
Permission Tracking in Android 

 

Michael Kern 

Micro Focus 

Borland Software Corporation 

Linz, Austria 

michael.kern@microfocus.com 

Johannes Sametinger 

Dept. of Business Informatics – Software Engineering 

Johannes Kepler University 

Linz, Austria 

johannes.sametinger@jku.at 

 

 
Abstract—Mobile devices get smarter and increasingly provide 

access to sensitive data. Smart phones and tablet computers 

present detailed contact information, e-mail messages, ap-

pointments, and much more. Users often install apps on their 

devices to get additional functionality like games, or access to 

social networks. Too often, such apps access sensitive data and 

take privacy less serious than expected by users. In this paper, 

we will have a closer look at permissions that users grant to 

apps in Android, a wide-spread operating system for mobile 

devices like smart phones. As it turns out, Android does not 

provide sufficient control to their users about what apps are 

allowed to do. We demonstrate the feasibility of a permission 

tracking functionality, but conclude that thorough modifica-

tions in Android itself will be necessary to provide satisfying 

control of apps’ permissions and users’ privacy. 

Keywords-Android, mobile devices, privacy, permissions, 

tracking. 

I.  INTRODUCTION 

Almost everything that users can access on their desktop 
can also be accessed on their mobile devices, in particular on 
smart phones. These devices have become powerful with 
capabilities that desktops did not even have several years 
ago. Increased capabilities have come hand in hand with 
increased security threats. Nowadays, all our private and 
business data is accessible on our phones. Thus, these devic-
es increasingly have become the targets of malicious attacks. 
The most successful and most widespread operating system 
of today’s mobile devices is Android, with Apple’s iOS 
following second [1]. Needless to say, the operating system 
plays a key role for the security and for the privacy of these 
devices. Permissions play a major role for apps on Android. 
Giving permissions to apps can lead to data leaks because it 
may, for example, allow these apps to access contact data 
and to access the Internet. A malicious app may thus send all 
our contact data to a server on the Internet. Fine-grained 
permission setting is not (yet) possible in Android. 

In this paper, we will introduce Android and its security 
features. We will then suggest a mechanism to track permis-
sions in Android. For that purpose, we have developed an 
Android application that supports permission assignment, 
permission tracking and permission notifications. In Section 
II, we will provide an overview of the Android operating 
system. Section III follows with an overview of security 
mechanisms of Android. In Section IV, we will provide more 
details of Android permissions. The PermissionTracker tool 

will be presented in Section V. Implementation aspects fol-
low in Section VI. A comparison with other approaches is 
given in Section VII. Performance issues are discussed in 
Section VIII. Eventually, a conclusion ends the paper in 
Section IX. 

II. ANDROID 

Android is a Linux-based operating system for mobile 
devices like smart phones and tablet computers. It is devel-
oped by the Open Handset Alliance led by Google. Android 
apps can be downloaded from online stores like Google’s 
app store Google Play (formerly Android Market) and also 
from third-party sites. 

Google leads the Android Open Source Project (AOSP) 
with the goal “to create a successful real-world product that 
improves the mobile experience for end users” [2]. Since its 
original release, there have been many Android updates, 
each of which fixed bugs and added new features. The main 
Android building blocks are device hardware, the Android 
operating system, and the Android application runtime [2]. 
Android supports a wide range of hardware configurations, 
e.g., smart phones, tablets, or set-top-boxes. Even though 
Android is processor-agnostic, it does take advantage of 
some hardware-specific features, e.g., security capabilities 
such as the no-execute page protection of the ARM architec-
ture. 

The core system is built on top of the Linux kernel. All 
device resources, like camera, GPS, Bluetooth, telephony, 
network connections, are accessed through the operating 
system. Most Android applications are written in the Java 
programming language. Core Android services and applica-
tions are native applications or include native libraries. The 
virtual machine and native applications run within the same 
security environment, contained within the application sand-
box. Applications get a dedicated part of the file system in 
which they can write private data. Android applications are 
either pre-installed or user-installed. Pre-installed applica-
tions like phone, email, calendar, web browser, and contacts 
provide key device capabilities that can be accessed by other 
applications. Development of user-installed applications is 
supported by an open development environment. 

Google also provides cloud-based services for Android 
devices. They include services to let users discover, install, 
and purchase applications, update services, and application 
services that, for example, easily let application developers 
backup user data in the cloud. 

148Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



III. ANDROID SECURITY 

The Android platform security architecture provides sev-
eral key security features in an effort to protect user data as 
well as system resources, and to isolate applications from 
each other. To achieve these goals, Android provides a sand-
box for all applications, secure inter-process communication, 
and application signing, among others. User-granted permis-
sions at the application level are also part of the security 
architecture. They are central for the content of this paper 
and, thus, will be described separately in Section IV. In the 
following subsections, we describe basic security risks and 
Android security mechanisms. 

A. Security Risks 

Security risks originate from various sources, e.g., from 
the operating system or from communication mechanisms. 
Android consists of a Linux kernel and various open source 
libraries implemented in C/C++. The effect of open source to 
security is being discussed contradictory. C/C++ is known to 
be more prone to vulnerabilities than other languages like 
Java or C#. A static security analysis of version 2.2 has re-
vealed several hundred errors [3]. Almost 100 of these were 
rated critical, leading to crashes or constituting potential 
vulnerabilities. 

Smart phones have numerous wireless interfaces like 
WLAN, Bluetooth, NFC, and of course GSM and UMTS or 
3G. If confidential information is transmitted by the user or 
by an app, then attackers can easily listen in with a simple 
antenna. Attackers having direct access to a stolen or lost 
device are seen as one of the biggest threat. Data is not en-
crypted by default. Devices are used for critical services like 
online banking or virtual private networks (VPNs) to access 
sensible information. 

Unlike Apple, Google does not impose control mecha-
nisms for apps to be published on the market. If users report 
about malicious activities, then apps get removed from the 
market. Until that time, users are exposed to these malicious 
apps. Unaware users may also deactivate security functions 
countertrading enhanced usability. They may leave their 
device unattended or they may permanently turn on services 
like Bluetooth or WLAN. They may also install apps from 
un-trusted sources. 

B. Sandbox 

Android applications run in a sandbox, i.e., an isolated 
area of the operating system with no access to the rest of the 
system's resources. Access is granted only when users war-
rant explicit access permissions during application installa-
tion. Before installation, all the required permissions are 
displayed. 

C. Inter-process Communication 

Android processes can communicate with any of the tra-
ditional UNIX-type mechanisms, e.g., file system, sockets, 
signals. There are additional Android-specific mechanisms 

for inter-process communication. Google recommends that 
Android developers use these mechanisms, i.e., binders, 
services, intents, and content providers [3]. 

Binders are lightweight remote procedure call mecha-
nisms that are designed for high performance for in-process 
and cross-process calls. Android services run in the back-
ground. They can run in their own process or in the context 
of another application's process. Services can provide inter-
faces that are directly accessible through binders. Intents are 
simple message objects that represent the intention to do 
something. For example, if an application wants to display a 
web page, it creates this intent to view a specific URL and 
hands it off to the system. The system locates the browser 
that knows how to handle that intent and runs it. Intents can 
also be used to broadcast system-wide events, e.g., notifica-
tions. A data storehouse provides access to data on Android 
devices, e.g., the user's list of contacts. Applications can 
access data that other applications have exposed via a con-
tent provider. Applications can also define their own content 
provider and expose data of their own. 

Android developers are encouraged to use best practices 
to secure users' data and avoid the introduction of security 
vulnerabilities [4]. 

D. Application Signing 

Android applications must be signed by their developers. 
Code signing allows users to identify the authors of applica-
tions and to update applications without having to deal with 
permissions again. Unsigned applications that attempt to 
install will be rejected by either the Google app market or by 
the package installer on the Android device. In addition to 
Android’s built-in security features, users may use software 
by various vendors. Solutions are available for tasks like 
access control, data encryption, traffic counting, anti-theft 
(device locking, device location, data wiping), and malware 
protection. Well-known vendors for PC security solutions 
like BitDefender or Kaspersky also offer products for mobile 
devices with the Android operating system. 

IV. ANDROID PERMISSIONS 

A game may, for example, need to activate vibration but 
should not need to read messages or access contact infor-
mation. After reviewing the permissions, users can decide 
whether to install an application [4]. Protected resources 
include camera, location data (GPS), Bluetooth, telephony, 
SMS/MMS, and network/data connections. Granted permis-
sions are applied to applications as long as they are installed. 
Android’s permissions are some form of Mandatory Access 
Control, or MAC for short. In contrast to DAC which stands 
for Discretionary Access Control, access is not controlled by 
users or by user ids, but rather by permission labels that are 
assigned system functions. Accessing a resource requires the 
call of system functions. If an application wants access to a 
resource, it needs the permissions required by the appropriate 
system functions; see Figure 1 [4].  

149Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



 

Figure 1.  Access to sensitive data through protected APIs [4]. 

<manifest package="com.example.myapp">  
 <application />  
 ...  
 <uses-permission android:name= 
  "android.permission.SEND_SMS" /> 
 <uses-permission android:name= 
  "android.permission.RECEIVE_SMS" />  
 <uses-permission android:name= 
  "android.permission.READ_CONTACTS" />  
 … 
</manifest> 

Figure 2.  Permission declaration in manifest. 

<manifest package="com.example.myapp">  
 <application />  
 ...  
 <permission  
  android:name="my.permission.MY_PERM"  
  android:protectionLevel="normal"  
  android:label="@string/myPerm_Label"  
  android:description= 
  "@string/myPerm_Description">  
 </permission> 
 … 
</manifest> 

Figure 3.  Declaration of an application-defined permission. 

Protected APIs include [4]: 

 Camera functions 

 Location data (GPS) 

 Bluetooth functions 

 Telephony functions 

 SMS/MMS functions 

 Network/data connections 
 

Required permissions of applications are stored in their 
manifest file; see Figure 2. The application described in the 
manifest of Figure 2 needs to send and receive SMS messag-
es, as well as access to the user’s contact list. During installa-
tion the user gets informed about the permissions that are 
requested by an application. A dialog will show that, for 
example, the application requests access to services that may 
cost money, access to the phone’s location, to network com-
munication, to account information, and to storage. We can 
trust the application and install it or we can cancel the instal-
lation process as a whole. There is no way in between like 
installing the application but denying access to account in-
formation. The package installer is the single point of inter-
action with the user; no further checks with the user are done 
while an application is running. 

The Android operating system defines over one hundred 
different permissions. They are called standard permissions 
and distinguish various functions of the protected APIs men-
tioned above, for example, reading contacts, writing con-
tacts, sending SMS, receiving SMS. 

A. Application-defined permissions 

Permissions may also be defined by applications. Thus, 
developers can restrict access to their applications, i.e., to 
their activities, services, broadcast receivers, and content 
providers. The declaration of these application-defined per-
missions is again written in the application’s manifest file. 
Figure 3 shows an example permission with the name 
“my.permission.MY_PERM”. Other application may request 
this permission during installation and, thus, get access to 
activities and services of our sample application that are 
protected with this permission. 

B. Protection level 

The protection level specified in Figure 3 characterizes 
the potential risk that is implied in the permission [5]. This 
level indicates the procedure the system should follow when 
determining whether or not to grant the permission to an 
application requesting it. The value can be set to either Nor-
mal, Dangerous, Signature, or SignatureOrSystem [5]. Nor-
mal is the default value. Access is granted to isolated appli-
cation-level features, with minimal risk to other applications, 
the system, or the user. Access is automatically granted to 
requesting applications. The protection level Dangerous 
provides access to private user data or control over device. It 
introduces a potential risk and, therefore, is not automatically 
granted to requesting applications. If Signature is specified, 
access is granted if a requesting application is signed with 
the same certificate as the application that declared the per-
mission. The level SignatureOrSystem grants access to ap-
plications that are in the Android system image or that are 
signed with the same certificates as those in the system im-
age. This level is used for certain special situations. 

C. Drawbacks 

There are some drawbacks of the Android permission 
system.  

1) Static permissions 
Android’s permission system is rather rigid and lacks 

flexibility. Users can only install applications by granting all 
permissions requested by that application. It is not possible 
to withdraw any permission, neither during installation nor 
after the installation process. The only option users have is to 
uninstall an application. 

150Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



    
 a) b) c) 

Figure 4.  a) PermissionTracker showing permissions’ applications. b) Granted, denied and blocked permissions. c) Permission request 

2) Missing control 
Users have no control over their resources. Once an ap-

plication has been installed, it can access resources with the 
permissions that have been granted during installation. Users 
cannot neither watch which resources an application access-
es, nor can they permit or deny any such access. 

