract

syntax. (d) Petri net model in concrete syntax.

the individual models of the family, but it is normally more

effective to lift these computations to the family level [28].

Approaches have been proposed to lift model transforma-

tions to work on models with variability [4, 24, 33], and our

goal is to support these automatically on widely used model

transformation languages like ATL [10] or the Epsilon lan-

guages [21]. However, as a first step in this vision, here we

focus only on injecting variability in modelling languages.

2.2 Defining Modelling Languages in MDE
Modelling languages comprise abstract syntax, concrete syn-

tax and semantics [1]. The abstract syntax declares the primi-

tives of the language, including their attributes, relations and

integrity constraints. In MDE, the abstract syntax is defined

via a meta-model, typically expressed as a class diagram with

OCL constraints [1].

Figure 1(a) shows the meta-model for Petri nets in our

example. It contains classes to represent Places, Transitions,
Tokens, and directed Arcs between places and transitions (and

vice versa). A container class PetriNet groups the elements

belonging to the same net. Places, Transitions and Arcs have a
name, while Places have a marking represented by contained

Tokens. Figure 1(c) shows a model that conforms to, or is an
instance of, the meta-model. The model contains one place

that is connected to a transition and has one token.

To better convey the meaning of models, they are provided

a concrete syntax with the rendering of the abstract syntax

elements. The concrete syntax can be either graphical or tex-

tual; in this paper, we focus on graphical syntax. A typical

approach to specify the graphical syntax for a modelling lan-

guage is by establishing mappings between its meta-model

elements and graphical primitives [13].

Automated Variability Injection for Graphical Modelling Languages GPCE ’20, November 16–17, 2020, Virtual, USA

FlexibleAssemblyLine

InParts Process

PartA PartB QualityControl Parallel

(a)

(b)

genA
PartA

Parallel

QualityControl
cnvA

proc

cnv1

cnv2

resultin

out1

out2

inc1

inc2

genB cnvB

PartB

mandatory optional

alternative
(exactly one)

or
(at least one)

cnv1out1 inc1

proc
cnv2

resultin
out2 inc2

genB cnvB

config = {PartB, Parallel, InParts, Process, FlexibleAssemblyLine}(c)

Figure 2. (a) Feature model with the variability of the flexible

assembly line. (b) Flexible assembly line with variability

annotations. (c) Product derived from a configuration.

Figure 1(b) shows an excerpt of the graphical syntax defi-

nition for Petri nets. Our approach is independent on specific

graphical editor definition frameworks, but we use Sirius [26]

since it is widely used within Eclipse. This way, the concrete

syntax definition assigns a DiagramDescription to the root

class of the meta-model (i.e., PetriNet), and a black Square to
Transition, labelled with the transition’s name. The assign-

ment of graphical elements to meta-model elements is done

via cross references (e.g., reference semElement from transi-
tion to Transition). Figure 1(d) shows the model depicted in

Figure 1(c) using the defined concrete syntax.

2.3 Annotative, Feature-Oriented Variability
To model the variability space of a family of models, the

approach proposed in this paper relies on the use of feature

diagrams [11]. Figure 2(a) depicts the feature diagram for our

example assembly line. It defines the features that a model

of the family may have (PartA, PartB, QualityControl, etc.),
and how they can be combined to obtain a valid feature
configuration. In the figure, the diagram requires choosing at

least one of PartA and PartB, while QualityControl and Parallel
can be selected or not. Overall, this feature diagram allows

12 valid feature configurations for the assembly line.

Our proposal follows an annotative approach to define a

model family [12]. Specifically, a model family is represented

by a so-called 150% model that contains all elements that

may appear in models of the family. Such elements may

be annotated with presence conditions (PCs), that is, logic

formulae over the features defined in the feature diagram.

Figure 2(b) shows an example 150% model. We enclose the

elements with same PC using a dashed region.

