DevOpsML: Towards Modeling DevOps Processes and Platforms

Alessandro Colantoni
Institute of Business Informatics -
Software Engineering
Johannes Kepler University
Linz, Austria
alessandro.colantoni@jku.at

ABSTRACT

DevOps and Model Driven Engineering (MDE) provide differently
skilled IT stakeholders with methodologies and tools for organizing
and automating continuous software engineering activities—from
development to operations, and using models as key engineering
artifacts, respectively. Both DevOps and MDE aim at shortening
the development life-cycle, dealing with complexity, and improve
software process and product quality.

The integration of DevOps and MDE principles and practices in
low-code engineering platforms (LCEP) are gaining attention by the
research community. However, at the same time, new requirements
are upcoming for DevOps and MDE as LCEPs are often used by
non-technical users, to deliver fully functional software. This is
in particular challenging for current DevOps processes, which are
mostly considered on the technological level, and thus, excluding
most of the current LCEP users. The systematic use of models
and modeling to lowering the learning curve of DevOps processes
and platforms seems beneficial to make them also accessible for
non-technical users.

In this paper, we introduce DevOpsML, a conceptual framework
for modeling and combining DevOps processes and platforms. Tools
along with their interfaces and capabilities are the building blocks of
DevOps platform configurations, which can be mapped to software
engineering processes of arbitrary complexity. We show our initial
endeavors on DevOpsML and present a research roadmap how to
employ the resulting DevOpsML framework for different use cases.

CCS CONCEPTS

- Software and its engineering — Abstraction, modeling and
modularity; Integration frameworks.

KEYWORDS

DevOps, model-driven engineering, modeling languages

ACM Reference Format:

Alessandro Colantoni, Luca Berardinelli, and Manuel Wimmer. 2020. Dev-
OpsML: Towards Modeling DevOps Processes and Platforms. In ACM/IEEE
23rd International Conference on Model Driven Engineering Languages and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS 20 Companion, October 18-23, 2020, Virtual Event, Canada

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8135-2/20/10...$15.00
https://doi.org/10.1145/3417990.3420203

Luca Berardinelli
Institute of Business Informatics -
Software Engineering
Johannes Kepler University
Linz, Austria
luca.berardinelli@jku.at

Manuel Wimmer
Institute of Business Informatics -
Software Engineering
Johannes Kepler University
Linz, Austria
manuel. wimmer@jku.at

Systems (MODELS °20 Companion), October 18-23, 2020, Virtual Event, Canada.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3417990.3420203

1 INTRODUCTION

Over the last decade, DevOps methods and tools have been success-
fully implemented and adopted by companies to boost automation
and efficiency of the engineering process. The term DevOps was
coined in 2009 [7] and became popular among companies and prac-
titioners [25] and, subsequently, among researchers and academia.
Jabbari et al. [23] define DevOps as "[...] a development methodology
aimed at bridging the gap between Development and Operations, em-
phasizing communication and collaboration, continuous integration,
quality assurance and delivery with automated deployment utilizing
a set of development practices.".

The momentum on DevOps resulted in a flourishing of techno-
logical solutions to meet the huge market demands [22]. The side
effects of such a rapid evolution was a scattered landscape of tech-
nological solutions offering a variety of tools [11] for supporting
activities of continuous-software engineering (CSE) [20] processes.

Figure 1 gives a bird’s eye view of the problem at hand. There
is no "one size fits all" DevOps process that is capable to cope
with all the specific goals, strategies, and requirements. Different
DevOps process variants exist (e.g., DevSecOps [28] or AIOps [15] to
mention just a few). The process variability is reflected on DevOps
platforms too, which may aggregate different engineering services
(e.g., security mechanisms and Al-augmented services) depending
on process needs.

Consequently, the choice of DevOps platforms for specific engi-
neering processes is still an open challenge. In [7], Bordelau et al.
investigated and elicited sets of requirements for DevOps frame-
works. Among them, they consider also the need for an adequate
support for modeling of DevOps engineering processes, of the prod-
uct resulting from the process, i.e., the software system, as well as
requirements of resources (e.g., tools) involved in the accomplish-
ment of development and operations phases. Furthermore, it has
to be mentioned that the same DevOps process and platform can
be more or less adequate based on different skills of the involved
stakeholders, nowadays possibly ranging from skilled engineers to
domain experts with no ICT background at all.

When the term DevOps was coined, principles and practices
of Model Driven Engineering (MDE) were already spread among
researchers and practitioners [4, 8], and it is now consolidating
its own body of knowledge [10]. In MDE, models are considered
the keystones of any engineering activity, from application-level
ones at the highest level of conceptualization down to system im-
plementation, deployment, and operations. Models are prescriptive,
machine-readable artifacts, obtained as results of modeling activity

https://doi.org/10.1145/3417990.3420203
https://doi.org/10.1145/3417990.3420203

MODELS ’20 Companion, October 18-23, 2020, Virtual Event, Canada

Goals Strategies Reqs

/;
\< real;zes» e

«realizes» ~ “«realizes»

DevOps Process
’I‘

«uses» -7 «uses»
«uses» \

Iil 3 GG
DevOps DevOps DevOps
Platform Platform Platform

Figure 1: Weaving together DevOps processes and platforms.

and the software is the result of a (semi-)automated chain(s) of
transformations among interwoven, validated models [8]. While
MDE has been applied extensively for generating software products,
it has been less frequently used for generating infrastructure code
required to run continuous engineering processes such as DevOps.

In order to tackle this shortcoming, we introduce in this paper
DevOpsML, a conceptual framework for modeling and configuring
DevOps engineering processes and platforms. With DevOpsML, we
approach the problem of DevOps process and platform integration
from two directions. First, in a bottom-up approach, existing Dev-
Ops platforms can be studied and their characteristics made explicit
in so-called platform models. Second, in a top-down approach, we
propose the usage of process modeling languages [21] to explain
the DevOps processes. The glue between the two directions is a
linking language, which explains how the different services offered
the platforms are used by the processes.

We outline the DevOpsML framework with all its main con-
stituents, show a typical application for a given scenario, and
present a roadmap on how DevOpsML may be extended and used
in the future for different use cases. In particular, since DevOpsML
is conceived in the context of the Lowcomote EU project [36], we
expect to study its application in the context of low-code engi-
neering platforms (LCEP)!, as the MDE-wise evolution of low code
development platforms (LCDPs) [36].

The rest of the paper is organized as follows: Section 2 details
the problem addressed by this paper and introduces the DevOpsML
framework. Section 3 presented some guidelines how to use Dev-
OpsML and demonstrates the language by-example. Section 4 pro-
poses a roadmap for future research directions inspired by Dev-
OpsML, in particular, for which use cases it may be employed.
Finally, Section 5 discusses related work, while Section 6 concludes
the paper.

2 THE DEVOPSML FRAMEWORK

This section introduces the DevOpsML framework and its three
main components, i.e., platform specification, software process spec-
ification, integration mechanism in a technology-agnostic manner.