3) Over-privileged applications  
Applications sometimes are over-privileged, which 

means they require access to resources they do not need to 
function. Over-privileged applications increase the impact of 
vulnerabilities. 

4) Permission granularity 
Some standard permissions are defined at a coarse granu-

larity, e.g., INTERNET, WRITE_EXTERNAL_STORAGE. 
Applications with the permission INTERNET have arbitrary 
access to the Internet. There is no way to restrict access for 
example to specific domains or services. 

5) Permissions across applications 
Applications that have been signed with the same certifi-

cate and have the same user id can share their permissions. 
Shared user ids may grant permission to applications without 
explicitly declaring them in the application’s manifest file. 
Applications may also combine their permissions. For exam-
ple, application A may have access to the user’s contact data 
but no access to the Internet. Application B may have access 
to the Internet but no access to the user’s private data. This 
inoffensive situation may become threatening when applica-
tion A hands over sensitive data to application B which in 
turn may send it to a server on the Internet. 

V. PERMISSION TRACKER 

We have developed an Android application that allows 
users to administer permissions of their applications. We 
have extended the existing permission concept and enable 

users to allow or deny permissions at any time. Additionally, 
we facilitate the observation of application’s access to re-
sources. 

The PermissionTracker tool provides three consistent 
views with different levels of detail. Users can view applica-
tion categories and inspect the permissions of single applica-
tions or groups of applications. Users can alternatively view 
permission categories and inspect applications with specific 
permissions or permissions in specific permission groups. At 
any time, users can modify the permissions of applications or 
groups of applications. Check boxes are available and can be 
selected individually for granting or denying permissions, for 
blocking access to resources, for monitoring access to re-
sources, and for sending notifications when a resource is 
being accessed. If users block access to a resource, they will 
be asked for approval every time an application wants to 
access the resource. If access to a specific resource by a 
specific application or a group of applications is monitored, 
then statistics with information about resource access will be 
available. 

The PermissionTracker also allows a detailed view with 
information about specific permissions, including the protec-
tion level, see Figure 4a. We can also see in Figure 4b the 
number of granted, denied and blocked access for the “send 
SMS messages” permission. The table in the bottom of the 
figure shows the numbers for today, for this week, this 
month, and the total number. These numbers get collected 
only if monitoring has been activated. 

Notifications inform users immediately when an applica-
tion requests access to a specific resource. Figure 4c shows 
the dialog that appears when the user opens a notification. 
We can see that the application SMS Messenger requests the 
permission to send SMS messages. We can either grant or 
deny this permission. If the user does not react to a notifica-
tion, for example, because the phone has been left home, 

151Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



 

Figure 5. Permisson status report. 

 

Figure 6. Android’s manager classes. 

then the dialog will close automatically after five minutes. In 
this case, access will be denied. 

PermissionTracker generates several reports to ease an 
analysis of applications and permissions. The reports are 
created in HTML format and either shown in the browser or 
sent to an email address. Reports include permissions of 
applications, the permissions’ status at the time of access, as 
well as date and time of access, see Figure 5 for an example. 

VI. IMPLEMENTATION ASPECTS 

In Section IV, we have described Android’s permission 
mechanism. The regular Android permissions do not support 
the implementation of an application like the Permis-
sionTracker. Therefore, a few adaptations had to be made in 
the Android system. Subsequent sections describe these 
modifications. 

A. Android 

Android developers use an application framework that 
serves as a layer between applications and the mobile device. 
These Android APIs, i.e., short for application programming 
interfaces, support the creation of GUI elements, data reposi-
tories, data communication, etc. The manager classes get 
started during initialization of Android and run in separate 
threads. Figure 6 shows part of these manager classes. The 
first two boxes border the package manager service and the 
activity manager service. The activity manager interacts with 
the overall activities running in the system. It is responsible 
to consider permissions when components of applications 
interact among each other or access components of Android. 
The package manager retrieves various kinds of information 
related to packages of currently installed applications on the 
device. It stores the permissions that applications request 
during their installation and provides functions to application 
developers to retrieve information, for example, about these 
permissions. In order to implement the functionality of our 
PermissionTracker application, we had to add two functions 
to this manager, i.e., a block permission dialog and a permis-
sion notification, see the bottom box in Figure 6. 

