
Software Security for Small Development

Teams – A Case Study

Michael Kainerstorfer
Aumayr GmbH
Linzer Straße 46

4221 Steyregg, Austria
+43 732 6440 225

m-kainerstorfer@aumayr.com

Johannes Sametinger
Johannes Kepler University

Altenbergerstraße 69
4040 Linz, Austria

+43 732 2468 9435

johannes.sametinger@jku.at

Andreas Wiesauer
Johannes Kepler University

Altenbergerstraße 69
4040 Linz, Austria
+43 699 11707417

wiesauer@softwaresecurity.at

ABSTRACT

Microsoft is developing wide-spread software solutions like the

Windows operating system and the Office suite. In order to im-

prove security of their products, they have introduced the Micro-

soft Security Development Lifecycle (MS-SDL). Ample docu-

mentation about the MS-SDL is available, thus, allowing other

companies to adopt the lifecycle as well. We were wondering

whether an adoption of the lifecycle is possible and useful for real

small development teams, e.g., for a single developing person. In

order to find out, we have done a practical test, i.e., we have used

the MS-SDL for the development of a small, but real-world soft-

ware project. The findings will be presented in this paper.

Categories and Subject Descriptors

D.2.0 [Software Engineering]: General.

General Terms

Design, Experimentation, Security.

Keywords

Software security, software development, software lifecycle, secu-

rity development lifecycle.

1. INTRODUCTION
IT security is becoming increasingly important. Software security

is an essential aspect thereof. Software bugs and flaws provide the

entrance doors for many malicious attacks. The software devel-

opment lifecycle is crucial for the creation of secure software, i.e.

software that is not suffering from such entrance doors. It is not

possible to neglect security considerations during development

and add security as an additional non-functional requirement just

before release. It has to be planned before-hand, because ramifica-

tions of this requirement are manifold. Architecture and design of

an entire system may have to be adapted in order to guarantee a

sufficient level of security and privacy.

Microsoft has introduced security and privacy early and through-

out all phases of the software development process. Security-

related vulnerabilities in the design, code, and documentation

should be minimized and detected as well as eliminated as early as

possible. The resulting Microsoft Security Development Lifecycle

(MS-SDL) aims at reducing the number and the severity of securi-

ty vulnerabilities and improving privacy protection. The MS-SDL

adds several steps to the software development process and intro-

duces additional roles. These improvements of the development

process can be applied incrementally and do not require radical

changes of existing development processes. A variant for agile

development has also been suggested. However, the MS-SDL

appears to be heavy-weight, i.e., made for big development teams

that work on millions of lines of code, which is indeed the case

for Microsoft teams that, for example, work on Windows and MS

Office versions.

It seems natural that smaller development teams will also benefit

from the use of the MS-SDL. Developers can embrace lightweight

software security practices by using the agile variant of the MS-

SDL. We were interested in the following question: Can small and

medium-sized businesses (SMEs) with tiny development teams

spend the effort of the MS-SDL’s additional development steps

and benefit from all the additional overhead without getting lost in

security issues? Which of these steps make sense and to which

extent when developing software, say, as a single person? Which

of the suggested roles can be meaningful in such a scenario?

In this paper we will provide a brief introduction to software secu-

rity, to secure development lifecycles in general and the Microsoft

Security Development Lifecycle in particular. We will then report

on a small project that had been implemented by use of the MS-

SDL. Experiences and lessions learned will conclude the paper.

2. SOFTWARE SECURITY
Software has many quality attributes, e.g., reliability, maintaina-

bility, usability or testability. These are non-functional require-

ments, and software developers often tend to neglect paying suffi-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

iiWAS2011, 5-7 December, 2011, Ho Chi Minh City, Vietnam.

Copyright 2011 ACM 978-1-4503-0784-0/11/12...$10.00.

cient attention to these requirements until (too) late phases in the

development process. The same holds for software security, which

is more than yet another software quality attribute. Secure soft-

ware needs to protect data against unauthorized access and to

withstand both malicious and inadvertent interference with its

operations. Secure software typically uses mechanisms like au-

thentication, access control and encryption.

It is important to understand that it is necessary, but not sufficient

to protect computers and computer networks from attack and sub-

sequent intrusion through, for example, firewalls. Firewalls re-

strict network traffic by deciding what can pass through them

based on defined rules. Firewalls have to allow access to Web

applications, which would be useless without such access. Mali-

cious input to a web application cannot be detected by firewalls

and has to be handled by the application itself.