Given a 150% model and a valid configuration, the corre-

sponding productmodel is built by keeping the 150%model el-

ements whose PC evaluates to true, and deleting those whose

PC evaluates to false. Please note that, when we deleted one

object, we deleted its input/output references as well. As an

example, Figure 2(c) shows the product Petri net that results

from selecting features PartB, Parallel, InParts, Process and Flex-
ibleAssemblyLine; and discarding PartA and QualityControl.

3 Injecting Variability in Graphical DSLs
This section explains how to customize the variability for a

given graphical modelling language. Section 3.1 deals with

the abstract syntax and Section 3.2 with the concrete one.

3.1 Variability on the Abstract Syntax
Designing the variability for a DSL requires considering two

aspects. First, deciding which elements can be subject to

variability. For example, some works on product lines of

Petri nets only permit variability either on transitions or on

arcs [18] in order to enable an efficient analysis. Second, there

may be the need to specify well-formedness rules among

the PCs of different elements. For example, the PC of an arc

should be stronger than the PC of its input and output place

and transition. That is, there should be an implication from

the PC formula of the arc to the PC of its inputs and outputs,

since this ensures that any product net that contains the arc

will also contain its adjacent elements.

To specify these two variability aspects, in a first step,

we permit selecting the classes of the language meta-model

whose instances are enabled to have PCs. If the instances of

a class A are enabled to have PCs, then so are the instances

of all direct and indirect subclasses of A. Moreover, to ensure

consistent models, if there is a composition relation from a

class A to a class B, we require the following conditions:

1. If A is PC-enabled, then so must be B. This avoids
producing models where the instances of B lose its

container object.

2. If both classes are PC-enabled, we assume that the PC

of the instances of B is the conjunction of their own PC

with the PC of their container A object. This ensures

that the PC of the B objects is stronger than the PC of

their containers, and prevents B objects from losing

their containers in products.

Figure 3 (a–c) illustrates the rationale for condition (1). If

Token would not be allowed to have PCs, but their container

Places are (cf., (a)), then we could end up generating products

where Token objects would be outside their containers. Hence,
condition (1) forces Token to have PCs, while (2) ensures that
we cannot have Tokens outside Places.

In a second step, we can use the predicate stronger-than(A,
B, ref) to require the PC of any instance of class A to be

stronger than the PC of any instance of class B reachable via

GPCE ’20, November 16–17, 2020, Virtual, USA A. Garmendia, M. Wimmer, E. Guerra, E. Gómez-Martínez, and J. de Lara

Place Token
tokens

*

PC

p:Place :Token

genA

:Token
config={genA}

(tokens may lose their
container places)

m
et

a-
m

o
d

e
l

p
ro

d
u

ct
-l

in
e

p
ro

d
u

ct

Place PTArc

p:PTArc :Place

genA

:PTArc
config={genA}

(this product is not
possible)

input

src tar

ref

stronger-than

true  genA)
(invalid, since

m
et

a-
m

o
d

e
l

p
ro

d
u

ct
-l

in
e

p
ro

d
u

ct

1

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. (a–c) Restrictions for compositions. (d–f) Illustra-

tion of the stronger-than predicate.

the reference ref, where ref can go from A to B. Formally:

𝑠𝑡𝑟𝑜𝑛𝑔𝑒𝑟 − 𝑡ℎ𝑎𝑛(𝐴, 𝐵, 𝑟𝑒 𝑓) ≡∀𝑎 ∈ 𝐴,∀𝑏 ∈ 𝐵 ∩ 𝑎.𝑟𝑒 𝑓 •
𝑃𝐶 (𝑎) =⇒ 𝑃𝐶 (𝑏)

where 𝑎 and 𝑏 are objects of types 𝐴 and 𝐵. In the pred-

icate, 𝑏 is required to be reachable via 𝑎.𝑟𝑒 𝑓 , and if so, an

implication between the PCs of 𝑎 and 𝑏 is required.

We automatically add this predicate whenever there is

a reference with same lower and upper cardinality bounds

(e.g., 1..1), as in this case, the PC of the reference source needs

to be stronger than the PC of the reference target to avoid

violating the reference cardinality in products.

