
BUILDING REUSABLE SIMULATION COMPONENTS

Herbert Praehofer1, Johannes Sametinger2, Alois Stritzinger2

1 Department for Systems Theory and Information Technology
2 Department for Software Engineering

 Johannes Kepler University, A-4040 Linz / Austria
e-mail: hp@cast.uni-linz.ac.at

ABSTRACT
In the SimBeans project we apply a component-based software engi-

neering approach to the development of simulation systems and frame-
works. Libraries of reusable simulation components have been realized
on the basis of the component model JavaBeans for various simulation
application domains. The main objective thereby has been to enhance
model reusability. Although the system modeling approach provides an
underlying foundation for building reusable models, there exist no
application-specific patterns and architectures, which define how such
libraries of reusable components should be built. In this paper we pres-
ent an attempt in this direction. We discuss general guidelines for the
development of reusable simulation components and present component
architectures for various application domains. The architectures have
been designed with these guidelines in mind.

KEYWORDS
simulation components, reusable components, JavaBeans, software

reusability, state space modeling

INTRODUCTION
Component-based software engineering strives for improving the

software engineering process by providing reusable components. A
component is a software object which has well defined interfaces, which
can be customized to various needs, and which is usable in different
contexts.

In the SimBeans project [Praehofer et al. 99a, 99b; Praehofer and
Schoeppl 2000] we apply a component-based software engineering
approach to the development of simulation systems. Libraries of reus-
able simulation components have been realized for various simulation
application domains and on the basis of the component model Java-
Beans [Sun 97]. Such components comprise simulation units (model
components) as well as components for output, visualization, animation
and output analysis.

Simulation modeling is based on system modeling concepts as de-
fined in [Zeigler et al. 99]. The modular hierarchical modeling approach
is seen as a foundation for building reusable components. It provides
concepts for building models as modular units with a well-defined
interface and for hierarchical coupling. The component model Java-
Beans has been proven to provide a suitable implementation platform to
realize modular hierarchical simulation models [Praehofer et al. 99a,
99b]. The systems approach provides modeling concepts for the building
of reusable components. However, it does not define concretely how
model interfaces and collaborations should be designed. We have made
the experience that well-designed model interfaces and coupling struc-
tures defined thereupon are essential for the development of reusable
component libraries.

In this paper we take the ideas from design patterns [Gamma et al. 95,
Buschmann et al. 96], component frameworks [Szyperski 98], and role
modeling [Reenskaug 97] to discuss component architectures for simu-
lation modeling. First, we present general guidelines for simulation
modeling. In particular, we propose separation of flow and effort com-
ponents similar to Bond-graph modeling and usage of model containers
as important principles. Then, we show several examples of component
architectures that are designed according to these guidelines.

SYSTEM MODELING REVIEWED
Modular, hierarchical system modeling is an approach to complex

dynamic system modeling where modular building blocks, i.e., system
components with a well-defined interface, are coupled in a hierarchical
manner to form complex systems. In system modeling, we distinguish
between atomic and coupled models. While an atomic model specifies
its internal structure in terms of its set of states and state transition
functions, a coupled model’s internal structure is specified by its com-
ponents and its coupling scheme. Modularity allows for setting up bases
of reusable building blocks that can be plugged into a system through
their input and output interfaces. System modeling means interface-
based object composition.

Component-based software engineering represents a step towards a
modular system modeling approach. Components define explicit input
and output interfaces in the form of method calls that they accept as well
as events that they generate. Component-based programming primarily
means interface-based component composition. Components can be
constructed hierarchically using finer-grained components.

Our approach for building reusable simulation components is strongly
influenced by the work of [Elmquist et al 98] on object-oriented, non-
causal modeling of physical systems and Bond-graph modeling [Paytner
61, Cellier 91]. In these approaches models are built based on two types
of variables – called flow and effort or across and through depending on
the approach taken – which can be chosen arbitrarily but must multiply
to power. Typically, a flow is a variable representing some flowing
magnitude, e.g., current, while an effort typically represents a status,
e.g., voltage. In such models Kirchoff’s laws apply. Thus, in a node all
the flows must add to 0 and the efforts must be equal. Modeling of
components is done by giving the dependencies between these variables
in equation (non-algorithmic) form.

