
Evolution Support by Homogeneously Documenting Patterns, Aspects and Traces

Johannes Sametinger
Johannes Kepler University Linz, Austria

sametinger@acm.org

Matthias Riebisch
Technical University of Ilmenau, Germany

matthias.riebisch@tu-ilmenau.de

Abstract

The evolution of complex software systems is promoted
by software engineering principles and techniques like
separation of concerns, encapsulation, stepwise refinement,
and reusability of design solutions. Design patterns capture
the expertise for reusable design solutions. Aspect-oriented
programming is a methodology that enables the modulari-
zation of cross-cutting concerns. Traceability links desig-
nate dependencies between requirements, design, and
source code. In order to support maintenance, documenta-
tion has to enable understandability by describing these
issues. Descriptions have to facilitate tool support for
automating documentation activities.

In this paper, we use the notion of patterns, aspects and
traces for a homogeneous documentation approach. We
integrate various types of documentation, keep track of
traces from requirements to the source code, keep design
information in the source code, and generate additional
design views on software systems. We have implemented
these ideas as an extension to javadoc, the documentation
approach used by Java. This extension can be used to
automatically generate views on the design and on aspects
as well as on traceability links as part of the standard
javadoc system documentation.

Keywords:evolution, maintenance, documentation, de-
sign pattern, traceability, object-oriented design, javadoc

1. Introduction

The complexity of software systems obstructs their evo-
lution by confusing developers during modifications, caus-
ing mistakes and design deficiencies. Managing the com-
plexity of software systems is one of the major challenges
to both developers and maintenance personnel. Software
engineering principles like hierarchically structuring, in-
formation hiding and separation of concerns help to master
the complexity [4]. The impact of changes to the architec-
ture, the design, and the implementation has to be under-
stood. Even if only one unit of work, e.g., one concern or
aspect, is affected by a particular change, an understanding
of interactions with other parts of the system is necessary.
Therefore, connections between separated units of work
have to be provided.

Design patterns capture the expertise for reusable design
solutions [7]. Patterns describe repeatedly occurring prob-
lems and their solutions in such a way that these solutions

can be reused manifold, without ever doing it the same way
twice [1]. Design patterns are essential to maintenance as
they provide information about design issues. Explicit in-
formation about such design issues can prohibit design
blurring and degradation during the maintenance process.
Design patterns have gained wide-spread acceptance and
use. But despite their definite advantages, there are im-
pediments to pattern-based software engineering. Design
patterns are treated only as non-software artifacts. Pro-
grammers create, extend, and modify classes throughout the
software and tend to lose sight of the original patterns,
which may lead to a major maintenance problem.

The principle of separation of concerns helps mastering
complexity during design. Aspect-oriented programming is
a programming methodology that supports this principle
within the implementation by modularization of cross-
cutting concerns [8]. Aspects provide a bridge between
design and implementation. During design, aspects facilitate
the thinking about crosscutting concerns as well-defined
entities. During implementation, aspects make it possible to
program in terms of design aspects [9]. Furthermore, com-
position techniques for components representing aspects
supports flexibility and reusability. Aspects are essential to
maintenance for the identification of related facets in the
source code.

The evolution of a complex software system requires
comprehension about consequences and dependencies [2].
Traceability links designate dependencies between require-
ments, design, and source code. They improve program
comprehension by, e.g., showing the impact of changes due
to new features [12]. Traceability represents an important
factor enabling evolution. Successful reusability of arte-
facts, e.g., design, source code components or other, depend
on their evolution in order to reach a higher level of matur-
ity and robustness. The product line approach [6]—a meth-
odology for large-scale reuse for families of systems—is
supported by documenting traceability links, roles and other
dependencies according to the approach explained here.
Traceability information ensures that consistency is retained
and as much information as possible is available to support
the maintenance process. Project management in many
industrial projects still assumes a waterfall-like process
structure. There are three major activities in order to achive
evolution in terms of further development: program com-
prehension, reverse engineering and refactoring [5].

Documentation is the only tangible way of representing
software and its process. It has to be consistent and read-

able. Tool support for automatic documentation update like
[18], is crucial for consistency, especially during software
maintenance, and for the encouragment of programmers in
providing detailed documentation.

System documentation describes the implementation in-
cluding the requirements specification, the system architec-
ture, detailed design descriptions, the source code, test
plans, etc. [16]. Hyperlinks facilitates navigation within
complex structures, thus supporting understandability.
However, in order to keep documentation up-to-date and
consistent, automatic generation and CASE tool integration
is needed. Javadoc is a tool that parses declarations and
special documentation comments in a software system’s
source files and produces web pages describing classes,
interfaces, methods, and fields for an online, hypertext-
based documentation [17]. The content and format of the
output can be customized.