See ESR 9: DevOps Support for Low-Code Engineering Platforms at https://www.
lowcomote.eu/esr/09/

Alessandro Colantoni, Luca Berardinelli, and Manuel Wimmer

a) b)
Software «realizes» SPEM <«c2» SPE:/’/ _«rfp:es_eris» DerpS“
Process Spec <— - Metamodel Mode Process
I
Integration «realizes» Link «c? L,-,,kl _«rfp:es_erfs» «uses»
Mechanism < - Metamodel Model

é!
«c2» platform «represents»

«realizes» | pjatform
Platform -
Spec. < - Metamodel Model DevOps
Platform

Figure 2: The DevOpsML framework elements (a) and their
implementations (b).

Subsequently, we propose a preliminary implementation of Dev-
OpsML based on model-driven technologies offered by the Eclipse
EMF [19] and Epsilon [24].

2.1 DevOpsML at a Glance

In order to provide a systematic and integrated view on DevOps
processes and their deployment to services provided by DevOps
platforms (cf. Figure 1), we introduce in this paper DevOpsML, a
conceptual framework (cf. Figure 2) for modeling and configuring
DevOps engineering processes and platforms. First, DevOpsML
allows defining so-called platform models that describe the different
DevOps platforms as well as their offered services by proposing a
platform modeling language. Second, DevOpsML allows defining
explicit engineering processes. For this purpose, we make use of the
modeling standard SPEM. In order to map the different processes
to the platforms, we provide a weaving mechanism that integrates,
via inter-model links, process and platform specifications.

In the following, we detail each part of DevOpsML by describing
the main modeling concepts employed for our purposes.

2.2 Platform Specification

According to the given DevOps definition [23], we expect that
a platform configuration is capable to support development and
operational activities adopting and realizing MDE principle and
practices [8].

In DevOpsML, a platform is a combination of tools, each one
providing (or requiring) a set of capabilities addressing engineering
concerns of interest, supported by combining tools via explicit
interfaces. A platform is expected to satisfy and being able to satisfy
the needs of an arbitrary engineering process.

Following typical MDE practices, we provide a platform meta-
model to create platform models representing a combination of
tools, interfaces, capabilities, and concerns. The metamodel with its
concepts and relationships is shown in Figure 3 and implemented
in Ecore [5]. The following paragraphs detail the content of the
platform metamodel.

Tools and Interfaces. This package introduces metaclasses for
representing tools and interfaces.

In its broadest meaning, a tool is a resource that helps in ac-
complishing a work unit of an engineering process. It provides or
requires interfaces.

https://www.lowcomote.eu/esr/09/
https://www.lowcomote.eu/esr/09/

DevOpsML: Towards Modeling DevOps Processes and Platforms

MODELS ’20 Companion, October 18-23, 2020, Virtual Event, Canada

Platform

CapabilitiesAndConcerns |E1

<<enumeration>> <<enumeration>>

ToolsAndinterfaces

name: String [1]

*/ CODE

| DevOpsPhase Status
MODEL REQUIRED
GENERATE PROVIDED

\
Concern

Interface

target: PPR[0..1]

type : InterfaceType [*]

<<enumeration>> %
PPRAspect <<abstract>>
PROCESS PlatformElement
PRODUCT name: String [1]
RESOURCE description : String [1]

devOpsPhases: DevOpsPhase [*]
status : Status [0..1]

BUILD
P TEST

RELEASE
DEPLOY

<<enumeration>> OPERATE

InterfaceType MONITOR

GUI PLAN

API|

SCRIPT

CLI

SPEC

Figure 3: Platform metamodel.

An interface represents the boundary of tools, and consequently,
of platforms as a whole, through which interactions among tools
and platforms take place, according to their required and provided
capabilities. Interfaces play the roles of connectors [32] among
platform elements, directly connecting multiple tools and, through
them, their capabilities. We consider a predefined but extensible
set of interface types, i.e., graphical user interfaces (GUI), applica-
tion programming interfaces (API), script, command line interfaces
(CLI), or more generic specifications (SPEC).

Capabilities and Concerns. This package introduces the con-
cepts of capability and concern.

For capability, we intend a facility enabled by a particular plat-
form configuration for performing a specified activity that will be
specified in a separated process model (see Section 2.3).

A concern is "a stakeholder’s interest that pertains to the develop-
ment of an application, its operation or any other matters that are
critical or otherwise important" [37].

A platform configuration is expected to offer capabilities to ad-
dress concerns related to (i) the engineering process, (ii) the system
under study, i.e., the product of the engineering process, and (iii)
of the resources (both human and technological ones) required for
the correct and convenient process execution and delivery of the
engineered product. We introduce the PPRAspect enumeration to
distinguish among process, product, and resource concerns [34].
Common concepts. The platform metamodel also includes some
shared concepts: platform element, status, and DevOps phase.

A platform element is an abstract concept that groups com-
mon properties of capabilities, concerns, tools, and interfaces. For
all these platform elements, a name and a textual description are
mandatory and, together, correspond to the minimal wealth of
knowledge required to model platform elements.

Since we intend to model DevOps platforms, we expect that its
elements will support typical DevOps process phases (code, build,
test, release, deploy, operate, monitor, and plan), which are given
as literals of the DevOps phase enumeration. In addition, we aim
at applying MDE principles and practices and for this reason, we
include model and generate phases, which are recurrent activities
in model-driven engineering processes. Each platform element can
be associated with many DevOps phases.

It is worth nothing that the given DevOps phase enumeration
is not exhaustive and it can be extended, if needed. However, we
expect detailed engineering process information to be modeled
in separated process models (see Section 2.3). Finally, provided or
required status can be set for any platform element, providing ratio-
nales for composing the platform like technology-wise matching of
required and provided tools’ interfaces or higher-level evaluation
of platforms’ capabilities against engineering process or product-
related concerns.

2.3 Process Specification

Process management is a core concern for software engineering
since decades [9, 17] and regards the specification and execution of
organizational behaviours, where working units at different level of
granularity are combined in a workflow. Stakeholders with defined
roles collaborate to perform the process. Engineering artifacts are
produced and manipulated throughout the process.

In DevOpsML, a platform is meant to support model-driven CSE
processes, where activities are expected to manipulate and share
MDE artifacts [16], aiming at the highest degree of automation.

In DevOpsML, we assume that a process (model) provides the
rationales to choose the elements of a DevOps platform (model),
defined as described in Section 3.3. For the sake of process speci-
fication, DevOpsML needs a software process modeling language
(SPML). In [21], a quality model for SPMLs is given.

For our first prototypical implementation of DevOpsML [5], we
choose the Software and Systems Process Engineering Metamodel
(SPEM) [29]. SPEM satisfies a minimal set of modeling capabilities
that we require for a DevOpsML proof of concept phase. Table 1 pro-
vides a list of common capabilities of process modeling languages
described in [1] for the sake of a process modeling challenge? and
maps them to the corresponding concepts defined in SPEM [29].
The complete mapping is available in [5].

Second, we decide to give higher importance to the descriptive
capability of SPEM [9] for documentation purposes rather than
executability, in which case BPMN or UML Activities (via Founda-
tional UML (fUML) [30]) are more appropriate solutions than SPEM.
Moreover, SPEM supports the specification of new processes by

2The table report in parenthesis the original IDs (Px) of the process modeling
capabilities.

MODELS ’20 Companion, October 18-23, 2020, Virtual Event, Canada

Alessandro Colantoni, Luca Berardinelli, and Manuel Wimmer

Table 1: Process modeling capabilities [1] and their support in SPEM

Process modeling capability

SPEM (MC:Method Content Package, PM:Process
with Methods Package)

Each process comprises one or more tasks (P1, P11).