Figure 3(d–f) illustrates theworking scheme of the stronger-
than predicate. In (d), we configure PTArc to have stronger PC
than Place. This disallows a variability specification like in

(e), since it would lead a product like (f), where the minimum

cardinality constraint if input would be violated.

Example Figure 4 shows the variability inscriptions on our

example meta-model. Two classes are enabled to have PCs:

Element and Token. Consequently, all concrete subclasses of
Element become PC-enabled as well (PTArc, TPArc, Place and
Transition). Since both Place and Token are PC-enabled, and
there is a composition relation between them, the PC of the

instances of Token will be conjoined with the PC of their

container Place. This avoid Tokens outside Places. PetriNet in-
stances are not allowed to have variability. Finally, predicate

stronger-than is used four times to ensure that the PC of the

arcs (either PTArc or TPArc) is stronger than the input/output

Place/Transition. These predicates are added automatically to

avoid arcs with undefined input or output in product nets.

The variability points so defined in the language meta-

model are enforced at the model level. For this purpose,

we use the in-house meta-model shown in Figure 5. This

meta-model is instantiated to define PCs on the model el-

ements. Specifically, each PC (class PresenceCondition) has
a cross-reference to the model object it annotates (refer-

ence elements), and is checked for conformance according to

the variability specification. This way, only the instances of

PC-enabled classes can have variability and define PCs. In

PC

PetriNet

Arc
name: String

content

Place

*

Element

Transition

PTArc TPArc

in
p

u
t

1 in
p

u
t

Token

1 1 1

PC

stro
n

ger-th
an

src

ref

tar

st
ro

n
ge

r-
th

an
 src

tar

ref

tokens *

stronger-than

src tar ref

stronger-than

src
tar

ref

Figure 4. Specifying the variability for Petri net models.

Variability

FileURI

importURI: String

featureModel model

PresenceCondition
«from ECore»

EObject

elements

1..*

presenceConditions

Expression

Unary
Expression

Feature

name: String

Binary
Expression

1..*

expression

right

left

right

«enum»
UnaryOperator

NOT

«enum»
BinaryOperator

AND
OR
IMPLIES

o
p

er
at

o
r o

p
erato

r

Figure 5. Variability meta-model.

addition, we check that the defined stronger-than predicates
and the constraints derived from composition relations hold.

3.2 Variability on the Concrete Syntax
Once we customize the variability allowed in the models of a

modelling language, our approach automatically updates the

language concrete syntax to enable the attachment of PCs

to the instances of PC-enabled classes. In particular, given

the language meta-model with the variability inscriptions

and a specification of the concrete syntax, our approach

adapts the latter to permit a relation between the graphical

representation of a PC, and the model elements that may be

subject to it. The PCs are specified in a dedicated layer added

to the concrete syntax, and provides a palette for creating

PCs and a textual editor for their editing.

The PC abstract syntax model is serialized separately from

the language model. The cross references from the PCs to

the model elements are based on the elements’ id or name.
Section 4.1 provides more details about the implementation

of this process in our tool.

4 Tool Support and Evaluation
In this section we describe tool support (Section 4.1) and

report on a preliminary evaluation (Section 4.2).

Automated Variability Injection for Graphical Modelling Languages GPCE ’20, November 16–17, 2020, Virtual, USA

Generated
Environment

FeatureIDE1

VERSO1

VERSO workbench

PC

Stronger
than

Diagram
Elements

*.odesign
<<Input>>

VERSO Editor
<<Apply>>

<<has>>

Feature-oriented modelling environment

«Generates»

Composer

1
PC Editor

P1 P2

t1

tot1 toP2

PC1 PC2

Sirius1

<<uses>>

Xtext1

<<uses>>

Figure 6. Architecture of Verso.