In this paper we will provide an integration of the con-
cepts mentioned above by extending the standard documen-
tation. The approach includes important facets of a software
system including patterns, aspects and traces, thus including
and integrating design views, design documents as well as
traces among them. In Section 2, we will give an introduc-
tion to basic concepts, including patterns, aspects, traces
and javadoc. In Section 3, we present our documentation
approach. In Section 4, we describe the implementation
using javadoc. Conclusions follow in Section 5.

2. Basic Concepts

Design patterns [7], aspect-oriented programming [8, 9],
traceability links [12], and javadoc [17] build the corner-
stone of our approach for supporting evolution by extended
documentation.

2.1 Patterns
Object-oriented design patterns provide a scheme for

describing best practices in the domain of object-oriented
design. They are frequently described as a problem/con-
text/solution triple [3,7,11]. "A design pattern systemati-
cally names, motivates, and explains a general design that
addresses a recurring design problem in object-oriented
systems. It describes the problem, the solution, when to
apply the solution, and its consequences. It also gives im-
plementation hints and examples. The solution is a general
arrangement of objects and classes that solve the problem.
The solution is customized and implemented to solve the
problem in a particular context" [3].

Design patterns are abstract ideas that can be illustrated
in different ways, for example, by using class diagrams [3],
role models [13], or a combination thereof. The choice of a
particular modeling technique depends on how well the
presentation conveys the pattern idea to its readers [13].
Design patterns provide a common design vocabulary, a
documentation and learning aid. Therefore, they are an
adjunct to existing methods, and a target for refactoring.

Their use typically involves several steps, i.e., reading the
documentation for an overview; studying the structure, the
participants, and collaborations; understanding the sample
code; choosing names for pattern participants that are
meaningful in the application context; defining the classes;
assigning application-specific names for operations in the
pattern; and implementing the operations to carry out the
responsibilities and collaborations in the pattern [7].

2.2 Aspects

Multiple concerns have to be considered in the case of
complex systems. Even if separated in design, concerns
frequently are merged during implementation. Aspect-
oriented programming enables the modularization of cross-
cutting concerns by providing module composition and
interaction concepts, as well as references among them [8,
9]. As a consequence of modularization, changes can be
carried out by separate aspect modules. During implementa-
tion, the aspects are composed by what is called an aspect
weaver [10].

Capturing and documenting aspects is useful even if not
using the full power of aspect-oriented programming. We
consider source code that is logically belonging together but
which is possibly scattered over many locations as aspects.
For example, write methods that are spread over many
classes may all be used to write a complex data structure to
a file.

2.3 Traces

Links between requirements, design, other subsequent
models and source code can show the impact of changes to
the developer. Most of these connections designate depend-
encies within the system parts. Such links are often called
traceability links. Traceability is useful to support change.
Various kinds of traces are important [12]:
- traces between features and their implementation,
- traces of relations between requirements, design deci-

sions, and features.
In the approach of multi-layered rich traceability, links are
used to support understandability and change in require-
ment specification by supplying navigation within hierar-
chical structures, among document parts and reports. These
concepts are used to visualize:
- relations and constraints between user requirements and

features including their dependencies,
- constraints within architecture, design and implementa-

tion, and
- constraints among features that are relevant for feature

configuration.
Additionally, the use of patterns and aspects requires more
types of relations between units of work, i.e., roles, compo-
sition nodes and instances. They can be represented by
traces as well.

Software process definitions, e.g., the CMM [15], de-
mand for documentation at all product levels: requirements,

architecture, design, implementation, and installation. In
order to keep all these documents consistent and complete
during a sequence of iterations and changes, support is
necessary at the methodical and at the tool level. The use of
patterns and aspects especially affects architecture, design,
and implementation. In order to simplify an update of the
documents, explicit descriptions of constraints between the
documents and their elements are needed. This traceability
is added to the models and the relevant documents.

2.4 Javadoc

Javadoc is a tool from Sun Microsystems for generating
API documentation out of declarations and documentation
comments in Java source code. Javadoc produces HTML
documentation describing the packages, classes, interfaces,
methods, etc. of a software system.