A process type is defined by the composition of one or more task types. | PM:Activity; PM:Task Use

Each task type is created by an actor. An actor may have more than one | MC:Role Definition; PM:Composite Role; PM:Role Use;
actor type. An actor that performs a task must be authorized for that | PM:Team Profile
task. Actor types may specialize other actor types (P4, P15,P17, P18).

which are used and produced (P7, P13, P14)

Tasks are associated with artifacts used and produced, along with per- | MC:Task Definition; MC:Work Product Definition; MC:Role
forming actors. For each task type one may stipulate the artifact types | Definition; MC:Default Task Definition Parameter;

PM:Work Product Use;

Element
<<abstract>>

0..1 parent

name: String [0..*] * children

VAN
|] |
LinkModel IProcessZPIatfurm II Process2Process ” Platform2Platform I

* ||eftM *l rightM lprMe *lpIMe ‘|'prMe *‘|IprMe J/PWIE llee
| Model | ModelElement

Figure 4: The Linking metamodel.

separating the definition of reusable process model elements (see
Method Content language package in [29]) and their actual uses in
processes (see the Process with Methods language package in [29]).
In Table 1, we reported the owning package of each mapped concept
that we use later in Section 3.1 to show DevOpsML in action.

However, it is worth noting that the choice of a particular SPML
for process specification is a variation point of DevOpsML. In-
deed, different SPML can be chosen from existing ones [21] or new
ones can be created following software language and model-driven
engineering practices [10, 13] to cope with arbitrary SPML’s re-
quirements like process modeling capabilities [1] or usability by
(non-)technical users.

2.4 Integration Mechanism

DevOpsML is a model-driven framework and, as such, different
model integration mechanisms are good candidates to provide a
model integration capability, such as model weaving and model
transformation [8].

For DevOpsML, we choose the model weaving mechanism to
link elements from platform and process models. Epsilon Mod-
elink [24] for establishing and editing references between platform
and process models.

Figure 4 shows a linking metamodel for this purpose. A link
model contains a collection of hierarchical links. Since we do not
specify any direction for links, we consider them bidirectional by
construction. Each link is weaving sets of model elements belonging
to process or platform models>.

3We keep the Linking metamodel simple on purpose. We do not show here the special-
isation of ModelElement metaclass and constraints to distinguish intra/inter-model
links.

Based on the nature of the woven models, three different types of
links can be distinguished: platform to process, platform to platform,
and process to process:

e Process to Platform: process work units, at any granularity
level (e.g., SPEM activities, tasks, steps) can be mapped to plat-
form elements (tools, interfaces, capabilities, concerns).

e Platform to Platform: elements from two or more platform
models can be linked for user-defined rationales. For example,
based on values set for status property, potential (mis)matches
can be modeled and used for evaluations (e.g., classification of
different platform configurations against concerns’ coverage cri-
teria).

e Process to Process: elements from two or more process models
can be linked for user-defined rationales. In particular, since
DevOpsML does not prescribe the use of any process modeling
language, these links can be used to relate process models defined
with different process modeling languages®.

3 A TOUR ON DEVOPSML

This section provides a guideline on the usage of the DevOpsML
framework and shows it in action on explanatory examples. An
activity-like workflow is sketched in Figure 5. It comprises four mod-
eling activities (rounded boxes), whose outcomes are (i) process
model(s), (ii) platform model(s), (iii) libraries of reusable platform
elements (tools, interfaces, capabilities, concerns) to be reused for
platform modeling, and (iv) linking model(s) combining processes
and platform models. The final outcome is a DevOps model, a tripar-
tite model including the artifact produced throughout the proposed
workflow.

The next sections explain the four activities in details. All the
mentioned artifacts are available and further detailed in the project
repository [5].

3.1 Process modeling

In order to perform the process modeling activity, of course, we need
a process metamodel (Process MM) and a corresponding process
model editor.

We split the process modeling activities in two sub steps: initial
process modeling and process refinement. A first version of a pro-
cess model is created by collecting a set of coarse-grained working

4Technical limitation to this scenarios apply if the integration mechanism does not
support heterogeneous modeling spaces [16].

DevOpsML: Towards Modeling DevOps Processes and Platforms

MODELS ’20 Companion, October 18-23, 2020, Virtual Event, Canada

4 Process Modeling h
Process MM [{] Process MM DevOps Model
s Platf Linking P
Initial Process Process Process re | Process aMl?/Irm lr?mlz? ¢ r&cl\jss Process
Modeling Model | refinez | Refinement Model . Model
-- Process and requires 4
Libraries Modelin, H latf deli e .
g | Platform Modeling Platform) _@
o> Platform MM i Platform MM Weaving Link
| i - [3] Model
N ! *
- | TiLib i
@ Tools Modeling E P Configuring Platform
_____________________________ ! Platform Model Platform
- cclib <
@—>{Cap.& Con. Modeling — I Model
& 7 J

Figure 5: Guidelines for process and platform modeling, and their integration.

units and organizing them in a workflow. The process model may
suffice (or not) the needs of the involved stakeholders. If needed, a
process refinement step takes place, where a process model can be
further enriched with details like fine-grained tasks, artifacts, tools
descriptions, and responsibilities.

Example. We choose the OMG SPEM [29] as process modeling
language for the reasons aforementioned in Section 2.3. We create
a SPEM process model as instance of a SPEM metamodel, which
can be edited via metamodel-driven editors (e.g., tree-based edi-
tors automatically generated via Eclipse EMF) or via UML editors
equipped with the SPEM UML profile [29] such as MagicDraw".

For the sake of illustration purposes, we show the content of
SPEM model as created with the MagicDraw SPEM editor while
its EMF-based version is available in [5]. Figure 6a represents a
coarse-grained DevOps-like process on a SPEM workflow diagram.
The SPEM activities span development (plan, model/code, build,
test, release, deploy) and operation phases (operate, monitor) and
they can be continuously repeated until the system under study
(SUS) is running. It is a simplified view of a typical DevOps process
where modeling and coding activities could be combined (e.g., via
model to code transformations) [14]. Such coarse grained process
model does not provide further details.

Process refinements can be applied on such initial process model.
We illustrate this step by hierarchically combining the initial work-
flow in Figure 6a with an additional SPEM workflow and a set of
activity detail diagrams (ADD) as shown in Figure 6b.

An ADD describes the internal structure of an activity with
guidance (as textual description), definitions and occurrences of
tasks, roles, work products, tools, and their relationships.

In Figure 6b, we modeled the release strategy proposed as Gitflow
Workflow by Atlassian [2] using concepts taken from the SPEM Pro-
cess with Methods and Method Content packages (see Table 1) [29].

Following the SPEM modeling guideline, we distinguish between
definitions and occurrences or uses of process model elements.
Therefore, we refined the release activity with a workflow made
of four task uses, namely start, perform, merge and delivery and
provide details via separated ADDs. Each ADD refines a task use (i)
by modeling related inputs/outputs artifacts (a.k.a. work product
uses) and role responsibilities, and (ii) the corresponding reusable
work product and tasks definitions, together with tool definitions
required to accomplish the given task.