The advantage of object-oriented, non-causal modeling is often seen
to lie in the non-causal description of simulation systems, which allows
the definition of components without having to foresee how these
component will be used. In our approach for building reusable compo-
nents we do not pursue a non-causal description of simulation compo-
nents, but rather our goal is to realize ready-to-use model components.
We adopt and generalize the way how component interfaces are speci-
fied and component coupling is done in non-causal modeling and we
regard that as the key for building reusable components. According to
these ideas, we propose the pursuit of general guidelines for building
reusable simulation components as presented in this paper.

SIMULATION PROGRAMMING IN THE
SIMBEANS SIMULATION FRAMEWORK

In this section, we will review the implementation of simulation mod-
els. First, the component model JavaBeans will briefly be discussed as
the underlying implementation base, then, basic coupling concepts for
simulation components will be presented.

Component Model JavaBeans
JavaBeans is the component model based on Java [Sun 97]. A Java-

Bean is a reusable software component that can interactively be modi-

2

fied and coupled with other components. JavaBeans defines a common
and generally accepted standard for component analysis and handling in
interactive development environments (IDE). Programming, events and
properties play an essential role in JavaBeans.
Events: JavaBeans provides a standard event model to allow event firing
and event communication between components. A particular event type
is realized by providing an event object (class <EventType>Event),
which must be a specialization of the standard class EventObject,
and an interface for event listeners (interface <EventType>Event-
Listener) with specifications of event methods. Any component
firing the event must implement methods to add and remove event
listeners (methods add<EventType>EventListener and re-
move<EventType> EventListener). Upon firing an event, the
component calls the listeners registered for the event with the respective
event method.

Properties are named attributes of a bean component that allow control-
ling the appearance and behavior of the component. Properties provide
state information of components. They can be read and set at building
(design) time as well as at run-time via getter and setter methods. These
methods have to obey the naming convention get<Property> and
set<Property>. A builder tool typically provides a property sheet to
visualize the current property states and a set of property editors to
change property values.

Bound properties are properties that use the event concept to signal state
changes to their environment. For this purpose, class Property-
ChangeEvent and interface PropertyChangeListener have
been defined. A bean implementing a bound property has to define add
and remove methods to allow registration of PropertyChangeLis-
teners (the naming convention is add<PropertyName>Change-
Listener and remove<PropertyName>ChangeListener).
Any component interested in changes of the property can be added and
will be informed whenever the value changes.

Implementing simulation components
In [Praehofer et al. 99] and [Praehofer and Schoeppl 2000] realization

of simulation components has been presented in detail. In summary, the
SimBeans simulation framework allows for:
Simulation variables: Simulation variables are provided as objects to
store dynamically changing model states. They extend the bound prop-
erty mechanism to allow other components to listen to their value
changes.

Simulation events: An event model has been realized to deal with simu-
lation events on basis of the JavaBeans event model. This event model
allows the definition and handling of time scheduled events
(TimeEvent), input event which come from a human user in visual
interactive simulations (InputEvent), and state events that are trig-
gered from the continuous changing model variables (StateEvent).

Continuous behavior: ContVariables and ContinuousEqua-
tion components allows the definition of differential equation speci-
fied systems in similar (but more flexible) form as usual block diagram
descriptions.

Variable structure models: The simulation framework allows dynamic
structure changes. This means that sub-model and model elements like
variables, continuous equation components, event objects, and couplings
can be added and removed during a simulation run. A structure event
propagation takes care that the simulator can cope with the structure
changes.

In the approach of building reusable simulation components, coupling
and communication of simulation components is of particular impor-
tance. Coupling and communication can occur with the following ele-
mentary means:

Object references and method calls: One component can store another
component reference and can then call a method directly.