Javadoc output can be customized by means of doclets.
A doclet is a program written with the doclet API that
specifies the content and format of the output to be gener-
ated. Thus, a doclet can, for example, generate any kind of
text file output, such as HTML, SGML, XML, RTF, and
MIF. Sun provides a standard doclet for generating HTML
format documentation. Doclets can also be used to perform
special tasks not related to producing systems documenta-
tion. For example, a diagnostic doclet could be created to
enable model checking, for example, whether all class
members have documentation comments [17]. Javadoc
parses special tags embedded within a Java doc comment.
These doc tags are used to automatically generate a com-
plete, well formatted API from the source code. All tags
start with an "at" sign (@), e.g., @author. The tags are used
to add specific information like a method's parameters
(@param), return type (@return), and exceptions
(@exception), see example in Fig. 1.

/**
* A class representing a simple drawing window on
* the screen. Example usage:
* <pre>
* SimpleDraw s = new SimpleDraw();
* s.setVisible(true);
* </pre>
* @author Johannes Sametinger
* @version 1.2
* @see java.awt.Frame
*/

class SimpleDraw extends Frame {
...

}

Fig. 1: Javadoc Comment

3. Documentation for Evolution Support

Typically, object-oriented software systems consist of
many classes, patterns, aspects, and traces. In practice,
documentation contains details of classes. Overview infor-
mation covering e.g., architectural principles are contained

in manually written documents. They are not updated auto-
matically during modifications to the source code. Our aim
is to automatically document systems in many respects. In
the following sections, we demonstrate how to integrate the
documentation of patterns, aspects, and traces into regular
system documentation. The extension of javadoc by this
kind of links enables an automatic update of documents and
their online availability in HTML format.

3.1 Patterns

Design patterns describe relations within an abstract ob-
ject-oriented model. These relations have to be mapped
from a pattern description scheme onto concrete design and
code. Roles enable such a mapping. They describe how
collaborating objects that play one or more roles achieve a
common goal according to a pattern.

In Fig. 2 we can see the start page of the system docu-
mentation of an application. In the top left panel we can see
the entries “All Aspects”, “All Classes”, “All Patterns”, and
“All Traces”. By clicking on the item “All Patterns”, we get
a list of patterns in the lower left panel. This panel provides
a summary and a list of all patterns in the system. If we
click on "Summary" we get the pattern summary as shown
in the big right panel in Fig. 2. Here we can see a table with
all patterns in the system as well as their type. In the pattern
summary of Fig. 2, there are eight design pattern instantia-
tions, one abstract factory, two iterators, four observers, and
one visitor.

Fig. 2: Pattern Summary

Following a link to any of the patterns in the left column
of the summary brings us to more detailed information
about a pattern as indicated in Fig. 3. The overview shows
the name of a pattern, provides links to general information
and lists all roles that have been found. Any role can be
played by one or several classes, methods, and/or fields.
These are listed for each role together with a short text. The
documentation of any of the role players can be directly
accessed by following the links that are shown as under-
lined in Fig. 3.

QuizVisitor
see: Visitor

AbstractVisitor
- interface quiz.Visitor
Client
- writeHTML(BufferedWriter), method in class

quiz.QuizApplication
produces HTML output by means of a visitor

ConcreteVisitor
- class quiz.HTMLVisitor

We are producing HTML output.
- class quiz.LaTeXVisitor

We are producing LaTeX output.
DataStructure
- accept(Visitor), method in class

quiz.QuestionCatalog
QuestionCatalog accept visitor

- accept(Visitor), method in class
quiz.QuizApplication
QuizApplication accept visitor

- accept(Visitor), method in class quiz.Question
this is the abstract method for all Question sub-
classes

- accept(Visitor), method in class
quiz.vocabulary.VocabularyQuestion
accept visitor

Fig. 3: Design Pattern Overview

3.2 Aspects

Aspects are meant to clearly capture important design
decisions that involve code being scattered throughout the
system, i.e., they crosscut the system’s functionality [8, 10].
Aspects have been introduced because programming lan-
guages do not provide abstraction and composition mecha-
nisms for several design issues, i.e., for all kinds of units a
design process breaks a software system into. Aspects pro-
vide an important contribution in trying to capture design
issues that cannot be adequately expressed otherwise. As-
pects cover only specific design aspects, but can be generic
in that they can be applied to classes and methods with
certain properties.

Fig. 4: Aspect Summary
From the understandability point of view, the relations

among aspects have to be represented to enable their com-

position as well as their evolution. For aspects, we intro-
duce the same kind of information about roles and relations
as for patterns of a software system, see Fig. 4.