Secure coding is needed to avoid vulnerabilities like buffer over-

flows, SQL injection, etc. But security is not just a coding issue.

Many design decisions and even the overall system architecture

may be affected in order to make an application secure. Therefore,

it is grossly inefficient, if not even impossible to develop unsecure

software and to make it secure afterwards. Security testing is

needed but insufficient.

3. SECURE LIFECYCLE
Software developers have many software lifecycle models to

choose from. We can divide between two major paradigms of

them. On the one hand, we have so called “heavyweight” lifecycle

models that require careful planning, rigorously documented

process activities and formalized quality assurance. Examples of

such models are traditional waterfall or spiral approaches as well

as V-Modell XT. On the other hand, so called “lightweight” or

“agile” models exist. They aim at producing software quickly by

small iterations which deliver working software that can be pre-

sented to customers, who then can demand additional functionali-

ty. Therefore, the focus is on the product itself rather than on spe-

cification, design or quality assurance artifacts. Examples are

eXtreme Programming (XP for short), Crystal or Scrum [1,2,3,

4].

Deciding which process model to choose often is a tedious endea-

vor, since suitability is influenced by a number of factors, e.g. size

and distribution of development teams, stability of requirements,

customer participation, personnel qualification or safety criticality

[5]. Any of these models can be used in order to develop secure

software. But none of them addresses security aspects explicitly.

Software developers need to pay attention to security early in the

development process. It is necessary to think about possible

threats and mitigation strategies before design decisions are made.

For this purpose, threat modeling, which is a structured approach

for identifying threats, can be applied [6]. Given a set of possible

threats, concrete risks for the system can be evaluated and their

mitigation be planned. Therefore, risk management is another

important aspect in the security context. Risk evaluation will lead

to security requirements which then have to be traced throughout

the whole software development lifecycle, e.g. by selecting ap-

propriate architectural styles or design patterns or by implement-

ing security mechanisms. Ideally, security requirements will be

foundations for security or penetration test cases, which can verify

the correct realization of them. The importance of security to to-

day’s customers and the wealth of activities needed to achieve

security suggest an explicit integration of these activities into the

software development lifecycle.

Examples for secure lifecycles are the Microsoft Security Devel-

opment Lifecycle (MS-SDL for short) [7] and the Comprehensive,

Lightweight Application Security Process (CLASP for short) from

OWASP, the Open Web Application Security Project [8]. Soft-

ware security touch points are lightweight best practices that are

bound to software artifacts rather than a specific lifecycle model

[9]. We consider all these examples to be of value for increased

security. We have opted for the MS-SDL simply because the

prominence and reputation of Microsoft helped in convincing the

employer to use the lifecycle.

Even though additional activities have to be done in secure life-

cycle, they aim at reducing the total cost of development. Cost

reduction is possible, because the costs for fixing vulnerabilities

are highest after an application has been deployed already. The

National Institute of Standards and Technology (NIST) has esti-

mated that code fixes performed after release can result in tens of

times the cost of fixes performed during the design phase [10].

4. MS-SDL
The concepts of the Microsoft Security Development Lifecycle

(MS-SDL) were formed with the Trustworthy Computing direc-

tive in 2002. At that time, "security pushes" were made to im-

prove security and reliability of existing (Windows) code. MS-

SDL aims at assisting developers to build more secure software

and to protect end-users.

The MS-SDL was established in 2004 and designed as an integral

part of the software development process at Microsoft. Windows

Vista was the first operating system to go through the full process.

Over the years, MS-SDL has matured into a well-defined metho-

dology, and Microsoft has made guidance papers, tools and train-

ing resources available to the public. The MS-SDL consists of

several phases, i.e., five core phases, and one pre-phase as well as

one post-phase. We will briefly describe these phases in subse-

quent sections.

Pre-SDL. Software security training of involved people is a pre-

requisite for the use of the MS-SDL. Microsoft developers, tes-

ters, and program managers must attend at least one unique secu-

rity training class each year. There are many fundamental software

security concepts that have to be understood by people who are

involved in a software development project.

Requirements. Security and privacy requirements of a software

system have to be specified in order to optimize the integration of

security and privacy during the development project. This phase

consists of three practices: (1) establishing security and privacy

requirements, (2) defining quality gates and bug bars, and (3)

performing a security and privacy risk assessment.