Event bindings: A component may publish an event and allow event
listeners to register for the event. The component will fire the event at a
particular time and the registered listener will be notified.

Bound properties: A component will publish some of its properties
(usually implemented as Variables). Listeners dependent on changes of
the property can be registered for this bound property and will be noti-
fied of any changes.

Variable connections: A component may publish some of its inner
variables as output variables. Other components will publish some of the
variables to be input variables and defined from outside. Output vari-
ables of one component can directly be connected to input variables of
others.

Equations: Instead of connecting component variables directly, coupling
at the variable level can also occur by means of equations. This means
that an input variable of a component is defined by a functional depend-
ency based on the values of other variables.

GUIDELINES FOR BUILDING REUSABLE
COMPONENT ARCHITECTURES

General guidelines for building reusable simulation components are
as follows:
Separation of concerns: Components should be identified with a clear
separation of concern in mind. Typically, components should be distin-
guished for realizing (1) physical objects themselves (effort states, see
below), (2) the coupling structure (flows, see below), (3) control
schemes, (4) containers of physical objects modeling the environmental
conditions (see below), (5) output, visualization, animation, and output
analysis.

Modular interfaces: Interface definitions should clearly characterize how
a component can be used and how it can communicate with other parts
of the system. The component itself should make as less assumptions
about its environment as possible (use model containers, see below).

Hierarchical composition: Components should be organized hierarchi-
cally. More complex components should be built by using primitive
modular components and by defining how they work together by real-
izing the respective coupling structures.

Separation between effort and flow components: Similar to the distinc-
tion made in bond-graph modeling between 1-junctions and 0-junctions,
we propose a similar distinction to be made for our model components.
However, as we do not deal with classical physical modeling exclu-
sively, we extend and generalize these ideas. In our view, a clear dis-
tinction should be made between components “storing states” and
components “realizing flows”. While effort components should be seen
to provide state information and are influenced by flows, flow compo-
nents realize the flows between components which are computed based
on the state information of the connected effort components. This view
applies for physical system modeling, but also for discrete item flow or
pulp flow in paper mill models.

Component container: A model container should be provided where the
model components “live in”. Such a model container should represent
the environmental conditions (physical constraints) which apply. For
any component which is added to live within the container, the condi-
tions are enforced. A model container will often work with structural
changes to realize the varying relations between model components.
Environmental conditions thereby may be very diverse. Examples of
model containers are a 2-dimensional space for moving objects which
has to enforce the rule that no two objects can occupy the same space at
the same time, a gravity space which has to model that an object is
accelerated into the direction of the gravity when it is not supported, or
radio communication that is a container for model components which
communicate over a broadcast radio communication channel.

3

The first two guidelines are well-known and appreciated and, there-
fore, will not be discussed further. In the following section we will show
the application of the other guidelines, especially separation of effort
and flow components and component containers, by three different
component architectures.

COMPONENT ARCHITECTURES
In this section we show several component architectures for diverse

modeling domains which have been designed according to the guide-
lines above. Component libraries have been realized on basis of these
architectures in the SimBeans simulation framework. The first is in the
continuous domain and has been designed for realizing training simula-
tor for paper mill operators as presented in [Praehofer and Schoeppl
2000]. It shows how the idea of effort and flow can be generalized. The
second is a general architecture for building classical discrete simula-
tions, i.e., processing and flow of items. Here again we distinguish
between effort components that can accept and deliver items and flow
components that realize distribution of items. The third application
domain is for simulations of 2-dimensional motions of objects. In par-
ticular, it shows the usage of a component container – the space – to
care for the contained objects in motion.

Pulp flow in paper processing systems

This component architecture has been created for building paper mill
training simulators. It mainly represents a continuous simulation do-
main. Elementary for modeling paper production is the representation of
pulp, which is basically a mixture of water and fiber. This has been
implemented by a structure Pulp with two variables total and fi-
ber representing the total amount of pulp and the amount of fiber
contained.