Kiczales et al. distinguish among various forms of as-
pects, e.g., join points, pointcut designators, advices [10].
These aspect forms can be used to associate code bodies to,
say, method calls and, thus, define when the code should be
executed. We pursue a much simpler notion of aspects, i.e.,
we simply document that certain locations in the source
code play a role for the performance of a certain task. For
example, writing the complex data structure involves
method calls of many classes comprising this data structure.
The source code for writing this data structure is spread
over many locations, and it makes sense, to have an entry
point for the access of all these locations. Figure 5 provides
this entry point for the aspect of writing a quiz. It lists all
the classes and methods involved in the task of writing a
quiz. Again, the documentation of any of the players for this
aspect can be directly accessed by following the links that
are shown as underlined in Fig. 5.

Aspect: WriteQuiz
- save(String, String), method in class

quiz.QuizApplication
here we go saving a quiz.

- write(BufferedWriter), method in class
quiz.QuestionCatalog
here we continue.

- write(BufferedWriter), method in class
quiz.QuizApplication
here we write the quiz.

- write(BufferedWriter), method in class
quiz.Question
here we continue with writing the question.

- write(BufferedWriter), method in class
quiz.vocabulary.VocabularyApplication
here we write the vocabulary quiz.

- write(BufferedWriter), method in class
quiz.vocabulary.VocabularyQuestion
here we continue with writing the vocabulary ques-
tion.

- write(BufferedWriter), method in class
quiz.mchoice.MchoiceChoice
here we continue with mchoice choice.

Fig. 5: WriteQuiz Aspect

3.3 Traces

Modifications and extensions as well as the reuse of exist-
ing software systems require comprehension. The impact of
changes to both design and implementation have to be well
understood. Such impacts can be made visible by traceabil-
ity links among documents of software systems, i.e., re-
quirements, design, models, and the source code. Traceabil-
ity is to be shown as relations among requirements, design
decisions, features, and their implementation

In Fig. 6 we can see a list of traces on the left side and a
summary on the right side. Traces can be organized hierar-
chically. For each of them we need a link to the documenta-

tion, e.g., to the description of a requirement, and a link to
the appropriate source code where the requirement is being
implemented. Missing links to the source code indicate
either that the requirement had not been implemented yet or
that the documentation is not complete yet, i.e., the link
between requirement and source code had not been in-
cluded yet.

Links to the source code can involve classes or methods.
This will mostly be the case for rather detailed require-
ments. Often, fulfilling a certain requirement cannot be
done by a single portion of the source code. We can either
provide links to all relevant locations in the source code or,
what we prefer, to a separate aspect covering this source
code. As a consequence, a single link points to an aspect as
a cluster of source code rather than source code that is pos-
sibly spread over many locations of a solution.

The acquisition of traceability information is not cov-
ered by existing development process models. However,
dependencies can be derived following the flow of the de-
velopment processes. They can be elicited by recording
design decisions during forward engineering. In our experi-
ence, most design decisions during the usual engineering
activities are implicitly made by developers, without paying
special attention to them. Recording them is a demanding
task. Recording fact-based decisions documented in prod-
ucts of high-maturity development processes, e.g., accord-
ing to higher CMM levels [15], is much easier. Further-
more, reverse engineering activities directly result in the
discovery of design decisions.

Fig. 6: Trace Summary

3.4 Source Code Integration

There have to be links from the regular system docu-
mentation, i.e., documentation generated by standard java-
doc, to this extra documentation about patterns, aspects and
traces, wherever a class, method or field is involved. In Fig.
7 we can see the documentation for the class HTMLVisitor
where the entry "Patterns:" gives all the information about
any roles played by this class in a particular design pattern.

Again, links can be followed to get information about the
pattern instantiation of which the class plays a role, as well
as about the design pattern itself.

4. Implementation

A basic infrastructure is indispensable in order to pre-
sent a system’s patterns, aspects and traces in appropriate
form to development and maintenance personnel. Tool
support has to be provided at the source code level. That
means that links to and information about patterns, aspects
and traces are kept in the source code, e.g., by means of
special comments. All other development activities and
tools operating on the source code can make use of the
extra information. For example, design tools are able to
extract design views out of the source, to present it, and to
allow design modifications, supporting appropriate changes
in the source code. All changes affecting the source code
are resulting in changes to the extra information as well.
Tags as targets for links are changed appropriately. Docu-
menting patterns, aspects and traces in the source code can
easily be done by means of comments like that used for
javadoc, where comments contain information about name,
type, and role of an aspect or pattern. This information can
be used to recreate design information, as had been outlined
in the previous section.

quiz
Class HTMLVisitor
java.lang.Object

|
+-- quiz.HTMLVisitor

public classHTMLVisitor
implements Visitor

HTMLVisitor contains all methods needed for HTML
output creation.