User settings about permission tracking are stored in a 
file app_configuration.xml in the directory of the Permis-
sionTracker. As mentioned above, these user settings contain 

information about whether a user wants to individually grant 
or deny access to a resource, whether notifications should be 
sent upon access to a resource, or whether access should get 
logged. 

The Android Activity Manager interacts with the overall 
activities running in the system. For example, it returns at-
tributes of the device configuration or information about the 
memory usage of running processes [6]. Our extension to the 
Activity Manager checks the permissions and performs mon-
itoring and sending notifications if necessary. The Android 
Package Manager can be used to retrieve information about 
application packages that are installed on the device [7]. This 
information includes permissions that applications have 
assigned to. However, the package manager does not contain 
any methods that allow the modifications of permissions. 
This is not necessary as current Android implementations 
assign these permissions during the installation of an applica-
tion. Later modifications have not been planned so far. The 
implementation of our PermissionTracker needs such meth-
ods. Therefore we have simply added them, i.e., methods to 
grant, to revoke and to log permissions. 

B. Installation 

Due to the extensions made to Android, the Permission-
Tracker cannot be installed on a system without these exten-
sions. Care has to be taken to use a device where an original 
Android version is installed. If the installed Android contains 
extensions of the device’s manufacturer, these extensions 
would be overwritten when installing the new Android ver-
sion for the PermissionTracker. For details about how to 
install an Android build see [8]. 

A device's operating system that comes when buying it is 
called stock ROM. A custom ROM is a version of Android 
that includes the kernel, apps, and services, i.e., everything 

152Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



that is needed to operate the device. As the name suggests, 
this version has been customized by someone in some way. 
These custom ROMs can be installed via the recovery con-
sole. There are some downsides to custom ROMs. For ex-
ample, when installing a new version with a custom ROM, 
then all existing data is lost. Thus, installation a new device 
may be easy, but doing such an install at a later point of time 
may be more sophisticated [9][10]. 

VII. RELATED WORK 

Weaknesses of the Android permission system have been 
known for a while. Concepts and tools have been suggested 
for improvements. We will start with extensions to Android, 
continue with applications and conclude with a comparison 
to our approach. 

A. Android Extensions 

APEX stands for Android Permission Extension. It is a 
framework that allows users to specify runtime constraints to 
restrict applications’ access to resources. Users can specify 
constraints through a simple interface of the extended An-
droid installer. The extensions are incorporated in Android 
with little changes of the code and the user interface [11]. 
Kirin is an alternate application installer and security frame-
work to Android. It ensures that applications meet predefined 
security requirements. Applications are rejected, if any speci-
fied requirements are not met. Devices stay in a secure state 
without users having to make any security decisions. Chal-
lenges include the modeling of security mechanisms and the 
acquiring of appropriate policy primitives [12]. 

SAINT stands for Secure Application Interaction, a 
mechanism that allows application developers to define 
install-time and run-time constraints. Policies can be speci-
fied by application developers, but not by users [13]. Mock-
Droid is also a modified version of Android. It allows users 
to 'mock' applications’ access to resources. Mocking means 
that resources are reported as empty or unavailable whenever 
an application requests access. In contrast to Android’s static 
permission system, users can revoke access to specific re-
sources at run-time [14]. XMandroid stands for eXtended 
Monitoring on Android. It performs runtime monitoring and 
analysis of communication across applications in order to 
prevent potentially malicious control and data flow based on 
a defined policy [15]. 

TISSA stands for Taming Information-Stealing Smart-
phone Applications. It is a system that implements a privacy 
mode that empowers users to flexibly control application’s 
access to personal information in a fine-grained manner. 
Granted access can be dynamically adjusted at run-time [16]. 

B. Applications 

There are several applications available that help in get-
ting an overview about the permissions that installed applica-
tions request. Some of these applications also allow to grant 
or to deny access to specific resources. aSpotCat is an ad-
supported application that eases the process of finding out 
the permissions that specific applications have. It also pro-
vides lists of applications that use specific resources. For 
example, which applications use GPS or SMS? [20] 

PermissionDog is an application that lists applications 
and checks the permissions they are using. Based on these 
permissions, PermissionDog rates the potential danger of 
applications. If wanted, every time an application is 
launched, a notification pops up and shows the number of 
used permissions and the potential danger of the application 
[21]. PermissionsDenied is an application that lists the 
amount of active and disabled permissions of each applica-
tion on the device. Permissions can be enabled and disabled. 
Any changes require a reboot of the device in order to be-
come effective. Brief descriptions of permissions can also be 
shown [17][22]. 