The architecture for this domain has been defined according to the
ideas of effort and flow variables and components. While the effort
variables give the information upon the type and availability as well as
the capability to take pulp, the flow variables define the amount and
type of pulp actually transported. Therefore, effort components typically
are the tanks which store pulp and flow components are the pipes,
pumps, etc. which transport pulp.

Pulp
total : ContVariable
fiber : ContVariable

PulpOutlet
<<output>> available : Pulp
<<input>> outflow : double

<<Interface>>
PulpInlet

<<output>> accaptable : double
<<input>> inflow : Pulp

<<Interface>>

PulpFlow
inlet : PulpInlet

<<Interface>>
+outlet +inlet

Fig. 1 Pulp outflow and inflow

Figure 1 shows the architecture by means of an UML class diagram.
PupOutlet defines the interface of an effort component which gives
the information about the availability of pulp (<<output>> avail-
able) and receives from the flow component the information how
much pulp currently flows out (<<input>> outflow). On the other
side, the PulpInlet gives information of how much pulp this effort
component can currently take (<<output>> accaptable) and
receives from the flow component the information of how much and
what type of pulp currently flows in (<<input>> outflow). The
task of the flow component (PulpFlow) is to compute the current flow
based on the available and accaptable information by its cou-
pled PulpOutlet and PulpInlet (which can be of arbitrary com-
plexity, in particular, it can employ arbitrary complex control schemes
to determine the flow.)

Discrete item processing
The discrete item component library is a general simulation package

for processing and distribution of discrete items, as classical in manu-
facturing, job shop, transportation and others. In this domain the fol-
lowing principal types of elements have been identified: (1) items,
which flow through the system from resource to resource and occupy
them; (2) resources, which are active or passive and can be occupied by
items; (3) transportation systems, which implement the item flow; (4)
control of the item flow.

A simulation system, therefore, is viewed as consisting of several re-
sources where items are placed and processed and a coupling structure
that implements the flow of the items from one resource component to
the next. The control part then decides which items can flow from the
current resource to the next based on requirements of items and avail-
ability of resources. This is a general, abstract view which fits to all
types of discrete process simulation. The systems then differ in what
type of resources are used, the types of items used, the structure of
coupling, and in particular, who is in control and how the control of the
item flow is accomplished.

In the view of flows, efforts, effort reservoirs, and flow components,
our modeling elements are classified as follows: items are the flows,
effort components are the resources that can receive items, hold items,
process items and provide items, effort states of resources signaling
whether items are needed and items can be provided are the efforts, and
transportation systems and/or realization of coupling structures together
with decisions on item distributions represent the flow components.

ItemEvent
item : Item

java.util.EventObject
Item

<<Interface>>

ItemEventListener
<<method>> itemEvent(e : ItemEvent, name : String)
<<method>> itemProvided(e : ItemEvent)
<<method>> itemReceived(e : ItemEvent)
<<method>> itemStarted(e : ItemEvent)
<<method>> itemFinished(e : ItemEvent)
<<method>> itemLoaded(e : ItemEvent)
<<method>> itemUnloaded(e : ItemEvent)
<<method>> itemPicked(e : Item E vent)
<<method>> itemPlaced(e : ItemEvent)

<<Interface>>

ItemEventSource
<<event>> itemEvent(e : ItemEvent, name : String)

<<Interface>>

0..*

+listeners

0..*

Fig. 2 ItemEvents

Core interface and class definitions
The following interfaces and classes are fundamental for the discrete

process component library.
Item: The Item interface is a general interface for items that can flow
through the system. It defines general methods for operating with items,
like obtaining/assigning a unique ID for the item and reacting to events
that are triggered by resources on various operations on items.

ItemEvent: We defined a general event type ItemEvent according
to the JavaBeans event model for any event that might happen to be an
Item. The resource components will signal various events to give other
components a chance to listen and react. Figure 2 shows the Item-
Event event type implementation. ItemEvent is the event object
and refers to the item. ItemEventListener is an interface and
specifies a set of event methods, like itemReceived, itemPro-
vided and itemStarted, for reacting to various events that involve
items.