Patterns:
- Visitor ,

instance:QuizVisitor ,
role: ConcreteVisitor
We are producing HTML output.

...

Fig. 7: Class Overview

We keep most of the information in the source code and
have defined additional tags to standard javadoc. Our tags
will be described in Section 4.1. In Section 4.2 we provide
an example for the usage of these tags.

4.1 Javadoc Tags

In order to describe design patterns, aspects and trace-
ability links in source code, we introduce new tags that are
used similar to any other tag for javadoc. They can be used

for classes, methods and fields. For the description of de-
sign patterns we use the @pattern tag. The syntax is as
follows:

@pattern <pattern name>.<instance name>.
<role name> <text>

<pattern name> specifies the name of the pattern, e.g.,
Aspect, Iterator, Visitor. <instance name> specifies the
name of the specific instance, e.g., QuestionIterator, Frame-
Iterator. With the name of an instance we can distinguish
various instances of the same pattern, e.g., there are two
iterator instances named ChoiceListIterator and Ques-
tionListIterator in Fig. 2. <role name> specifies the name of
the role played by a class, method, or field, e.g., Abstract-
Visitor, ConcreteVisitor. <text> is optional and provides
additional information to appear in the documentation.

In order to document aspects and traces, we use the tags
@aspect and @trace. These tags can also be used for
classes, methods and fields. The syntax is as follows:

@aspect <name> <text>
@trace <name> <text>

We have implemented a doclet that processes the
@pattern, @aspect and @trace tags and produces documen-
tation output similar to the standard javadoc doclet with
additional information as demonstrated in the previous
sections.

Javadoc tags are being used in the source code only. In
order to support traces, we have added links from and to
other documents also. There are two possibilities to provide
such connections. First, we can include tags within other
documents, e.g., by using hidden text or fields in MS Word
documents, or by explicitly stating them in simple text
documents. This form of inclusion requires that the docu-
ment be parsed like the source code and the gathered infor-
mation about found tags be included in the generated
documentation. In the case of design documents, identifiers
are used as link targets, and the UML’s built-in extensions
tagged values are used for describing links [14]. In the case
that we if are not be able to include tags to other documents
easily, then we use a connector document. Such a document
can specify tags and the documents where they belong to.

4.2 Example

We will demonstrate how to use @pattern tags for the
documentation of a Visitor pattern. According to this pat-
tern, an abstract visitor, a concrete visitor, an abstract ele-
ment, concrete elements, and an object structure are the
participants [7]. We can use these names for the roles
played in the pattern, which we recommend, but we may
also use arbitrary names. Figures 8 to 10 show how the
participants of the visitor pattern are being identified by
means of the @pattern tag.

package quiz;
/** represents an operation to be performed on
* elements of a quiz
* @author Johannes Sametinger
* @pattern Visitor.QuizVisitor.AbstractVisitor
* declares a visit operation for each class in quiz
*/

public interface Visitor {
...

}

Fig. 8: Abstract Visitor

All these tags start with the name Visitor, indicating that
the Visitor pattern is being documented. The second name
QuizVisitor indicates the instance name of this pattern,
thus, indicating that all three classes not only play a role in
a Visitor pattern, but also play this role in the same in-
stance. There may be several instance of the same pattern in
a software system. The interface Visitor in Fig. 8 plays the
role of an abstract visitor, class HTMLVisitor in Fig. 9 is a
concrete visitor producing HTML output, and class Ques-
tion in Fig. 10 is an abstract element providing an accept
operation and taking a visitor as argument.

package quiz;
/** produces HTML output of a quiz
* @author Johannes Sametinger
* @pattern Visitor.QuizVisitor.ConcreteVisitor.
* We are producing HTML output.
*/

public class HTMLVisitor implements Visitor {
...

}

Fig. 9: Concrete Visitor

@aspect and @trace tags are used in a similar way. For
traces we additionally need links from and to documents
other than source code. We are currently experimenting on
how to best realize such links.

package quiz;
/** represents the basic structure of quiz questions
* @author Johannes Sametinger
* @pattern Observer.QuestionObserver.Subject.
* @pattern Iterator.QuestionListIterator.Item
*/

abstract public class Question extends Observable {
...