Shttps://www.nomagic.com/product-addons/no- cost-add-ons/spem-plugin

In particular, the task start takes in input the develop branch and
forks it to the release branch. The branches operation requires source
code manager and CI-CD-Server tools to manage a branch.

The task perform takes in input the created release branch and
uses it to polish the release, fixing bugs, generating documentation,
and for other release-oriented tasks, not shown in Figure 6 due to
space limitation. The output is the release product package. The task
perform is an occurrence of a release operation that requires build
manager and CI-CD-Server tools to manage a Package.

The next task merge, once perform is completed, merges the
release branch into the master and develop branches. A tag with
the version number is then created. In SPEM, both start and merge
are modeled as Task Uses of the same branches operation Task
Definition.

The delivery task takes in input the release product. According to
the delivery operation Task Definition, its accomplishment requires
an Artifact Repository tool where each work product, as package, is
collected.

The outcome of the process modeling activity is a process model
whose complexity depends on the inherent complexity of the con-
sidered engineering process, the modeling needs and expertise of
the process modeler. It is worth noting that, depending on the ex-
pressiveness of the chosen SPML, platform-related information can
included as well at this stage (e.g., SPEM tool definitions).

3.2 Libraries Modeling

A platform model is the combination of tools, interfaces, concerns
and capabilities. All platform elements can be modeled from scratch,
thus requiring a huge modeling effort. For this reason, we expect
to collect platform elements in reusable libraries.

The platform metamodel is designed on purpose with no con-
tainment references from Platform to Tools & Interfaces (TT) and
Capabilities & Concerns (CC) metaclasses. The result of this meta-
model design choice is the possibility to provide two libraries of
platform elements in separated models, Indeed, we expect the cre-
ation and population of two distinct libraries (TI Lib and CC Lib
in Figure 5) as instances of Tools & Interfaces and Capabilities &
Concerns metaclasses, respectively.

Those TI and CC libraries can then be populated by different
providers, which can evolve them independently from each other
and from any platform configuration. Tool providers, practitioners,
and researcher can model their own or preferred industrial-strength

https://www.nomagic.com/product-addons/no-cost-add-ons/spem-plugin

MODELS ’20 Companion, October 18-23, 2020, Virtual Event, Canada

Alessandro Colantoni, Luca Berardinelli, and Manuel Wimmer

Legend:
&8 BB BB BB 5
- - is SUS —
Plan Model/Code Build Test Release Deploy Operate Monitor running? Activity
b p b Guid ; w kd
) H ‘4 LO LO q% «Guidance» K‘E ork product
start i deliver release definition
perform merge delivery
y N {briefDescription = "The release product is delivered to =
(TR L'.B R [:g the artifact repository, where it is ready for deploying."} 29
T Work product
start release perform release R use
{briefDescription = "Fork a release branch off of develop."} {briefDescription = "Bug fixes, documentation 2t «andatory» > _ 9D
generation and other release-oriented steps };eledase «input> dellvery delivery operation (D)
‘\ have to be performed. Through the CI-CD-Server rol uct Task
= = and the BuildManager a new release is obtained."} «content trace» definition
D «mandatory» 0> «mandatory» (==
—~ «input» «output» -2 % managed work product Q Q
Devlelop start Re'%ase -f\ «mandatory» > «mendatorxy 29 u g P ?) . T’\k‘
| \% I Release «input» e «Output» Release Package ArtifactRepository ua:e
Product
| (I . | / | «Guidance» < Q
| branches operation | «perforn's» [9{ ponSIbIe> merge release Tool
«Use&d Tool» release operation Re Ie ase {briefDescription = ‘merge Relc_ease into Mfster definition
| | «Used Manager] and Develop; tag with the version number."}
| SourceCodeManager Cl-CD-Server | | — T = o
| dwork product | | % «mandatory» O> «mandatory» 6
«managed w ork product» BuildManager Cl-CD-Server Release «input» merge «inoutput» Master %
| | «managed w ork R/oduct» | | [Role Use
«mangatory» «content trace»
L _ «content trace» > % < «content tr trace>l % é«:oﬂterltraﬁe» | inGutput \ ‘
Branch Package o
i .
Develop branches operation Branch

Figure 6: Process modeling with SPEM: a) coarse-grained DevOps-like engineering process and b) its refinement.

and research tools and interfaces. At the same time, stakeholders
involved in the engineering process can model their concerns of
interest. For example, required concerns and required capabilities
can be used together to model process, product, or resource require-
ments, which can be matched with provided capabilities. Whenever
possible, capabilities can be linked to tools collected in correspond-
ing libraries, thus providing a concrete aid for platform modeling
and weaving with provided process models.

Moreover, we expect to use and co-evolve libraries (i.e., both
their content as well as the corresponding metaclasses in Figure 3)
to represent DevOps variants, technology-specific information (e.g.,
cloud concepts such as auto-scaling, vendor-specific and -agnostic
cloud APIs, containerisation and run-time standards) that we expect
from a fast-paced, evolving domain like DevOps.

The platform elements shows in Figure 7 can be considered
the very first entries of TI and CC libraries. We are building from
scratch the first versions of such platform libraries and they are
continuously updated and available on the project repository [5].

3.3 Platform modeling

Platform modeling consists in the selection and combination of
platform elements in a platform model compliant to the metamodel
in Figure 3. At this stage, the engineering process can be partially
known or completely unknown. Process knowledge sources are
(i) high level, partial or detailed process models (see Section 3.1),
and (ii) process concerns (i.e., concerns with target property set to
process).

Based on the mix of available process information, and assuming
the availability of platform elements from TI and CC libraries, a

platform modeler can create a platform model by iterative refine-
ments . In the following, we describe two complementary criteria
for selecting platform elements, sketching the metamodel-level
navigation scheme (in parenthesis):

e Tool-first criterion: Existing tools and interfaces are selected
that provide capabilities to support one or more DevOps phase
(e.g., tool—capability— concern:target=process, devOps phases=
any). This criterion can be followed by tool providers that want
to model their platform to be offered on the market.

e Required capability-first criterion: Existing required process
concerns are taken into consideration as process requirements.
Sets of candidate tools are selected that provide one or more of the
required capabilities (e.g., concern:target=process, status=required
— capability matching tool— capability: status=provided). This
criterion can be applied to model a desired DevOps platform.