Effort components
Interfaces for effort components are Receiver and Provider.

They define means for observing the effort states of the components and
for accessing the flows, i.e., the Items.
Provider: Together with the Receiver, the Provider interface
is fundamental for the realization of model components. These two
components represent the basis for coupling. The Provider defines
the output interface for an item reservoir to provide an item. It defines

4

properties to provide its state, i.e., whether an item is available (bound
property hasItem), methods to provide access to the item (retriev-
eItem), a method to allow inspection of the next item that can be
provided (inspectItem), as well as an event interface to signal
retrieval of an item (itemProvided event).

Receiver: The complement of the Provider is the Receiver.
The Receiver defines the input interface for an item reservoir. It
defines properties to provide its aggregate state, i.e., whether an item
can be received (bound property needsItem), methods to receive an
item (receiveItem), a method to test whether an item can be re-
trieved (testItem), as well as an event to signal receipt of an item
(itemReceived event).

Flow components
Item flow is accomplished by coupling and item transportation com-

ponents. They realize the connection between Provider and Re-
ceivers and for that task rely on the Provider and Receiver
interfaces. Item flow can be of any complexity, ranging from elementary
direct connections between providers and receivers to complex trans-
portation systems with complex control strategies.

Figure 3 illustrates realization of Provider – Receiver cou-
plings. The item flow component gets informed of available items by the
changes of the hasItem variable of the Providers and of available
space by the needsItem variable of the Receivers. It can inspect
an available item by calling inspectItem and test a Receiver if it
will accept an item by calling testItem. Based on this information it
has to decide when and what kind of item flow should be established. It
accesses an item by calling retrieveItem from a selected Pro-
vider and forwards the item to a selected Receiver by calling
putItem. Additionally it can react to item event itemProvided
from a Provider and itemReceived from a Receiver.

VariableChangeListener

Provider
<<bound property>> hasItem : boolean

<<method>> inspectItem() : Item
<<method>> retrieveItem() : Item
<<event>> itemProvided(e : ItemEvent)

<<Interface>>
Receiver

<<bound property>> needsItem : boolean

<<method>> testItem(item : Item) : boolean
<<method>> putItem(item : Item)
<<event>> itemReceived(e : ItemEvent)

<<Interface>>

ItemFlow+provider +receiver

 Fig. 3 Item flow components

The simplest item flow components are direct linear connections be-
tween Provider and Receiver components where item flow occurs
instantaneously without any delay. With such a direct item flow, cou-
pled systems can be built that are typical of Flow Shop models. De-
pending on whether a 1:1, a 1:n, oran n:1 connection is desired, differ-
ent item flow components have to be used.

A ProviderReceiverConnection realizes a direct uncondi-
tional connection between an provider and a receiver. It listens to the
hasItem variable of the Provider and the needsItem variable of
the Receiver and, when both are true, takes the item from the Pro-
vider by calling retrieveItem and hands it over to the Re-
ceiver by calling putItem. No control decision is needed here.

The ReceiverDecisionPoint is used to couple a single pro-
vider with a set of receivers. The selection of the receiver of the next
available item is based on a control strategy, a ReceiverSelec-
tion, which is a strategy component selecting from a set of receivers.
Components implementing different control strategies are possible, for
example, selecting at random, based on given percentages, the receiver
waiting longest, based on an next item operation, etc. In the same way a
ProviderDecisionPoint couples a set of providers with a re-
ceiver.