/** defines an accept operation that takes a visitor
* as an argument.
* @param v Visitor to be accepted
* @pattern Visitor.QuizVisitor.AbstractElement.
* this is the abstract method for all Question
* subclasses
*/

abstract public void accept(Visitor v);
}

Fig. 10: Visitor's Data Structure

5. Conclusion

We have presented a supporting methodology for evolv-
ing software systems by a homogeneously extended docu-
mentation approach for patterns, aspects and traces. We
keep information in the source code and provide links to
other documents. We use an extension to javadoc to gener-
ate HTML documentation. The generated documentation
includes regular class and method information plus summa-
ries and descriptions of patterns, aspects and traces with
links to and from the regular system documentation.

Utilization of this additional information supports com-
prehension, such that modifications are made consistently
and according to requirements, architecture and design. We
have implemented javadoc support for source code, includ-
ing patterns, aspects and traces. Our methodology supports
program comprehension by providing explicit information
about dependencies and references to solution principles.
Reverse engineering activities are supported by providing a
means of describing both modeling results and code analy-
sis results, e.g., automatic pattern detection. Refactoring
activities have to be supported by methods and tools, which
is outside the scope of our approach. However, such activi-
ties result in new variation points – implemented e.g., with
design patterns. They also aim at an additional structuring –
e.g., by the use of aspects. In this way, evolvability for the
next iterations of the development is improved.

Currently, we introduce our methodology to the reengi-
neering process of an industrial character recognition sys-
tem. We also use it to represent the results of an automatic
design patterns detection tool. This effort is part of our
work to provide tool support for program comprehension
and software evolution for software product lines. Within
this context, we are working on the support of documents
other than source code also, e.g., specification documents in
a word processing format. For a next step, we plan to inte-
grate an aspect-based product line composition toolkit.

6. References

[1] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, S. Angel,A Pattern Language, Oxford
University Press, New York, 1977.

[2] L. M. Berlin, Beyond Program Understanding: A Look
at Programming Expertise in Industry. In C. R. Cook, J. C.
Scholtz, & J. C. Spohrer (eds.)Empirical Studies of Pro-
grammers: Fifth Workshop. Norwood, NJ: Ablex Publish-
ing, 1993. p. 8-25.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
M. Stal, Pattern-Oriented Software Architecture, Wiley &
Sons, 1996.

[4] Deimel, Naveda,Reading Computer Programs: Instruc-
tor's Guide and Exercises.CMU/SEI-90-EM-3, Software
Engineering Institute, 1990.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts,
Refactoring: Improving the Design of Existing Code.Addi-
son-Wesley, 1999.

[6] L.M. Northrop, A Framework for Software Product
Line Practice, Version 3.0, October 24, 2001. available at
http://www.sei.cmu.edu/plp/framework.html

[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides,Design
Patterns. Elements of Reusable Object-oriented Software,
Addison-Wesley, 1995.

[8] T. Elrad, R.E. Filman, A. Bader (eds.), “Aspect-
Oriented Programming”,Communications of the ACM,
Vol. 44 , No. 10. October 2001.

[9] Aspect-Oriented Software Development, http://aosd.net

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, W. Griswold, “An Overview of AspectJ”,Proceed-
ings of the European Conference on Object-Oriented Pro-
gramming (ECOOP), Hungary. June 2001.

[11] W. Pree,Design Patterns for Object-Oriented Soft-
ware Development, Addison-Wesley, 1995.

[12] Matthias Riebisch, Ilka Philippow, “Evolution of
Product Lines Using Traceability”,OOPSLA 2001 Work-
shop on Engineering Complex Object-Oriented Systems for
Evolution, Tampa Bay, Florida, USA, October 15th 2001.

[13] L. Rising (ed.),The Patterns Handbook: Techniques,
Strategies, and Applications, Cambridge University Press.
1998.

[14] J. Rumbaugh, I. Jacobson, G. Booch,The Unified
Modeling Language Reference Manual. Addison-Wesley,
1999.

[15] Software Engineering Institute (eds.),Software Proc-
ess Maturity Questionnare, Capability Maturity Model,
Version 1.1.0. SEI, Pittsburgh, April 1994.

[16] I. Sommerville, Software Engineering, 6th edition,
Addison Wesley, 2000.

[17] Sun Microsystems,Javadoc Tool Home Page,
http://java.sun.com/j2se/javadoc/

[18] D. Yacktman, C. Lindberg,Online documentation and
scanning tool AutoDOC 2.0 Homepage.
http://www.misckit.com/press/press_autodoc_2.0b7.html