4.1 Tool Support
We have built tool support to automatically adapt existing

graphical Sirius editors to allow the definition of models

with variability. We target Sirius [26] as this is a widely

used, up-to-date framework for building graphical languages

within Eclipse. Our tool is an Eclipse plug-in called Verso

(Variability injEctoR for Sirius editOrs) available at https:
//github.com/antoniogarmendia/ecore-product-line.

Figure 6 shows the architecture of Verso. Its main com-

ponent is the Verso editor, which receives a model with

the concrete syntax definition of an existing Sirius editor as

input (extension *.odesign). Then, the editor permits config-

uring the classes that can have PCs attached and defining

stronger-than predicates. This information is back-propagated

to the meta-model with the abstract syntax definition. From

this information, Verso extends the editor with a Presence
Condition layer that is used to store the PCs of the models

being edited, and can be (de-)activated on demand to hide or

show these PCs. Moreover, the adapted graphical editor in-

tegrates a textual editor
1
that permits defining PCs textually

and provides code completion and feature name resolution.

In addition, Verso generates a FeatureIDE plug-in [16]

which supports the specification of feature models, selecting

configurations and producing the corresponding product

models. For this purpose, an automatically generated com-
poser synthesizes the appropriate product model given a

150% model and a configuration.

Figure 7(a) shows a screenshot of the tool being used

to inject variability to an existing Petri net editor. Label 1

shows the initial Sirius model (*.odesign) and the variability

definition model (*.pcdef). The former describes the existing

graphical editor for Petri nets, and the latter corresponds to

the model created by the user using the Verso editor (label

2). This model has two tables, one identifying the PC-enabled

classes, and the other with the stronger-than predicate.

1
Verso relies on the Sirius+Xtext integration in https://bit.ly/2ZdFWAG

Table 1. Evaluated case studies

DSL .odesign size MM size # PCs # stronger-than
Farming DSL 248 32 7 2

MoSaRT 2129 165 5 2

Ecore 1089 53 5 1

From this specification, Verso synthesizes the variability-

enabled editor shown in Figure 7(b). Label 3 is the Eclipse

plug-in generated, and label 4, the modified graphical editor.

The PCs are represented as notes attached to the graphical

elements, and an embedded Xtext editor (label 5) permits

writing them. This editor has autocompletion, and checks

that the PCs are well-formed and only make use of features

from the feature diagram (label 6). Moreover, the plug-in

validates the conformity of the stronger-than predicates. In
the figure the editor would report an error as the PC of the

arcs is weaker than the PC of their input and output nodes.

The editor is embedded within FeatureIDE, which allows

creating the feature diagram and selecting a configuration.

In addition, a generated language-specific composer permits

producing the models for each configuration (label 7).

4.2 Evaluation
Next, our goal is to assess whether Verso is applicable to

(potentially complex) editors and languages built by third

parties. We applied our approach to two language work-

benches provided by the Sirius Gallery
2
and to the Ecore

standard graphical meta-model editor.

Table 1 summarizes the complexity of the concrete and ab-

stract syntax (number of objects and classes) and the variabil-

ity specifications, and Figure 8 shows some screenshots of the

synthesized editors. The first case study is the Farming DSL,

which has two diagram types, and contains 4 meta-models

to support farming modelling requirements. We added the

PCs to nodes within the Structure diagram representing the

agricultural exploitation and the distribution of surfaces. The

MoSaRT [20] DSL provides graphical editors to model and

analyse real-time systems. In this case, we enabled the def-

inition of PCs in the Software Operator Diagram, where task
activities can be created to define the system behaviour. Fi-

nally, we extended EcoreTools [3], which has a graphical

editor to design domain meta-models.

Overall, we were able to deal with large DSLs (e.g., the

concrete syntax of MoSART has more than 2000 objects,

and its meta-model has more than 150 classes). None of the

automatically adapted editors required manual adjustment.

Interestingly, we could apply our technique to the Ecore

meta-model editor, since Ecore meta-models are persisted

like models. This enables the definition of language families.