Shape

Space
<<bound property>> movingObjects : Vector

<<method>> canEnter(l : Location) : boolean
<<method>> canMoveTo(l : Location) : boolean
<<method>> takeObject(o : MovingObject)
<<event>> fireObjectEntered()
<<event>> fireObjectLeft()
<<event>> fireObjectsTouched()
<<event>> fireObjectsMet()
<<event>> fireObjectsDeparted()

<<Interface>>

1..11..1

SpaceEventListener
objectEntered(e : SpaceEvent)
objectLeft(e : SpaceEvent)
objectsTouched(e : SpaceEvent)
objectsMet(e : SpaceEvent)
objectsDeparted(e : SpaceEvent)

<<Interface>>

0..*

+listeners

0..*

MovingObject
<<bound property>> currentLocation : Location
<<bound property>> currentVelocity : Velocity

<<method>> enterSpace(s : Space, l : Location)
<<method>> leaveSpace()
<<event>> fireArrivedAt()
<<event>> fireVelocityChange()
<<event>> fireSpaceEntered()
<<event>> fireSpaceLeft()

<<Interface>>

0..*

1..1

+objects
0..*

1..11..1

MovingObjectListener
arrivedAt(e : MovingObjectEvent)
velocityChange(e : MovingObjectEvent)
spaceEntered(e : MovingObjectEvent)
spaceLeft(e : MovingObjectEvent)

<<Interface>>

0..*

+listeners

0..*

MovingObjectEvent
object : MovingObject
space : Space

EventObject

SpaceEvent
objects : Vector
eventName : String
location : Location

EventObject

1..1

Fig. 4 Moving objects in space component architecture

Moving objects in space

The movingObject component architecture serves as a basis for
modeling and simulating of objects moving in a 2-dimensional space

(movements in a 1-dimensional or 3-dimensional space would be built
in an analogous way). This domain demonstrates the usage of the con-
cept of a model container. Actually, a Space component represents a 2-
dimensional (bounded) space where the objects move around. A Space
has several tasks. First, it is responsible for handling the physical con-

5

straints which apply in a 2-dimensional space, e.g., that two solid ob-
jects cannot occupy the same area at the same time. This is done by an
interaction protocol between the moving objects and the space compo-
nent itself. Second, it is responsible for establishing the interactions
between various objects which live in the space. Therefore, the space
supervises the moving objects and reacts whenever such interactions
occur. Third, several spaces might be arranged hierarchically to form a
bigger space and the space has the responsibility to forward an object
which leaves itself. To accomplish this, spaces can be arranged hierar-
chically, where the superior space realizes the coupling of its contained
spaces.

Based on the desired model precision, space components and their
living objects might interact in various forms. A space may represent in
detail the terrain of the space and the moving object will then model
how it can move based on the terrain of its current location. On the other
side, the space might be represented on a more abstract level, e.g., only
as a flat area with obstacles. In the following we do not discuss how
movements in complex terrain can occur but only represent a basic
event protocol between space and moving objects which is intended to
serve as a foundation for more detailed models.

To exemplify the usage of this general moving object architecture we
briefly discuss two quite diverse applications, moving particle simula-
tion and mobile, cooperating robots.

MovingObjects Component Architecture
The architecture for building simulations of moving objects in space

is depicted in Figure 4. It consists of interface specifications Space,
MovingObject, SpaceEventListener, MovingObject-
EventListener and class MovingObjectEvent. The Moving-
Object has properties currentLocation and currentVelocity. It fires
events when it arrives at particular locations, when it changes its veloc-
ity, and when it enters and leaves a space. It has methods to enter a
space and leave a space. The MovingObjectEventListener specifies
methods to react to the events.
In similar form, the space fires events when interesting things happen
with its components. For example, it will fire an event when an object
enters the space, when it leaves the space, when two objects meet within
a certain vicinity (see below) or depart, and when objects collide. This
event protocol is open so that new events can easily be introduced. The
SpaceEventListener defines a interface to react to those events. Note,
that this architecture is very general and should serve as a basic pattern
to derive special applications

Vicinity detection
A space model which detects whether objects are within a certain

distance to each other is immediately derived from the general architec-
ture. It has many applications, e.g., in the many particle system and the
moving robots examples below. The VicinityDetectionSpace
implements MovingObjectListener and reacts to arriveAt
events from its moving objects. Whenever, it detects that two objects
come close, it signals itself a objectsMet event to registered
SpaceEventListeners (Fig. 6)

s2:
VicinityDetectionSpace

listener:
SpaceEventListener

o1: MovingObject
o2: MovingObject

1: currentLocation

1.1: objectsMet(e)