In Figure 7, a platform model is depicted for explanatory purposes
using an object-like diagram notation. The modeled platform ad-
dresses five process concerns (track history, branching and merging,
continuous integration, continuous release, and continuous deploy)
that are linked to two capabilities (merging product sources, au-
tomating software delivery) provided by two tools, Git and Jenkins,
respectively, via Git command line interface (GitCLI) and Jenkins
graphical user interface (JenkinsUI). The platform model is then
completed by the artifact repository manager Nexus, and the build
manager Maven and the corresponding interfaces Nexus UI and
Maven CLL

DevOpsML: Towards Modeling DevOps Processes and Platforms

Process Model

MODELS ’20 Companion, October 18-23, 2020, Virtual Event, Canada

SourceCodeManager:ToolDefinition | | BuildManager :ToolDefinition | | CI-CD-Server :ToolDefinition | | ArtifactRepository :ToolDefinition |
T~ X
Link Model
scm:Process2Platform | | build:Process2Platform | | auto:Process2Platform | | repo:Process2Platform |
| |
Platform Model I_ E—
myPlatform:Platform
ti:ToolsandInterfaces
GitCLi:Interface MavenCli:Interface [JenkinsUl:Interface [NexusUL:Interface N
name = “GitCli" name = “MavenCli” name = “JenkinsUl” name = “NexusUl”
type=CLI type=CLI type=GUI type=GUI
description = “source code manager cli” description = “build lyfecicle cli” description = “Jenkins Web User Interface” description = “Nexus Web User Interface”
devOpsPhases =[CODE, RELEASE,DEPLOY] devOpsPhases =[BUILD, RELEASE] devOpsPhases =[BUILD,RELEASE,DEPLOY] devOpsPhases =[RELEASE,DEPLOY
Git:Tool Maven:Tool [Jenkins:Tool [Nexus:Tool N
name = “Git” name = “Maven” name = “Jenkins” name = “Nexus”
description = “source code manager” description = “build lyfecylce manager” description = “Jobs Automation Manager” description = “Artifact Repository Manager”
devOpsPhases =[CODE, RELEASE,DEPLOY] devOpsPhases =[BUILD, RELEASE] devOpsPhases =[BUILD,RELEASE,DEPLOY] devOpsPhases =[RELEASE,DEPLOY]

GitGui:Interface

Pom:Interface

name = “GitGui”
type=GUI

type=SPEC

name = “maven pom”

description = “source code manager cli”
devOpsPhases =[CODE, RELEASE,DEPLOY]

description = “maven project object model”
devOpsPhases =[BUILD, RELEASE]

cc:CapabilitiesAndConcerns

ManagingProductSources:Capability |

| AutomatingSoftwareDevelopment :Capability

—

CD:Concern
TrackHistory:Concern BranchingAndMerging:Concern Cl:Concern CR:Concern ——
name = “TrackHistory” name = “BranchingAndMerging” name="cl” o name = “CR” . description = “Continuous
description = “versioning” description = “branching and merging” description = “Continuous Integration description = “Continuous Release’ Deploy”
devOpsPhases =[CODE] devOpsPhases =[CODE, RELEASE,DEPLOY] devOpsPhases =[CODE,BUILD] devOpsPhases =[RELEASE] devOpsPhases =[DEPLOY]
target = PROCESS target = PROCESS target = PROCESS
status = PROVIDED status = PROVIDED status = PROVIDED

Figure 7: Weaving a SPEM process and platform model elements via Link Model.

3.4 Process and Platform Weaving

The process and platform weaving activity combines process and
platform models obtained from the corresponding modeling ac-
tivities. Both platform and process models are now considered
as consolidated. Weaving links are created using the integration
mechanism introduced in Section 2.4.

A Link Model is shown in Figure 7 using an object diagram-like
notation. The links shown in this example are set among multi-
ple tools (Git, Maven, Jenkins, Nexus) from the platform model
introduced in Section 3.3 and SPEM tool definitions depicted on
the SPEM ADD described in Section 3.1. It is worth noting that
elements from process and platform models potential are valid ends
for process to platform links. It is up to the modeler and her ex-
perience, to bind the correct elements from the two models. We
currently do not provide assistance for this task and we leave it as
future work to provide more modeling intelligence.

A possible goal of the weaving process and of process to platform
links is assessing the suitability of the given platform (model) in
supporting the execution of the given process (model), and vice
versa.

A positive assessment results in a tripartite DevOpsML model
can be reused as input to any model-driven engineering activity.
In this paper, we do not pose any further validation criteria for the
resulting DevOpsML Model and is left for future work.

In case of a negative assessment of the resulting DevOpsML
model, the modeler can go back and resume previous activities
(process, library, and platform modeling) depending on the cause of
the unsatisfactory outcome (e.g., poorly designed process, platform
elements, or platform as a whole).

4 DEVOPSML ROADMAP

In this section, we highlight some future work on DevOpsML and
outline associated research directions.

Languages as platform elements. Languages are typical instru-
ments in the hand of engineers to specify artifacts. In [8], modeling
languages are defined as "conceptual tools aimed at letting designers
formalize their thoughts and conceptualize the reality in explicit form,
being it textual or graphical”. In addition to modeling languages,
DevOps platforms can be also described in terms of programming
and scripting languages used to implement the integrated APIs. In
addition, JSON and YAML-based languages are common solutions
for DevOps platform configuration concerns.

MODELS ’20 Companion, October 18-23, 2020, Virtual Event, Canada

CsKind <<abstract>>
PlatformElement
S name: String [1]
GRAPHICAL coring Ll
HYBRID description : String [1]
devOpsPhases: DevOpsPhase [*]
AsKind status : Status [0..1]
MOF
XML SCHEMA lﬁ* — Platform
GRAMMAR
Language
SemanticsKind ?
OPERATIONAL 02
TRANSLATIONAL LanguageCharacteristics

abstractSyntax : AsKind [1]
concreteSyntax : CsKind [1]
semantics : SemanticsKind [1]
realization : RealizationKind [0..1]

RealizationKind

INTERNAL
EXTERNAL

Figure 8: Languages as new platform elements.

For this reasons, we aim at including languages as first class
DevOps platform elements. By raising languages to the status of
platform elements, we may better assess the application of MDE
principles and practices [16] by different DevOps platforms. Figure 8
shows an extension of the platform metamodel in Figure 3.

A language is a new platform element, which can be further de-

tailed via language characteristics such as abstract syntax (AsKind),
concrete syntax (CsKind), Semantics. Details about language’s tech-
nical realization can also be provided, for example whether it is
an independent or embedded language in host language (Realiza-
tionKind). A modeling language is expected to provide such infor-
mation in order to determine the modeling space of I € L [4, 16].
Since part of the success of DevOpsML will also depend on the avail-
ability of libraries of reusable platform elements, we will consider
the introduction of a language library and its proper use within the
workflow sketched in Figure 5.
DevOpsML for Low-Code Engineering Platforms. DevOpsML
is conceived in the context of the Lowcomote EU project [36]. For
this reason, we envision its first adoption the configuration of low-
code engineering platforms (LCEP)®.

LCEPs are meant to be used by non-technical users or citizen
developers, to deliver fully functional software, with the promise of
automating and reducing the effort of time-consuming and complex
engineering activities, like coding. Through advanced graphical
user interfaces, visual mechanisms and declarative languages, cit-
izen developers can focus only on the solutions, applying their
knowledge at the right level of abstraction in the domain of their
expertise [33, 36].

From a DevOpsML perspective, LCEP can be represented as plat-
form model(s). Moreover, due to their particular nature, additional
requirements need to be considered in order to keep DevOpsML
accessible and usable to citizen developers. For example, simpler
SPMLs can be used in place of SPEM for process specification, which
may (not) be provided by a particular LCEP. Finally, special require-
ments can be considered for (modeling) languages to be suitable
for LCEP such as hybrid notations [12].