2https://www.eclipse.org/sirius/gallery.html

https://github.com/antoniogarmendia/ecore-product-line
https://github.com/antoniogarmendia/ecore-product-line
https://bit.ly/2ZdFWAG
https://www.eclipse.org/sirius/gallery.html

GPCE ’20, November 16–17, 2020, Virtual, USA A. Garmendia, M. Wimmer, E. Guerra, E. Gómez-Martínez, and J. de Lara

7

2

1

3

6 4

5

(a) (b)

«Generates»

Figure 7. Screenshot of Verso (a) and generated editor integrated within FeatureIDE (b).

Farming DSL MoSaRT

Ecore

Figure 8. Screenshots of the PC-enabled graphical editors.

5 Related Work
Many authors have proposed ways to combine MDE and

SPLs. For example, variability has been applied at the model

level for specific languages, like uses cases [6], Petri nets [18],

AutomationML [36] or Statecharts [15]. Our approach could

have been used to inject variability to these languages, in-

stead of using an ad-hoc approach.

Other authors define variability for the modelling lan-

guages themselves. For example, White [34] defines product

lines of modelling languages to enhance their reusability

across projects, while in [5], techniques were developed for

the instantiability analysis of language families. Instead, our

variability is at the model level, and we adapt the correspond-

ing graphical model editor. Moreover, since meta-models are

models too, our technique can also be used on this level.

We use an annotative (also called negative) approach to

define the variability. However, other approaches exist, like

DeltaEcore [25], VML
∗
[37], CVL [7, 8] or the weaving ap-

proach of [22]. The former supports defining variability over

models of a given ecore using a transformative approach.

VML
∗
automates the definition of variability in arbitrary

modelling languages. CVL uses aspect-orientation to inject

variability onmodels of arbitrary DSLs, while [22] uses weav-

ing techniques. While these approaches target the abstract

syntax, Verso adapts the concrete syntax as well.

Regarding graphical languages, in [14], the authors define

product lines of graphical editors, so that a particular product

editor can be obtained from a configuration. Instead, we

adapt existing editors to enable the definition of models with

PCs. This is done by defining variation points in the DSL.

In general, a rich combination of MDE and SPLs not only

requires adapting the modelling editors, but also needs to

inject variability in all sorts of model management programs.

In this line, transformation and code generation approaches

have been adapted to work over models with variability [4,

24, 33]. However, we are not aware of approaches dealing

with the adaptation of graphical editors.

6 Conclusions and Future Work
In this paper, we have proposed a method to inject variability

in graphical editors of modelling languages. Our method has

been realized within Eclipse/EMF, and is able to adapt exist-

ing Sirius editors, synthesizing a feature-oriented graphical

environment on top of FeatureIDE.

We are currently seeking ways to improve the comprehen-

sibility of complex models with variability. We are exploring

the use of (dynamically created) graphical layers able to, e.g.,

display only the part of the model with no PC, or with PCs

involving certain features. In the future, we would like to

adapt other MDE artefacts to deal with variability, like tex-

tual editors, code generators and transformations. We would

also like to provide means to check the validity of integrity

constraints at the family level, in the style of [2]. Our ap-

proach targets variability at the model level, but variability

at the meta-model level can be useful as well, e.g., to enable

the generation of product lines of editors [14].

Acknowledgements
Work funded by the R&D programme of Madrid (S2018/TCS-

4314), the Spanish Ministry of Science (RTI2018-095255-B-

I00), and the Austrian Science Fund (P 30525-N31).

Automated Variability Injection for Graphical Modelling Languages GPCE ’20, November 16–17, 2020, Virtual, USA

References
[1] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-

Driven Software Engineering in Practice, Second Edition. Morgan &

Claypool Publishers.

[2] Krzysztof Czarnecki and Krzysztof Pietroszek. 2006. Verifying Feature-

Based Model Templates Against Well-Formedness OCL Constraints.

In Proc. of GPCE’06. ACM, 211–220.

[3] EcoreTools. [n.d.]. EcoreTools. https://www.eclipse.org/ecoretools/.
(last accessed in October 2020).