Design. The security architecture is defined and documented in

the design phase. This phase includes (1) the establishment of

design requirements, (2) an analysis of the attack surface, and (3)

the modeling of threats.

Implementation. Secure software development is ensured in the

implementation phase by enforcing security practices, i.e., (1) the

use of approved tools, (2) the deprecation of unsecure functions

and APIs, and (3) the performance of static analyses.

Verification. Testing the software against security and privacy

requirements of phase 1 is done in the verification phase. It con-

sists of (1) dynamic analysis, (2) fuzz testing, and (3) attack sur-

face review.

Release. Preparing software for final release requires an (1) inci-

dent response plan, (2) a final security review, and (3) a release

archive.

Post-SDL. A response plan is needed with preparations for poten-

tial post-release issues. The software development team must

remain available to address any possible security issues.

Agile Development. The SDL for agile development integrates

security practices into agile software development methodologies.

It reorganizes security practices into three categories, i.e., (1)

every-sprint practices, (2) bucket practices (to be completed on a

regular basis), and (3) one-time practices.

Roles. The MS-SDL includes general criteria and job descriptions

for security and privacy roles. These roles are filled during the

requirements phase and provide the organizational structure ne-

cessary to identify, catalogue, and mitigate security and privacy

issues during development.

5. CASE STUDY
For many years, an Austrian-based small-sized business in venti-

lation engineering had used text messages via email for order

processing. Needless to say, there were many drawbacks to that

solution. Eventually, the decision was made to develop a web

application and to automatically pass on clients’ orders to the

internal IT infrastructure, e.g., to the production order system. The

IT department consisted of three people, one of which was ex-

pected to develop the application. Security was important for

obvious reasons and the decision was made to take security and

privacy serious during development. The requirements were rather

clear and as a consequence, sequential development with the MS-

SDL was opted for.

Problem Statement. The order system to be developed is rather

straight-forward. It encompasses several security-relevant issues.

These include the administration of user data (user name, pass-

word, company-related information), the transmission of order

information over the Internet, and the provision of a public inter-

face to the company’s web server connected to the IT infrastruc-

ture. The project team for the development of the system was

quite minimal. The head of the small IT department served as

responsible project manager. Another single person was both the

project leader and the entire development team. The project man-

ager and three users of the existing order system made sure that

functional requirements were complete and consistent. The three

users also served as beta testers to improve usability of the new

system. Project consultation was provided by security experts

from the local university. Due to the small development team, a

security leadership team had not been installed. The responsible

project manager had to serve both as security advisor and as secu-

rity team.

Pre-SDL. Security training of the single software developer con-

sisted of a lecture at the university about software security. The

lecture dealt with introductory security topics including security

concepts, secure coding, threats and countermeasures, secure

software lifecycle. Additional information about software security

like [9], information about the MS-SDL like [7], [10], [11], and

information about secure coding and web application security like

[12] and [13] had been studied in more detail, both as preparation

for the project and in parallel with the project.

Requirements. Security and privacy requirements are necessary

due to the distributed nature of the system. For example, the vo-

lume of orders may be of interest for competitors of both the ven-

tilation company and its clients. While security has been seen as

an important issue, the privacy risk for data transmission was

assessed to be only modest. This is true because only client IDs

and information about the order of or an offer about ventilation

items is to be sent over the Internet. Quality gates and bug bars

had not been used explicitly. A simple spreadsheet had to serve as

a security bug tracking system. The single person project team did

not warrant buying one of the quite expensive commercial sys-

tems for that purpose.

Design. Various client companies send their orders over the inter-

net to the web server that stores these orders in a queue, see Fig-

ure 1. Orders are also stored locally at the clients during creation,

Figure 1: Architecture of Ordering System

Figure 2: Scenario of detailed order

transfer

Table 1: Identified Threats

ID Threat

T1 Anonymous usage

T2 Manipulation of MK2.ini file

T3 Manipulation of user.ini

T4 Manipulation of license.ini

T5 Manipulation of formparts.ini

T6 Manipulation of database

T7 Denial of reporting of orders

T8 Concurrent access to database

T9 Network failure

T10 Erroneous inputs

T11 SQL injection

T12 Pretention of wrong identity

T13 Manipulation of order data

T14 Denial of order

T15 Eavesdropping

T16 Web server overload

T17 Unauthorized usage

T18 Unauthorized processing

T19 Data manipulation

T20 Denial of order processing

T21 Data disclosure

i.e., before being submitted. Before being accepted, the orders

have to be reviewed and schedule by skilled employees and are

then stored in the production database.