1.2: objectsDeparted(e)

Fig. 5 Collaboration for detection of vicinity of two objects

s2:
VicinityDetectionSpace

listener:
ParticleCoupler

o1: MovingObject
o2: MovingObject

1, 2, 3:
currentLocation

2.1: objectsMet(e)

2.2: new ParticleCoupling(o1, o2)

ParticleCoupling

3.1: objectsDeparted(e)

3.2: delete ParticleCoupling(o1, o2)

Fig. 6 Moving, rejecting particles in a space

Moving, rejecting particles
As an application example, modeling of a space with moving and re-

jecting particles is discussed subsequently. It relies on the moving
objects architecture and shows structural changes. A simulation of many
moving and rejecting particles is not feasible when all the rejective
forces are considered all the time. A more practicable way is to consider
the rejective force between two particles only when they are within a
certain distance and otherwise ignore them. Such an approach, however,
requires that rejective forces are established and resolved dynamically.
This can be accomplished by the moving object component architecture
with the space component observing the distance between objects and
establishing force coupling components when they come close.

A VicinityDetectionSpace as discussed above is used to
check that objects come close or depart again. The objetsMet and
objectsDeparted events are fired by the VicinityDetec-
tionSpace. A ParticleCoupler (Fig. 7) implements Space-
EventListener and establishes and resolves the force couplings.

A force coupling component receives the current position (x, y) of its
two connected particles. Based on that the rejection forces which are
input to the particles (with opposite sign) are computed. This is a classi-
cal effort and flow architecture with positions being the effort variables,
forces being the flow variables, particles being the effort components,
and force couplings being the flow components.

Space

m1
m3

m2

m4

m5f34

f12

f45f23

(a) no force coupling is estblished betwenn m4 and m2

Space

m1
m3

m2

m4

m5

f24

f12

f23

(b) through movements, however, m4 comes close to m2,
but departs from m3 and m5: couplings are resolved to m3

and m5 but established with m2

Fig. 7 Moving, rejecting particles in a space

Position
x : double
y : double

ForceCoupling
Particle

<<output>> pos : Position
<<input>> forces[] : double 2

+particles

2

Fig. 8 Force coupling component

6

Mobile communicating agents
In a similar way a simulation of a family of mobile, communicating

robots can be set up (Fig. 9). The space has to check if robots do not
collide with obstacles and with other robots. The MobileAgentSpace
extends VicinityDetectionSpace and is used to detect if robots collide or
come into the radio communication area of other robots and communi-
cation channels should be established. Figure 10 shows the collaboration
for collision detection and communication channel creation.

1

3

2

Fig. 9 Moving agents

s2:
MobileAgentsSpace

listener:
CommunicationHandler

o1: MovingObject
a1: MobileAgent

ityChange
1.1: objectsMet(e)

1.1.1: new CommunicationChannel(a1, a2)

CommunicationChannel

1.2: objectsDeparted(e)

1.2.1: remove CommunicationChannel (a1, a2)

o1: MovingObject
o: Obstacles

1.3: objectsCollided(e) listener:
CollisionHandler

Fig. 10 Mobile agents

SUMMARY AND OUTLOOK
We have discussed guidelines for realizing reusable simulation com-

ponents. It has been outlined that the design of the component inter-
faces, the separation of component and coupling structures, and the
hierarchical composition and usage of model containers are of principal
importance. The applications of the guidelines have been demonstrated
by presenting component architectures for various problem domains.

The modeling principles as well as the general architecture are sup-
posed to be an important step towards an component-based modeling
and simulation methodology. Our recent work towards this goal follows
two main lines: (1) creation of component libraries for different applica-
tion domains based on the ideas presented, (2) building a interactive
development environement (IDE) to support component based modeling
and simulation. We briefly discuss the second point in the following.