[4] Sandra Greiner and Bernhard Westfechtel. 2018. Evaluating Multi-

variant Model-To-Text Transformations Realized by Generic Aspects.

In Proc. of MODELSWARD’18. Springer, 82–105.
[5] Esther Guerra, Juan de Lara, Marsha Chechik, and Rick Salay. 2020.

Property satisfiability analysis for product lines ofmodelling languages.

IEEE Transactions on Software Engineering (2020), 1–20.

[6] Ines Hajri, Arda Goknil, Lionel C. Briand, and Thierry Stephany. 2018.

Configuring use case models in product families. SoSyM 17, 3 (2018),

939–971.

[7] Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik, Gøran K. Olsen,

and Andreas Svendsen. 2008. Adding Standardized Variability to

Domain Specific Languages. In SPLC. IEEE Computer Society, 139–

148.

[8] Øystein Haugen, Andrzej Wasowski, and Krzysztof Czarnecki. 2013.

CVL: common variability language. In Proc. of SPLC’13. ACM, 277.

[9] John Edward Hutchinson, Jon Whittle, and Mark Rouncefield. 2014.

Model-driven engineering practices in industry: Social, organizational

and managerial factors that lead to success or failure. Sci. Comput.
Program. 89 (2014), 144–161.

[10] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. 2008.

ATL: A model transformation tool. Sci. Comput. Program. 72, 1-2 (2008),
31–39.

[11] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. 1990. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-021. SEI, Carnegie Mellon University.

[12] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2008. Granular-

ity in software product lines. In Proc. of ICSE’08. ACM, 311–320.

[13] Steven Kelly and Juha-Pekka Tolvanen. 2008. Domain-specificmodeling:
enabling full code generation. John Wiley & Sons.

[14] Thomas Kühn, Kevin Ivo Kassin, Walter Cazzola, and Uwe Aßmann.

2018. Modular feature-oriented graphical editor product lines. In Proc.
of SPLC’18. ACM, 76–86.

[15] Michael Lienhardt, Ferruccio Damiani, Lorenzo Testa, and Gianluca

Turin. 2018. On checking delta-oriented product lines of statecharts.

Sci. Comput. Program. 166 (2018), 3–34.
[16] J. Meinicke, T. Thüm, R. Schröter, F. Benduhn, T. Leich, and G. Saake.

2017. Mastering software variability with FeatureIDE. Springer.
[17] T. Murata. 1989. Petri Nets: Properties, Analysis and Applications.

Proc. IEEE 77, 4 (1989), 541–580.

[18] Radu Muschevici, José Proença, and Dave Clarke. 2016. Feature Nets:

behavioural modelling of software product lines. SoSyM 15, 4 (2016),

1181–1206.

[19] H. Nabi and T. Aized. 2019. Modeling and analysis of carousel-based

mixed-model flexible manufacturing system using colored Petri net.

Adv. in Mech. Eng. 11, 12 (2019), 1–14.
[20] Yassine Ouhammou, Emmanuel Grolleau, Michaël Richard, Pascal

Richard, and Frédéric Madiot. 2015. Mosart framework: a collaborative

tool for modeling and analyzing embedded real-time systems. In Proc.
of CSDM’15. Springer, 283–295.

[21] Richard F. Paige, Dimitrios S. Kolovos, Louis M. Rose, Nikolaos Dri-

valos, and Fiona A. C. Polack. 2009. The Design of a Conceptual

Framework and Technical Infrastructure for Model Management Lan-

guage Engineering. In Proc. of ICECCS’09. IEEE Computer Society,

162–171.

[22] Gilles Perrouin, Gilles Vanwormhoudt, Brice Morin, Philippe Lahire,

Olivier Barais, and Jean-Marc Jézéquel. 2012. Weaving variability into

domain metamodels. SoSyM 11, 3 (2012), 361–383.

[23] K. Pohl, G. Böckle, and F. van der Linden. 2005. Software Product Line
Engineering. Foundations, Principles and Techniques. Springer.