Threat modeling has to be done at various levels of detail, starting

with scenarios of functional requirements and the identification of

potential threats. Several main components had been identified in

this process, i.e., the client system with a local database that con-

tains order information, a web service that receives orders and

stores them on a database on the server, and a timer that checks

this database and sends e-mail notifications to people that are

responsible for the processing of orders. The entire process had

been divided into scenarios that were refined to a level where an

identification of risks was possible. An example scenario is given

in Figure 2 where the transfer of an order from the client to the

database is shown.

Potential threats for the software system were categorized based

on the goals and purposes of the attacks, i.e., STRIDE [15]. A

total of 21 threats had been identified, see Table 1. Threats 1

through 11 were identified in the scenario “client interaction with

ordering system”. Threats 12 through 16 belong to the scenario

“client transmission of ordering information”, and threats 17

through 21 evolved in the scenario “order acceptance”. The upper

case letters in the second column indicate the STRIDE category. S

stands for spoofing identity, T for tampering, R for repudiation, I

for information disclosure, D for denial of service, and E stands

for elevation of privilege [15].

For example, if a client has completely entered all data of an or-

der, the data will be sent to the web service. First, the availability

of the web service will be checked, then authentication informa-

tion will be sent, and finally, order information will be sent. Sev-

eral threats are possible in this simple scenario. An order might be

sent in the name of a different client (spoofing). Order informa-

tion might get modified while being transmitted to the server

(tampering). The client may later deny to have made an order

(repudiation). Information about the order may get into the hands

of a third party (information disclosure). Also, the web service

may get hit with numerous orders (denial of service). The risks of

all these threats had been specified, and appropriate countermea-

sures had been defined, e.g., the use of secure transmission via the

https protocol in order to avoid information disclosure.

The threats were rated with a risk rating between 7 and 10 on a

scale between 1 (low risk) and 10 (high risk), see selection in

Table 2. Four of the risks were eliminated by the security advisor

who assigned lower risk values. The ratings were determined ac-

cording to DREAD, i.e., by assessing the damage potential, re-

producibility, exploitability, affected users, and discoverability

[13].All external dependencies had to be identified, e.g., the Win-

dows operating system, the .NET framework, MS SQL Server, a

Cisco Systems hardware firewall.

An attack surface analysis is necessary to define all entry points

that can be used to interact with the system deliberately, uninten-

tionally or maliciously. We had identified the input of data via the

GUI, the manipulation of files being used by the system, i.e., sev-

eral configuration and database files, and the network traffic.

Again, all entrance points got listed, evaluated, and provided with

appropriate countermeasures. For example, every kind of user

input is validated, external resources, e.g. files and databases, are

encrypted and are checked for integrity regularly and data is trans-

ferred exclusively via encrypted communication channels.

Implementation. Best practices for development had been fol-

lowed as much as possible. Naturally, a programmer’s security

experience level plays a major role in the development of secure

software. Therefore, books from leading security experts, e.g. [11]

and [13] had been studied prior to implementation. Writing a user

manual, systems documentation and a setup manual goes without

saying. In addition, any tools that were used had also been de-

scribed carefully. For example, a simple tool had been developed

in order to create configuration files for users to let them authenti-

cate with the order server.

Verification. Fuzz testing, code review and penetration testing

had been done by the developer. This is an unperfected approach.

It is in contrast to the MS-SDL and should be avoided. In our

situation, shortage of manpower did not leave any other choice.

Fuzz testing had been applied to all the forms available to users. A

small piece of program had been written to randomly fill in all the

input fields and then send the form to the server. There were no

severe problems emerging from these tests, but input validation

had been extended to avoid unusual values that had lead to

strange list displays. The configuration file had also been fuzzed.

As a result, the software system either did not work at all, e.g.,

when a wrong working directory had been specified, or some

functions did not work, e.g., when specifying wrong path values.

As a consequence, the values in the file were checked more tho-

roughly and precise error messages were provided for the user.