LBE Privacy Guard features a back-ground service that 
constantly monitors applications’ activities. Users get alerted 
whenever an application attempts to access a sensitive re-
source like the location, the phone ID or the Internet. The 
requested access can then be permitted or denied by the user 
[17][23][24]. CyanogenMod offers a variety of features and 
enhancements to Android. Among others, permissions can 
dynamically be granted and denied [18]. WhisperCore is a 
security application for Android with firewall and encryption 
functionality. It also offers an extended permission mecha-
nism. Similar to MockDroid, access to resources is not 
blocked, but results in empty or dummy data [19]. 

C. Comparison 

Table 1 shows a comparison of the solutions introduced 
in this section. We use the following criteria for the compari-
son. 

1) Availability 
Not all the solutions that we have introduced are availa-

ble for end-users. Some are available as applications (marked 
with an A in Table 1) while others can be installed as Cus-
tom ROM (marked with CR). PermissionTracker is a simple 
application but has to be installed as Custom ROM, because 
it depends on extensions in Android. The same holds for 
MockDroid. 

2) Modified Android 
Modifications or extensions in the Android source code 

are required by several solutions, because the original An-
droid’s permission mechanism is too simple to provide en-
hanced permission functionality. Some applications operate 
with the original Android system and, thus, can provide only 
limited functionality like listing permissions that had been 
requested and granted to applications during their installation 
process. 

3) Policy 
Control of resource access is based on policies by the 

system. The end-user does not have control over permissions 
other than to change policies of the system. This is in con-
trast to manual control, where the user has direct control over 
the permissions of single applications. 

4) Conditions 
Restriction of resource access can be controlled by the 

definition of specific conditions. This is only possible in 
APEX, where users have fine-grained control about permis-
sions of applications. 

153Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



TABLE I.  COMPARISON 

   
A

P
E

X
 

  
K

ir
in

 

  
S

A
IN

T
 

  
M

o
c
k

D
ro

id
 

  
X

m
a

n
D

r
o
id

 

  
T

IS
S

A
 

  
a

S
p

o
tC

a
t 

  
P

er
m

is
si

o
n

 D
o

g
 

  
P

er
m

is
si

o
n

s 
D

e
n

ie
d

 

  
L

B
E

 P
ri

v
a

cy
 G

u
a
r
d

 

  
C

y
a

n
o
g
e
n

 M
o

d
 

  
W

h
is

p
e
r
C

o
re

 

  
P

er
m

is
si

o
n

T
r
a
c
k

er
 

1. Availability - - - CR - - A A A A CR CR CR 

2. Modified Android X X X X X X - - - - X X X 

3. Policy - X X - X - - - - - - - - 

4. Conditions X - - - - - - - - - - - - 

5. Blocking X - X - X - - - X X X - X 

6. Mocking - - - X - X - - - - - X - 

7. User confirmation - - - - - - - - - X - - X 

8. Logging - - - - - - - - - X - - X 

9. GUI - - - - - - AP AP A A - - AP 

 

5) Blocking 
Permission to access a specific resource may be blocked 

by raising a security exception. It depends on an application 
how it handles such a situation. It may crash, close down or 
continue to run. 

6) Mocking 
An alternative to blocking access to a resource is to pro-

vide dummy or mock data. Thus, an application will not 
realize that it won’t get access to real data and will continue 
to run as expected. We have not yet implemented this fea-
ture, but believe that this will be necessary. Tricking applica-
tions will prevent them from not functioning as expected. 

7) User confirmation 
In some situations users may prefer to explicitly confirm 

access to a resource by a specific application. Doing so for 
all applications and all permissions is too much trouble. But 
it is useful to have control over specific resources, especially 
when a new application has just been installed and is not 
(yet) completely trusted by the user. 

8) Logging 
Logging the access to resources allows for later inspec-

tion. Logs make it easy to find out which resources really 
had been accessed by specific applications. Logging is only 
provided by LBE Privacy Guard and PermissionTracker. 