%See ESR 9: DevOps Support for Low-Code Engineering Platforms available at https:
/[www.lowcomote.eu/esr/09/

Alessandro Colantoni, Luca Berardinelli, and Manuel Wimmer

Reusable libraries for different needs. The DevOps model ob-
tained as output of the workflow in Figure 5 can reuse platform
elements collected in TI and CC libraries. We expect that their
content will undergo continuous improvements that may include
technological details to make them (and the resulting DevOps plat-
form) suitable for specific purposes. In particular, libraries can be
populated with MDE, security, or Al-augmented tools and APIs
offering different capabilities (e.g., model management, security ver-
ification, or data analysis) for DevOps processes and platforms as
expected by DevOpsML users playing different roles (e.g., modeler,
security expert, data scientist).
DevOpsML usage scenarios. In this paper, we introduced a pro-
totypical version DevOpsML and with the explicit intent to support
the documentation of DevOps processes and platforms via distinct
yet interwoven MDE artifacts (process model, platform model, link
model). For this purpose, we chose SPEM as the most suitable SPML.
We plan to investigate more complex usage scenarios for Dev-
OpsML, which may include (but it is not limited to) runtime plat-
form and process monitoring, traceability, recovery, or simulation
just to mention a few. Therefore, we plan to collect and study addi-
tional requirements for DevOpsML like executability of process and
platform models or mechanisms to suitably propagate and combine
design-time and operational data [27].
Service-orientation. A DevOpsML framework model represents
a software engineering platform, providing and requesting (model-
ing) capabilities built on top of integrated tools and languages are
integrated to build software products [34]. As future work, we plan
to extend DevOpsML to support the description of capabilities as
a service [31], as depicted in Figure 2. It is a matter of discussion
whether the service-orientation concern should result in a evolved
platform metamodel (e.g., by introducing a Service metaclass) or
by extending libraries with service-oriented platform elements.
DevOpsML implementation. The current prototypical imple-
mentation of DevOps is based on Eclipse-based technologies i.e.,
EMF [19] for (meta) modeling. In this regard, we will investigate the
use of MDE frameworks to support model management activities
(e.g., model validation and transformation support). We will dis-
cuss the possibility to make DevOpsML independent from specific
modeling technology. Indeed, for the sake of rapid proof of con-
cept prototyping, the current DevOpsML implementation is built
exclusively on EMF-compliant technologies. For example, its weav-
ing mechanism is currently limited to EMF-based model artifacts.
Finally, we will also investigate the availability of Eclipse-based
technologies for software process modeling (e.g., Eclipse Process
framework [18]).

5 RELATED WORK

As witnessed by recent endeavors by the MDE research commu-
nity [6], cross-fertilization activities between MDE and DevOps
can be divided in two categories, MDE for DevOps and DevOps for
MDE, with the intent of a rapid uptake and adaptation of principles
and practices from the former domain to the latter, and vice-versa.
This work contributes to apply MDE for DevOps. In particular it
focuses on software process and platform modeling for DevOps.
In [17], Dumas et al. introduces the concept of process-aware
information system (PAIS) as a software system that manages and

https://www.lowcomote.eu/esr/09/
https://www.lowcomote.eu/esr/09/

DevOpsML: Towards Modeling DevOps Processes and Platforms

executes operational processes involving people, applications, and/or
information sources on the basis of process models.. In this regard,
DevOpsML can seen as a model-driven approach to create models
of PAIS, emphasizing the importance of (modeling) languages and
tools and their integration, and DevOpsML framework models as
high-level architectural descriptions of model-driven, DevOps-wise
PAIS.

In [14], a research roadmap and challenges to combine MDE and
DevOps to bridge the gaps from development to operation and from
operation to development phases are presented. Our framework
tackles some of these challenges (integration of MDE techniques,
integration of heterogeneous artifacts, selection of languages for
Dev-to-Ops and Ops-to-Dev pipelines). Indeed, any MDE method-
ology that can be described as a set of modeling concerns, mod-
eling languages, and tools can contribute (i) to populate libraries
of reusable platform elements, (ii) be reused to create platform
models and, (iii) integrated with process models in DevOpsML
framework models.

In [7], Bordeleau et al. investigated the requirements of model-
driven, DevOps-wise engineering platforms and they identified a
set of requirement categories (general, description, and analysis
and simulation requirements), including the need for considering
process, product, and resource aspects [34], and proper modeling
and tool integration mechanisms. We are currently evaluating Dev-
OpsML against those requirements. A preliminary assessment is
provided on the project repository [5]. It is worth noting that sup-
port for concrete requirement specifications can be expressed in
DevOpsML by (i) directly as required concerns (see Figure 3) as part
of DevOpsML platform configurations or (ii) specifying support
for requirement specification by integrating languages and tools
dedicated to requirement specifications. In both cases, requirements
can be included in DevOpsML framework model.

The need for process modeling is recognized since years and
encompasses any domain where there is the need for describing
and executing complex organizational behaviors [9].

SPEM [29] is a standard process modeling language for descrip-
tive process modeling. Different approaches use it as a baseline
for more sophisticated approaches. In [35], Simmonds et al. intro-
duce the Software Process Lines (SPrL) concept and a supporting
model-driven framework, to deal with variability and evolution of
software processes. They use SPEM [29] for modeling the software
process. In DevOpsML, we are adopting a descriptive approach
for process modeling and do not provide additional capabilities
for process model management. We expect such a capability as
externally provided by integrated tools and languages used in the
DevOps domain [11].

In the context of DevOps, the adjective continuous is commonly
used to refer to DevOps processes. In this paper, we used the
acronym CSE introduced in [20] to refer to this category of engi-
neering processes, whose shared concern is supporting a seamless
integration of Dev and Ops phases. In particular, in [20], Garcia et
al. investigated model-driven continuous delivery for teams. They
show how typical MDE architecture for DevOps frameworks, with
MDE artifacts (metalanguages, metamodels, models) and tools (e.g.,
model transformations for specific purposes [26]), can be realized
to support CSE processes. In DevOpsML, we aim at populating

MODELS ’20 Companion, October 18-23, 2020, Virtual Event, Canada

libraries of languages and tools with non-MDE or MDE-ready plat-
form elements (i.e., languages belonging to modeling spaces [16]).

Babar et al. [3] point out the need for configurable DevOps pro-
cesses to cope with continuously evolving scenarios. They propose
a Business Process Architecture (BPA) approach, based o variations
points on BPMN models. DevOpsML does not choose a particular
operational process modeling language and does not provide direct
support to process modeling activities. For these reasons, it repre-
sents a candidate complementary for DevOpsML, deserving further
investigation for potential future integration work.

Waurster et al. [39] perform a systematic review of the declarative
deployment technologies and propose the Essential Deployment
Meta-Model (EDMM) for comparison, selection, and migration of
deployment technologies and to help users to select the one that best
fits their scenario. Therefore, we will further investigate this work
for populating DevOpsML tools and interface platform component
library. Moreover, we will consider it during process and platform
weaving phase as guidance for mapping deployment technologies
to deployment activities.

Wettinger [38] presents a gather’n’deliver approach for collect-
ing, describing, and integrating infrastructural software compo-
nents and DevOps tooling (a.k.a. DevOpsware) as components
within working DevOps platforms. An application environment
metamodel and component taxonomies are provided for modeling
DevOps processes and platform, together with a mechanism to
generate DevOps platform skeletons from a repository of reusable
components. Process and platform aspects of DevOps are then
taken into account both in [38] and in DevOpsML. Moreover, the
current DevOpsML prototype is not providing any generation mech-
anism. However, DevOpsML emphasizes the need for languages.
We consider languages, like scripting languages typically used by
DevOpsware tools or DSLs needed by engineers in support of arbi-
trary MDE methodologies, as first class architectural elements of
any model-driven DevOps platform.