Code reviews were done explicitly, but by the developer. To save

time, any findings were immediately corrected in the source code.

This again is unperfected, because there are no records of the

results of these reviews. In addition, this course of action lacks the

benefits of having an external view on the code. Mostly, com-

ments and style were improved. Security-relevant findings were

not made in this process.

Penetration testing included a set of load tests in order to make

sure that the expected load will not be too high for the system.

Additional tests, for example, for SQL injection have also been

made. The danger of SQL injections is mitigated by not allowing

special characters and SQL key words in any input text. Cross-

site-scripting, for example, had not been an issue, as a rich client

rather than a web-site had been used. In addition, data uploaded to

the server will never be accessed via a Web interface. The system

was also used by the three test persons mentioned at the beginning

of this section. However, due to a lack of security experience,

these testers were mostly concerned about usability rather than

about security.

The security push was scheduled to be spread over an entire week

with meetings of at most one hour. The security advisor, the de-

velopment person, and one of the test persons were attending the

meetings. All security-related results were reconsidered, i.e., secu-

rity requirements, threat models, code reviews, tests, documenta-

tion. As a consequence, the use of an unqualified certificate for

data encryption was endorsed. The attack surface was scrutinized

again, but no further attack patterns had emerged as a result.

Smaller cosmetic changes were made in the threat model. Penetra-

tion testing was found to be rather basic, but the security advisor

still voted for a “go”, because a manageable number of well-

known clients that would use the software would leave ample

space to do more testing at the beginning of the rollout. In retros-

pect, this was a political decision which should not have been

accepted by a security expert. Last but not least, the documenta-

tion was found to be complete and consistent, containing a user

manual, a setup manual, and configuration instructions for the

server as well as for the firewall.

Release. The final security review was done by the security advi-

sor, who found all security requirements to be sufficiently ad-

dressed. All potential threats that were ever thought of had been

addressed sufficiently, and all bugs that were discovered had been

resolved satisfactorily.

Post-SDL. Due to the size of the company and the size of the IT

department, the security response plan ended up being quite sim-

ple. The about box of the software system provides information

about where to send any feedback to the system. Any such infor-

mation be answered by anyone of the IT department, and will be

forwarded to the single developer of that system for further

processing.

6. LESSONS LEARNED
We pursued the goal to develop a secure ordering system with a

very small development team and to review the suitability of the

MS-SDL for that purpose. Using the MS-SDL promises several

advantages, i.e., more secure systems but also reduced develop-

ment costs. It is impossible to make a statement about these issues

that are based on hard facts. We are positive that using the MS-

SDL even in its downgraded form has made the developed system

indeed more secure. We also believe that development costs had

Table 2: Some Risks and Countermeasures

ID Risk Countermeasure

T5 10 Database authentication via password

T6 10 Database authentication via password

T11 9.6 Input validation

T17 9.4 Authentication (user name, password)

T15 9.2 Encryption via HTTPS

T10 9.0 Input validation

T12 9.0 File encryption (User.ini)

T3 8.6 File encryption (User.ini)

T19 8.6 File encryption (User.ini)

R7 8.4 Logging of important activities

T21 8.4 Authentication (user name, password)

T4 8.2 File encryption (license.ini)

T13 8.0 Encryption via HTTPS

T14 8.0
Logging of additional information about

ordering user, e.g., Windows user name

T2 7.4 Integrity check of MK2.ini at system launch

T16 7.4
Configuration of web server in IIS console

(max. number of requests)

T20 7.0 Logging of important activities

not been significantly increased due to this proceeding. We do not

see a reduction of costs unless considering ensuing costs that

would definitely emerge after the detection of issues in an unse-

cure system.

Threat modeling had been done with the Visio 2007 tool, which is

one of Microsoft’s SDL threat modeling tools. At first, use of the

tool is quite easy. There are four steps, i.e., “draw diagram”, “ana-

lyze model”, “describe environment”, and “generate reports”. Step

1 is straightforward. Steps 2 and 3 require quite some input

which, of course, influence step 4, the generated reports. A rather

small scenario with 12 design elements leads to a report with a

total of 53 pages, including threat model, report, bug report, and

analysis report. This is an issue, especially when reviewing the

threat models. It turned out that the size of these reports does not

get bigger to the same extent than the scenarios do. Thus, this is

an issue that mostly applies to small software systems and teams.