We found that current Bean builder tools, like Inprise JBuilder, Sy-
mantec Visual Cafe or IBM VisualAge, altogether show great weak-
nesses and still do not really support interactive component assembly.
We have identified the following major shortcomings of current compo-
nent builder: (1) they are not able to deal with hierarchically structured
components; (2) they only support a low-level form of coupling (3) they
do not allow to influence code generation; (4) they usually work with
source code generation and not with components directly.

For that reasons, a new JavaBeans IDE will have to be realized. The
tool will differ mainly from others as it will be configurable to particular
application domains. It will heavily rely on knowledge on the meta level
to guide the user in component assembly and programming. The tool
will use and will be configurable with the following knowledge repre-
sentation schemes on the meta level:
An object oriented model representation in UML notation: The object-
oriented model has to purpose to represent the hierarchical composition,
component variants, and model aspects in an application domain. In that

it resembles the System Entity Structure knowledge representation
scheme [Zeigler 84].

Constraints: Additionally to the object model, constraints can be used to
represent allowed subranges for attributes, allowed subsets of compo-
nents, compatibility constraints between components [Rozenblit, Zeigler
88], etc. in an application domain.

Representation of coupling patterns: Ways how components can col-
laborate can be specified in the form of role models [Sametinger, Keller
2000]. A role model represents a design pattern in that it specifies
various participating roles and various forms of collaborations between
those roles for the fulfillment of a particular task. In our context, we use
role models to define higher, application-specific forms of couplings
schemes.

Template components, methods, and scripts: Usually, source code
programming cannot be avoided in developing complex simulation
programs. It is our objective to minimize programming on the source
code level. Template components are provided to serve very specific
purposes, e.g., for control of a machine, but can be programmed by the
user. A template component implements all the general code and helps
the user in implementing the specific functionality. Therefore, template
components may support higher-level forms of model specification, like
rules, tabular forms, etc., from which source code is generated finally.

REFERENCES
Cellier, F.E.. 1991. Continuous System Modeling, Springer-Verlag 1991.
Breunese, A.P.J., Top, J.L., Borenink, J.F., Akkermans, J.M., Libraries

of Reusable Models: Theory and Application, Simulation 71 (1),
1998, pp. 7-22.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad
and Michael Stal. Pattern-Oriented Software Architecture. Wiley &
Sons, 1996

H. Elmquist et al. 1998. ModelicaTM - A Unified Object-Oriented
Language for Physical Systems Models, Version 1.1,
http://www.modelica.org/documents.shtml

Gamma, E., et al, Desgin Patterns, Addison Wesley, 1994
Praehofer, H., Sametinger, J., Stritzinger, A.1999a. International Con-

ference on Web-Based Simulation, SF, CA., Jan 1999.
Praehofer, H., Sametinger, J., Stritzinger, A. 1999b. Concepts and

Architecture of Simulation Framework Based on the JavaBeans Com-
ponent Model , Journal of Future Generation Computing Systems,
Special Issue on WebbBsed simulation, 1999, (accepted)

 Praehofer, H, Schoeppl, A. 200. A Continuous and Combined Simula-
tion platform in Java and its Application in Building Paper Mill
Training simulators (this volume).

Reenskaug T, Lehne O A, Working With Objects-Designing Distributed
Systems for Reuse; OOPSLA 97 Tutorial

Rozenblit, J.W. and B.P. Zeigler, Design and Modeling Concepts, In
International Encyclopedia of Robotics. (Ed. R. Dorf), 308-322, John

 Wiley and Sons, New York, 1988
Sametinger, J, Keller R. Design Components - Compositional Reuse of

Design Expertise, 2000 (to appear)
Sun Microsystems. 1997. JavaBeans 1.01 API Specification. Sun

Microsystems, Inc., 1997.
Szyperski, C., Component Software: Beyond Object-Oriented Pro-

gramming, Addison-Wesley, 1998.
Zeigler, B.P., Multifacetted Modelling and Discrete Event Simulation.

Academic Press, 1984.
Zeigler, B.P., H. Praehofer, and T.G. Kim, Theory of Modeling and

Simulation, 2nd Edition. Academic Press, 1999 (to appear)