6 CONCLUSIONS

In this paper, we outlined the first prototype of DevOpsML, a model-
driven framework for modeling DevOps processes and platforms
and their weaving. We provided some preliminary guidelines and
example of its use for documentation purposes. Furthermore, we
outlined a research roadmap to guide our next research endeav-
ors towards the combination of DevOps and MDE principles and
practices with a focus on LCEPs.

ACKNOWLEDGMENTS

This project has received funding from the EU Horizon 2020 re-
search and innovation programme under the Marie Sktodowska-
Curie grant agreement No 813884.

REFERENCES

[1] Jodo Paulo A. Almeida, Adrian Rutle, Manuel Wimmer, and Thomas Kiihne.
2019. The MULTI Process Challenge. In 22nd ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems Companion, MOD-
ELS Companion 2019, Munich, Germany, September 15-20, 2019, Loli Burguefio,
Alexander Pretschner, Sebastian Voss, Michel Chaudron, Jérg Kienzle, Markus
Vélter, Sébastien Gérard, Mansooreh Zahedi, Erwan Bousse, Arend Rensink,
Fiona Polack, Gregor Engels, and Gerti Kappel (Eds.). IEEE, 164-167. https:
//doi.org/10.1109/MODELS-C.2019.00027

https://doi.org/10.1109/MODELS-C.2019.00027
https://doi.org/10.1109/MODELS-C.2019.00027

MODELS ’20 Companion, October 18-23, 2020, Virtual Event, Canada

Atlassian. 2019. Gitflow Workflow. https://www.atlassian.com/git/tutorials/
comparing-workflows/gitflow-workflow/, last accessed on 28/08/20.

Zia Babar, Alexei Lapouchnian, and Eric Yu. 2015. Modeling DevOps Deployment
Choices Using Process Architecture Design Dimensions. In The Practice of En-
terprise Modeling, Jolita Ralyté, Sergio Espafia, and Oscar Pastor (Eds.). Springer
International Publishing, Cham, 322-337.

Jean Bézivin. 2006. Model Driven Engineering: An Emerging Technical Space. In
Generative and Transformational Techniques in Software Engineering: International
Summer School, GTTSE 2005, Braga, Portugal, July 4-8, 2005. Revised Papers, Ralf
Lammel, Jodo Saraiva, and Joost Visser (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 36-64. https://doi.org/10.1007/11877028_2

Linz BISE Institute, JKU. 2020. DevOpsML. https://github.com/lowcomote/
devopsml/tree/1.2.2, last accessed on 28/08/20.

Modeling Languages Blog. 2019. DevOps for models and modeling DevOps.
https://modeling-languages.com/devops-modeling-workshop/, last accessed on
28/08/20.

Francis Bordeleau, Jordi Cabot, Juergen Dingel, Bassem S. Rabil, and Patrick
Renaud. 2020. Towards Modeling Framework for DevOps: Requirements De-
rived from Industry Use Case. In Software Engineering Aspects of Continuous
Development and New Paradigms of Software Production and Deployment, Jean-
Michel Bruel, Manuel Mazzara, and Bertrand Meyer (Eds.). Springer International
Publishing, Cham, 139-151.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-Driven Software
Engineering in Practice, Second Edition. Morgan & Claypool Publishers. https:
//doi.org/10.2200/S00751ED2V01Y201701SWE004

E. Breton and J. Bezivin. 2001. Process-centered model engineering. In Proceedings
Fifth IEEE International Enterprise Distributed Object Computing Conference. IEEE,
179-182. https://doi.org/10.1109/EDOC.2001.950436

Loli Burgueiio, Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen Lambers,
Sébastien Mosser, Richard F. Paige, Alfonso Pierantonio, Arend Rensink, Rick
Salay, Gabriele Taentzer, Antonio Vallecillo, and Manuel Wimmer. 2019. Contents
for a Model-Based Software Engineering Body of Knowledge. Software and
Systems Modeling 18, 6 (2019), 3193-3205. https://doi.org/10.1007/s10270-019-
00746-9

Necco Ceresani. 2016. The Periodic Table of DevOps Tools v.2 is Here. https:
//blog.xebialabs.com/2016/06/14/periodic- table- devops- tools-v-2/, last accessed
on 28/08/20.

Federico Ciccozzi, Matthias Tichy, Hans Vangheluwe, and Danny Weyns. 2019.
Blended Modelling - What, Why and How. In 2019 ACM/IEEE 22nd Interna-
tional Conference on Model Driven Engineering Languages and Systems Com-
panion (MODELS-C). ACM/IEEE, 425-430. https://doi.org/10.1109/MODELS-
C.2019.00068

Benoit Combemale, Ralf Limmel, and Eric Van Wyk. 2018. SLEBOK: The Software
Language Engineering Body of Knowledge (Dagstuhl Seminar 17342). In Dagstuhl
Reports, Vol. 7. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Benoit Combemale and Manuel Wimmer. 2019. Towards a Model-Based DevOps
for Cyber-Physical Systems. In Software Engineering Aspects of Continuous De-
velopment and New Paradigms of Software Production and Deployment - Second
International Workshop, DEVOPS 2019, Chateau de Villebrumier, France, May 6-
8, 2019, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 12055),
Jean-Michel Bruel, Manuel Mazzara, and Bertrand Meyer (Eds.). Springer, 84-94.
https://doi.org/10.1007/978-3-030-39306-9_6

Yingnong Dang, Qingwei Lin, and Peng Huang. 2019. AIOps: Real-world chal-
lenges and research innovations. Proceedings of the 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering: ICSE-Companion (2019), 4-5.
https://doi.org/10.1109/ICSE-Companion.2019.00023

Dragan Djuri¢, Dragan Gasevi¢, and Vladan Devedzi¢. 2006. The Tao of modeling
spaces. Journal of Object Technology 5, 8 (2006), 125-147. https://doi.org/10.
5381/j0t.2006.5.8.a4

Marlon Dumas, Wil M Van der Aalst, and Arthur H Ter Hofstede. 2005. Process-
aware information systems: bridging people and software through process technol-
ogy. John Wiley & Sons.

Eclipse Fou. 2018. Eclipse Process Framework. https://www.eclipse.org/epf/, last
accessed on 28/08/20.

Eclipse Fou. 2019. Eclipse Modeling Framework. www.eclipse.org/modeling/emf/,
last accessed on 28/08/20.

Jokin Garcia and Jordi Cabot. 2019. Stepwise Adoption of Continuous Delivery
in Model-Driven Engineering. In Software Engineering Aspects of Continuous
Development and New Paradigms of Software Production and Deployment, Jean-
Michel Bruel, Manuel Mazzara, and Bertrand Meyer (Eds.). Springer International
Publishing, Cham, 19-32.

Julidn Alberto Garcia-Garcia, José Gonzalez Enriquez, and Francisco
José Dominguez Mayo. 2019. Characterizing and evaluating the quality
of software process modeling language: Comparison of ten representa-
tive model-based languages. ~ Comput. Stand. Interfaces 63 (2019), 52-66.
https://doi.org/10.1016/j.csi.2018.11.008

Alessandro Colantoni, Luca Berardinelli, and Manuel Wimmer

Gartner. 2015. Gartner Says By 2016, DevOps Will Evolve From a Niche to
a Mainstream Strategy Employed by 25 Percent of Global 2000 Organizations.
https://tinyurl.com/y556a8moU, last accessed on 28/08/20.

Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer. 2016. What
is DevOps? A Systematic Mapping Study on Definitions and Practices. In Pro-
ceedings of the Scientific Workshop Proceedings of XP2016 (Edinburgh, Scotland,
UK) (XP ’16 Workshops). Association for Computing Machinery, New York, NY,
USA, Article 12, 11 pages. https://doi.org/10.1145/2962695.2962707

Dimitrios Kolovos, Louis Rose, Richard Paige, and Antonio Garcia-Dominguez.
2010. The Epsilon book. Structure 178 (2010), 1-10.

Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles.
2019. A Survey of DevOps Concepts and Challenges. ACM Comput. Surv. 52, 6,
Article 127 (Nov. 2019), 35 pages. https://doi.org/10.1145/3359981

Levi Lucio, Moussa Amrani, Juergen Dingel, Leen Lambers, Rick Salay, Gehan
MK. K Selim, Eugene Syriani, and Manuel Wimmer. 2016. Model transformation
intents and their properties. Software and Systems Modeling 15, 3 (2016), 647-684.
https://doi.org/10.1007/s10270-014-0429-x

Alexandra Mazak and Manuel Wimmer. 2016. Towards Liquid Models: An
Evolutionary Modeling Approach. In 2016 IEEE 18th Conference on Business
Informatics (CBI), Vol. 01. IEEE, 104-112. https://doi.org/10.1109/CBIL.2016.20
Havard Myrbakken and Ricardo Colomo-Palacios. 2017. DevSecOps: a multivocal
literature review. In International Conference on Software Process Improvement
and Capability Determination, Vol. 770. Springer, Springer Verlag, 17-29. https:
//doi.org/10.1007/978-3-319-67383-7_2

OMG. 2008. SPEM. https://www.omg.org/spec/SPEM/About-SPEM/, last
accessed on 28/08/20.

OMG. 2018. Semantics of a Foundational Subset for Executable UML Models.
https://www.omg.org/spec/FUML/, last accessed on 28/08/20.

George Pallis, Demetris Trihinas, Athanasios Tryfonos, and Marios Dikaiakos.
2018. DevOps as a Service: Pushing the Boundaries of Microservice Adoption.
IEEE Internet Computing 22, 3 (2018), 65-71. https://doi.org/10.1109/MIC.2018.
032501519

Dewayne E. Perry and Alexander L. Wolf. 1992. Foundations for the study of
software architecture. ACM SIGSOFT Software Engineering Notes 17, 4 (1992),
40-52. https://doi.org/10.1145/141874.141884

Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pieran-
tonio. 2020. Supporting the understanding and comparison of low-code devel-
opment platforms. In Proceedings of the 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE.

Miriam Schleipen and Rainer Drath. 2009. Three-view-concept for modeling
process or manufacturing plants with AutomationML. In Proceedings of ETFA
2009 - 2009 IEEE Conference on Emerging Technologies and Factory Automation.
IEEE, 1-4. https://doi.org/10.1109/ETFA.2009.5347260

J. Simmonds, D. Perovich, M. C. Bastarrica, and L. Silvestre. 2015. A megamodel
for Software Process Line modeling and evolution. In 2015 ACM/IEEE 18th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS).
IEEE, 406-415. https://doi.org/10.1109/MODELS.2015.7338272

Massimo Tisi, Jean-Marie Mottu, Dimitrios S Kolovos, Juan de Lara, Esther Guerra,
Davide Di Ruscio, Alfonso Pierantonio, and Manuel Wimmer. 2019. Lowcomote:
Training the Next Generation of Experts in Scalable Low-Code Engineering
Platforms. In {STAF} (Co-Located Events) ({(CEUR} Workshop Proceedings, Vol. 2405).
CEUR-WS.org, 73-78.

Klaas van den Berg, J.M. Conejero, and R Chitchyan. 2005. AOSD Ontology 1.0:
Public Ontology of Aspect-Orientation. Number AOSD-E in AOSD-Europe-UT-01.
AOSD Europe. AOSD-Europe-UT-01.

Johannes Wettinger. 2017. Gathering solutions and providing APIs for their orches-
tration to implement continuous software delivery. Ph.D. Dissertation. University of
Stuttgart, Germany. https://nbn-resolving.org/urn:nbn:de:bsz:93-opus-ds-91108
Michael Wurster, Uwe Breitenbiicher, Michael Falkenthal, Christoph Krieger,
Frank Leymann, Karoline Saatkamp, and Jacopo Soldani. 2020. The essential
deployment metamodel: a systematic review of deployment automation tech-
nologies. SICS Softw.-Intensive Cyber Phys. Syst. 35, 1 (2020), 63-75. https:
//doi.org/10.1007/s00450-019-00412-x

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow/
https://doi.org/10.1007/11877028_2
https://github.com/lowcomote/devopsml/tree/1.2.2
https://github.com/lowcomote/devopsml/tree/1.2.2
https://modeling-languages.com/devops-modeling-workshop/
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.1109/EDOC.2001.950436
https://doi.org/10.1007/s10270-019-00746-9
https://doi.org/10.1007/s10270-019-00746-9
https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/
https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/
https://doi.org/10.1109/MODELS-C.2019.00068
https://doi.org/10.1109/MODELS-C.2019.00068
https://doi.org/10.1007/978-3-030-39306-9_6
https://doi.org/10.1109/ICSE-Companion.2019.00023
https://doi.org/10.5381/jot.2006.5.8.a4
https://doi.org/10.5381/jot.2006.5.8.a4
https://www.eclipse.org/epf/
www.eclipse.org/modeling/emf/
https://doi.org/10.1016/j.csi.2018.11.008
https://tinyurl.com/y556a8moU
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/3359981
https://doi.org/10.1007/s10270-014-0429-x
https://doi.org/10.1109/CBI.2016.20
https://doi.org/10.1007/978-3-319-67383-7_2
https://doi.org/10.1007/978-3-319-67383-7_2
https://www.omg.org/spec/SPEM/About-SPEM/
https://www.omg.org/spec/FUML/
https://doi.org/10.1109/MIC.2018.032501519
https://doi.org/10.1109/MIC.2018.032501519
https://doi.org/10.1145/141874.141884
https://doi.org/10.1109/ETFA.2009.5347260
https://doi.org/10.1109/MODELS.2015.7338272
https://nbn-resolving.org/urn:nbn:de:bsz:93-opus-ds-91108
https://doi.org/10.1007/s00450-019-00412-x
https://doi.org/10.1007/s00450-019-00412-x

	Abstract
	1 Introduction
	2 The DevOpsML Framework
	2.1 DevOpsML at a Glance
	2.2 Platform Specification
	2.3 Process Specification
	2.4 Integration Mechanism

	3 A Tour on DevOpsML
	3.1 Process modeling
	3.2 Libraries Modeling
	3.3 Platform modeling
	3.4 Process and Platform Weaving

	4 DevOpsML Roadmap
	5 Related Work
	6 Conclusions
	References