As a consequence, we did not model all the threats with all the

details with the tool.

In our case, the final security review turned out to be sort of an

acceptance talk between security advisor and developer. This is

mostly true, because the security push had been done just before

this review and there were no additional development activities

rather than error corrections in between. The small size of the

development team turned out to be an advantage, because com-

munication between security advisor and developer was frequent

during the entire development project.

It has to be mentioned that we did not fully comply with the MS-

SDL. This even impossible when a single person is developing

software due to the fact that various roles cannot be played or

must not be played by the same person. In our case scenario we

went to the extreme with only one person in the development

team. As mentioned above this fact did have advantages. Howev-

er, in retrospect we recommend more involved parties for in-

creased security. Security issues have not yet emerged for the

developed system. Nevertheless, the more we adhere to the prede-

fined lifecycle, the more we can be sure about the effectiveness of

taken security measures. Full adherence is not possible for a sin-

gle person and should be avoided when security is an issue. Other

than that, we strongly recommend to explicitly take security into

account and to profit from any secure lifecycle even in small de-

velopment teams.

7. CONCLUSION
We have used the MS-SDL for the development of a secure web-

based ordering system. The size of the development team was

small and only consisted of a single developer. The interesting

question was whether it was wise to adopt a heavy-weight life-

cycle model that is enhanced with security-related issues in our

scenario. As it turned out, adaptations have to be made, but using

the MS-SDL as a guideline is a definite plus in the pursuit of se-

cure software development.

Various software lifecycle models are available to choose from.

They range from classical water-fall models to agile models like

extreme programming. These models are hardly ever used exactly

as described and without interruption. They get adapted by com-

panies or project teams in order to fulfill their special needs. The

same is true for security activities as suggested by the MS-SDL.

There is no need to follow everything. But it is highly recom-

mended not to ignore the security issues of the MS-SDL. Nowa-

days, building secure software is a must. No matter how the soft-

ware lifecycle looks like that we use to develop software. No mat-

ter how big that software is that we have to develop, and no matter

how big or small the software development team for that purpose.

Security must be on our agenda, and the MS-SDL provides an

excellent guideline to accomplish just this.

8. ACKNOWLEDGMENTS
Our thanks go to the Aumayr GmbH, the company that made it

possible to develop the system under the given circumstances.

9. REFERENCES
[1] Sommerville I. 2007.Software Engineering, 8th edition, Ad-

dison-Wesley.

[2] Kent Beck, Cynthia Andres. Extreme Programming

Explained: Embrace Change. Addison-Wesley Professional;

2 Edition, 2004.

[3] Alistair Cockburn. Crystal Clear: A Human-Powered

Methodology for Small Teams (Agile Software

Development), Addison-Wesley Longman, Amsterdam,

2004.

[4] Mike Cohn. Succeeding with Agile: Software Development

Using Scrum, Addison-Wesley Signature, Addison-Wesley

Longman, Amsterdam, 2009.

[5] Boehm B. and Turner R. 2004. Balancing Agility and Dis-

cipline, Addison-Wesley.

[6] Swiderski F. and Snyder W., 2004. Threat Modeling, Micro-

soft Press.

[7] Microsoft 2011. The Microsoft SDL,

www.microsoft.com/security/sdl

[8] OWASP. 2007. OWASP CLASP v1.2. Comprehensive,

Lightweight Application Security Process.

[9] McGraw G. 2009. Software Security: Building Security In,

5th edition, Addison-Wesley.

[10] Microsoft 2010. Security Development LifeCycle V. 5.0,

Microsoft Press.

[11] Howard M. Lipner S. 2006. The Security Development Life-

cycle, Microsoft Press.

[12] Curphey M., Scambray J., Olson E. 2003. Improving Web

Application Security: Threats and Countermeasures, Micro-

soft Press.

[13] Howard M., LeBlanc D. 2003. Writing Secure Code, Micro-

soft Press.

[14] Microsoft. Improving Web Application Security: Threats and

Countermeasures, http://msdn.microsoft.com/en-

us/library/ff649874.aspx

[15] Hernan, S., Lambert, S., Ostwald, T., and Shostack, A. 2006.

Uncover Security Design Flaws Using The STRIDE

Approach. MSDN Magazine, Nov. 2006,

http://msdn.microsoft.com/en-us/magazine/cc163519.aspx