9) GUI 
Android extensions typically provide some minor exten-

sions to the Android permissions user interface. Permission 
applications provide extended user interfaces. For example, 
grouping applications and permissions into categories, which 
makes it easier to grant or deny resources. aSpotCat, Permis-
sionDog and PermissionTracker support categories for ap-
plications and for permissions (AP in Table 1). Permis-
sionDenial and LBE Privacy Guard provide categories for 
applications only (A in Table 1). 

As can be seen in Table 1, PermissionTracker is an ap-
plication that needs an extended Android version. Its permis-

sion control is based on user manipulation rather than the 
definition of policies and it provides blocking of permis-
sions. It stands out by providing dynamic user confirmation 
and logging which is also available for the LBE privacy 
guard. However, the LBE privacy guard offers less function-
ality because it is based on an unmodified version of An-
droid. 

VIII. PERFORMANCE 

Performance is a crucial issue that has to be taken into 
account for any changes to the existing permission control 
mechanism, as users are typically not willing to sacrifice 
performance for security. With PermissionTracker, users can 
define policies for apps to manage and monitor access to 
features. These policies are stored in an Xml file that is read 
into memory during each system startup. If an app wants to 
access certain permissions, the policy as specified in the 
PermissionTracker is evaluated. 

We have measured the performance overhead of our code 
changes on the Android emulator with Android 2.3.6. 45 
apps were installed on the system. For that purpose, we have 
exemplarily measured the time taken to resolve the permis-
sion checks for sending SMS (SEND_SMS) and for access-
ing GPS data (ACCESS_FINE_LOCATION). In particular, 
we have timed the intervals for checking permissions in the 
existing security mechanism of Android, in our modified 
permission checks and in our modified permission checks 
where we log permission access. 

The difference between the time taken by the original 
permission-check mechanism of Android and that of our 
system enhancement is rather small, an average of 3.5 milli-
seconds for both permissions. When logging is activated, the 
additional time needed for policy evaluation increases to an 
average of 35 milliseconds. This is mainly caused by the fact 
that each permission access is written to a log file in the 
working directory of PermissionTracker. All in all the en-
hancements to the existing permission checking model of 

154Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



Android are efficient and require only a little performance 
overhead that is not noticeable to users. 

IX. CONCLUSION AND FUTURE WORK 

We have introduced Android with its security mecha-
nisms. The permission system is rather rigid in Android and 
suffers from a few drawbacks. We have developed a more 
flexible permission system with a permission tracker tool. 
The system allows users to block and monitor access to re-
sources by arbitrary applications. For implementation pur-
poses, the Android system had to be slightly extended. 

The use of an app like the PermissionTracker application 
is recommended for users who want to control access to their 
resources on a finer granularity than what is currently possi-
ble with Android. Android users who want to have advanced 
control over permissions granted to their apps have three 
options. First, they can download and use one of the permis-
sion apps with limited functionality. This helps in getting a 
better overview about permissions granted to apps, but does 
not prevent privacy breaches. Second, users can use a modi-
fied version of Android with a better handling of permis-
sions. This provides more protection against privacy breach-
es. However, installing a modified version of Android is only 
practicable when activating a new device. The installation 
process would remove any settings and user data on a device 
that is already in use. In order to empower all end-users with 
flexible permission control, it will be necessary to include 
more flexible permission control into the regular Android 
system. 

REFERENCES 

[1] IDC - Press Release. Android- and iOS-Powered Smartphones 
Expand Their Share of the Market in the First Quarter, 
According to IDC. 24 May 2012.  
www.idc.com/getdoc.jsp?containerId=prUS23503312  
[retrieved: Aug., 2012] 

[2] Android Open Source Project. Android. source.android.com/  
[retrieved: Aug., 2012] 

[3] Coverity Scan: 2010 Open Source Integrity Report. Featuring 
the Coverity Software Integrity Report for the Android 
Kernel. www.coverity.com/library/pdf/coverity-scan-2010-
open-source-integrity-report.pdf [retrieved: Aug., 2012] 

[4] Android Developers . Permissions.  
developer.android.com/guide/topics/security/security.html  
[retrieved: Aug., 2012] 

[5] Android Developer. The AndroidManifest.xml File. 
developer.android.com/guide/topics/manifest/manifest-
intro.html [retrieved: Aug., 2012] 

[6] Android Developer. ActivityManager.  
developer.android.com/reference/android/app/ActivityManag
er.html [retrieved: Aug., 2012] 

[7] Android Developer. PackageManager.  
developer.android.com/reference/android/content/pm/Package
Manager.html [retrieved: Aug., 2012] 