[24] Rick Salay, Michalis Famelis, Julia Rubin, Alessio Di Sandro, and Mar-

sha Chechik. 2014. Lifting model transformations to product lines. In

Proc. of ICSE’14. ACM, 117–128.

[25] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. 2014. DeltaEcore

– A Model-Based Delta Language Generation Framework. In Proc. of
Modellierung’14 (LNI). GI, 81–96.

[26] Sirius. [n.d.]. Sirius. https://www.eclipse.org/sirius/. (last accessed in

October 2020).

[27] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.

2008. EMF: Eclipse Modeling Framework, 2nd edition. Addison-Wesley

Professional, Upper Saddle River, NJ.

[28] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter

Saake. 2014. A Classification and Survey of Analysis Strategies for

Software Product Lines. ACM Comput. Surv. 47, 1 (2014), 6:1–6:45.
[29] Salvador Trujillo, Don S. Batory, and Oscar Díaz. 2007. Feature Ori-

ented Model Driven Development: A Case Study for Portlets. In Proc.
of ICSE’07. IEEE Computer Society, 44–53.

[30] Salvador Trujillo, Jose Miguel Garate, Roberto Erick Lopez-Herrejon,

Xabier Mendialdua, Albert Rosado, Alexander Egyed, Charles W.

Krueger, and Josune De Sosa. 2010. Coping with Variability in Model-

Based Systems Engineering: An Experience in Green Energy. In Proc.
of ECMFA’10. Springer, 293–304.

[31] UML [n.d.]. UML 2.5.1 OMG specification. http://www.omg.org/spec/
UML/2.5.1/. (last accessed in October 2020).

[32] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann,

Mats Helander, Lennart C. L. Kats, Eelco Visser, and GuidoWachsmuth.

2013. DSL Engineering - Designing, Implementing and Using Domain-
Specific Languages. dslbook.org. http://www.dslbook.org

[33] Bernhard Westfechtel and Sandra Greiner. 2018. From Single- to

Multi-Variant Model Transformations: Trace-Based Propagation of

Variability Annotations. In Proc. of MODELS’18. ACM, 46–56.

[34] Jules White, James H. Hill, Jeff Gray, Sumant Tambe, Aniruddha S.

Gokhale, and Douglas C. Schmidt. 2009. Improving Domain-Specific

Language Reuse with Software Product Line Techniques. IEEE Software
26, 4 (2009), 47–53.

[35] Jon Whittle, John Edward Hutchinson, and Mark Rouncefield. 2014.

The State of Practice in Model-Driven Engineering. IEEE Software 31,
3 (2014), 79–85.

[36] Manuel Wimmer, Petr Novák, Radek Sindelár, Luca Berardinelli, Tanja

Mayerhofer, and Alexandra Mazak. 2017. Cardinality-based variability

modeling with AutomationML. In Proc. of ETFA’17. IEEE, 1–4.
[37] Steffen Zschaler, Pablo Sánchez, João Pedro Santos, Mauricio Alférez,

Awais Rashid, Lidia Fuentes, Ana Moreira, João Araújo, and Uirá

Kulesza. 2009. VML* - A Family of Languages for Variability Manage-

ment in Software Product Lines. In Proc. of SLE’09. Springer, 82–102.

https://www.eclipse.org/ecoretools/
https://www.eclipse.org/sirius/
http://www.omg.org/spec/UML/2.5.1/
http://www.omg.org/spec/UML/2.5.1/
http://www.dslbook.org

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Motivation
	2.2 Defining Modelling Languages in MDE
	2.3 Annotative, Feature-Oriented Variability

	3 Injecting Variability in Graphical DSLs
	3.1 Variability on the Abstract Syntax
	3.2 Variability on the Concrete Syntax

	4 Tool Support and Evaluation
	4.1 Tool Support
	4.2 Evaluation

	5 Related Work
	6 Conclusions and Future Work
	References