[8] Android Open Source Project. Initializing a Build Environ-
ment. source.android.com/source/initializing.html  [retrieved: 
Aug., 2012] 

[9] Artem Russakovskii. Custom ROMs For Android Explained - 
Here Is Why You Want Them.  
www.androidpolice.com/2010/05/01/custom-roms-for-
android-explained-and-why-you-want-them/  [retrieved: Aug., 

2012] 

[10] Android Code. Installing the Latest Custom ROM. 
code.google.com/p/android-roms/wiki/Install_Custom_ROM  
[retrieved: Aug., 2012] 

[11] Mohammad Nauman and Sohail Khan. Design and 
Implementation of a Fine-grained Resource Usage Model for 
the Android Platform. Department of Computer Science, 
University of Peshawar, 2010,  
csrdu.org/pub/nauman/pubs/apexext-iajit10.pdf  [retrieved: 
Aug., 2012] 

[12] William Enck, Machigar Ongtang and Patrick McDaniel. 
Mitigating Android Software Misuse Before It Happens. 
Department of Computer Science and Engineering, 
Pennsylvania State University, 2008,  
www.enck.org/pubs/NAS-TR-0094-2008.pdf  [retrieved: 
Aug., 2012] 

[13] William Enck, Patrick McDaniel, Stephen McLaughlin and 
Machigar Ongtang. Semantically Rich Application-Centric 
Security in Android. Department of Computer Science and 
Engineering, Pennsylvania State University, 2010,  
www.enck.org/pubs/acsac09.pdf  [retrieved: Aug., 2012] 

[14] Alastair Beresford, Andrew Rice, Nicholas Skehin and 
Ripduman Sohan. MockDroid: Trading privacy for 
application functionality on smartphones. Computer 
Laboratory, University of Cambridge, 2011,  
www.cl.cam.ac.uk/~acr31/pubs/beresford-mockdroid.pdf  
[retrieved: Aug., 2012] 

[15] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas 
Fischer and Ahmad-Reza Sadeghi: Android Security 
XManDroid: A New Android Evolution to Mitigate Privilege 
Escalation Attacks: System Security Lab, Technische 
Universität Darmstadt, 2011,   
www.informatik.tu-darmstadt.de/fileadmin/ 
user_upload/Group_TRUST/PubsPDF/xmandroid.pdf  
[retrieved: Aug., 2012] 

[16] Vincent Freeh, Xuxian Jiang, Xinwen Zhang and Yajin Zhou. 
Taming Information-Stealing Smartphone Applications (on 
Android). Department of Computer Science, NC State 
University, 2011, www.csc.ncsu.edu/faculty/jiang/pubs/ 
TRUST11.pdf  [retrieved: Aug., 2012] 

[17] CNET.de. Permissions Denied für Android: Alle App-
Berechtigungen voll im Griff. (in German)  
www.cnet.de/blogs/mobile/android-app/41552649/ 
permissions_denied_fuer_android_alle_app_berechtigungen_
voll_im_griff.htm  [retrieved: Aug., 2012] 

[18] CyanogenMod. CyanogenMod Wesbsite.  
www.cyanogenmod.com/  [retrieved: Aug., 2012] 

[19] Whisper Systems. Selective permissions for Android. 
whispersys.com/permissions.html  [retrieved: Aug., 2012] 

[20] Sam Lu. aSpotCat (app by permission).  
play.google.com/store/apps/details?id=com.a0soft.gphone.aS
potCat  [retrieved: Aug., 2012] 

[21] Android Freeware. PermissionDog.  
www.androidfreeware.net/download-permissiondog.html  
[retrieved: Aug., 2012] 

[22] Google Play. Permissions Denied.  
play.google.com/store/apps/details?id=com.stericson.permissi
ons  [retrieved: Aug., 2012] 

[23] Google Play. LBE Privacy Guard.  play.google.com/store/ 
apps/details?id=com.lbe.security.lite [retrieved: Aug., 2012] 

[24] Sameed Khan. LBE Privacy Guard For Android Monitors 
Access Requests, Guards Privacy. addictivetips.  
www.addictivetips.com/mobile/lbe-privacy-guard-for-
android-monitors-access-requests-guards-privacy/   
[retrieved: Aug., 2012] 

 

155Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies


