
Concepts and Architecture of a Simulation Framework
Based on the JavaBeans Component Model

Herbert Praehofer, Johannes Sametinger, Alois Stritzinger

Department of Systems Theory and Information Engineering
C. Doppler Laboratory for Software Engineering

Johannes Kepler University, A-4040 Linz / Austria

Abstract

We report on a combination of system theoretic simulation modeling methodology with the JavaBeans compo-
nent model as a basis for a component-based simulation framework. While system theory formalisms can serve as
formal, mathematical foundations for modular, hierarchical modeling and simulation, the JavaBeans component
model provides the appropriate implementation base. The result of the synergism is a powerful component-based
simulation framework. In this paper we present the basic concepts and overall architecture of our JavaBeans
modeling and simulation framework. We review the underlying system modeling formalisms for simulation
modeling, sketch the layered architecture of the framework, and show elementary simulation programming and
interface-based, hierarchical coupling of simulation components in more detail. Finally, we show the current state
of implementation and demonstrate how simulation model can be developed using standard bean builder tools.

Keywords: simulation, simulation components, state space models, Java, component programming

1 Introduction

Component-based software development [16], [18]
is a new programming paradigm that emphasizes
software construction from prefabricated building
blocks that adhere to a standardized component
model. JavaBeans [19] is the component model for
Java [5].

Component frameworks are dedicated and focused
architectures with a set of policies for mechanisms at
the component level [20]. Component frameworks
share similarities with application frameworks. They

provide a framework for components rather than
objects but are not necessarily used for the creation
of entire applications. Component frameworks typi-
cally implement generalized common behavior and
define (abstract) interfaces that have to be imple-
mented (or extended) to utilize the common behav-
ior.

This paper poses two theses:
1. Modeling and simulation technology can profit
from a component-based software methodology

2

2. Modular, hierarchical modeling fostered by the
systems method provides a methodology for building
reusable component architectures.

Our modeling approach is based on system theo-
retic formalisms [27], most notably the DEVS for-
malism [24], [25]. The DEVS formalism is a formal,
system theoretic formalism for discrete event mod-
eling and provides a methodology for modular, hier-
archical modeling. It has been extended to support
multiformalism modeling [15].

In the course of the SimBeans project we have de-
veloped a set of JavaBeans components for the crea-
tion of simulation systems. The goal of the project
was twofold. First, component models in general and
the JavaBeans component model in particular were to
be evaluated in a specific application domain. Sec-
ond, we wanted to investigate whether simulation
applications can profit from recent developments in
software technology. The idea was to create a set of
basic simulation components together with visualiza-
tion and animation components that can be arranged
and connected on a worksheet. Comfortable visual
composition of simulation scenarios together with
visualizations and animations should be possible.

1.1 The Vision of a Component-Based Simulation
Methodology

We envision a component-based simulation meth-
odology that provides component libraries for differ-
ent purposes, at different levels, for different users,
and for different applications. The main objective is
reusability; i.e., simulation systems can be built with
less effort mainly by selecting, extending, customiz-
ing, and assembling components from libraries. Such
components comprise simulation units (model com-
ponents) as well as components for output, visualiza-
tion, animation and statistical analysis. A component-
based modeling and programming framework for
simulation applications should enable developers to
interactively pick components from libraries and
place them onto a worksheet. Convenient interactive
configuration, coupling, and customization of com-
ponent parameters must be supported.

Hence different types of users use different libraries
in different ways:
§ The application engineer uses a set of predefined,

ready-to-use components to model the application
entities, customize the components by setting vari-
ous parameters in convenient user interface dialogs,

interactively connect the components, and run ex-
periments with them. The application engineer does
not want to do any programming in Java and must
be supported in quickly setting up different system
configurations and experiments. This type of user
needs a predefined set of components for modeling
the application-specific entities, couplings and
control mechanisms. Besides the components, the
application engineer needs an easy-to-use tool for
setting up system configurations and for running
experiments.
§ The simulation programmer has to realize the com-

ponents that are needed in the application context
by the application engineer. This user will rely
mainly on a library of elementary components for
simulation modeling as well as for output, visuali-
zation/animation and output analysis. However, the
simulation programmer will also need to program
in Java in order to implement parts for which no
components can be found. This engineer should
heavily use program development tools and inter-
active builder tools in order to set up and test indi-
vidual simulation components and entire simulation
systems.
§ The simulation expert has to realize elementary

simulation components for different application
domains. This requires a good understanding of the
underlying modeling and simulation concepts, the
JavaBeans component technology, and the applica-
tion domain. The simulation expert will mainly do
programming in Java using the underlying simula-
tion concepts and, eventually, components from
other application domains.
We see the simulation programmer as the main cli-

ent for a component-based simulation methodology.
This user will profit most from the component tech-
nology. It should be less effort to realize application-
specific components or application-specific simula-
tion systems and environments, which can then be
used by application engineers. The simulation expert
is responsible for providing the elementary compo-
nents for the simulation programmer. This expert is
faced with the challenge of designing components so
that they can be reused by the simulation program-
mer in a wide range of applications. The application
engineer, however, will profit from a component-
based simulation technology that facilitates the reali-
zation of customized simulation systems and tools

3

with application-specific component libraries and
user interfaces.

1.2 Main Ideas

In the spirit of component technology, simulation
components should be designed to be reusable in
different contexts, customizable for a wide range of
different applications, and extensible for particular
unforeseen requirements. We have tried to accom-
plish these objectives by pursuing the following goals
in component design:
§ A set of elementary, yet powerful building blocks is

provided for simulation modeling and simulation
output, for statistical evaluation, and for visualiza-
tion.
§ A library of utility and support objects is provided

from which model components can be customized
in their functionality in order to meet particular re-
quirements.
§ Model interfaces are defined which specify where

and how model components can be used. The inter-
face specifications are put into a classification hier-
archy to define compatibility between model com-
ponents [21].
§ Interfaces and interface-based classification of

model components are used to define generic tem-
plates for coupled models that define the compo-
nents’ interfaces and coupling structure but not the
components themselves. At design time, these ge-
neric components can be configured by instantiat-
ing model components that adhere to the interface
requirements.
§ Simulation systems are primarily built in a bottom-

up way by hierarchical composition and coupling
of model components.
§ The component library can easily be extended to

meet special needs.
§ By means of elementary simulation component

libraries and a framework program for simulation
and experimentation environments, special-purpose
simulation environments for particular application
domains can be realized.
Figure 1 illustrates how simulation systems are as-

sembled from components. According to these ideas,
we distinguish the following ways of assembling
components:
§ Configuration

Select concrete model components in a coupled

model for which only the interfaces are specified in
a top-down manner.
§ Customization

Customize simulation components to meet different
requirements by using utility components, e.g., ran-
dom distribution functions, control strategies.
§ Coupling

Couple model components in a hierarchical bottom-
up way.
§ Attachment

Attach components for simulation output, statistical
computation, visualization and animation to state
variables (properties) of models.

model modelcomp

model

configure

object

customize

couplingscouple

attach

property

attach

output

util

output

models

output

couple

property

Fig. 1 Assembling simulation systems from components

We argue that such a vision of a component-based
simulation methodology is made feasible by reliance
on system modeling concepts that support modular,
hierarchical modeling and on the JavaBeans compo-
nent technology. In the following we briefly review
system modeling and the JavaBeans component
technology in this sense.

2 Background

2.1 Modular Hierarchical System Modeling
Reviewed

Modular, hierarchical system modeling [24], [25],
[11] is an approach to complex dynamic system
modeling where modular building blocks, i.e., system
components with a well defined interface, are cou-
pled in a hierarchical manner to form complex sys-
tems. In system modeling, we distinguish between
atomic and coupled models. While an atomic model
specifies its internal structure in terms of its set of
states and state transition functions, a coupled
model’s internal structure is specified by its compo-
nents and its coupling scheme. Modularity allows for

4

setting up bases of reusable building blocks that can
be plugged into a system through their well defined
input and output interfaces. System modeling means
interface-based object composition.

Component-based software engineering represents
a step towards a modular system modeling approach.
Components define an explicit input and an explicit
output interface in the form of method calls that they
accept and events that they generate. Component-
based programming should primarily mean interface-
based component composition. Components can be
constructed hierarchically using finer-grained com-
ponents.

State Space Representation of Simulation Models
In modular hierarchical system modeling, the ele-

mentary building blocks are modeled using system
formalism which allow a “state space representation”
of simulation models [3], [27]. Different types of
formalism are available for different forms of model
specification: classical differential equation specified
systems (DESS) serve for continuous model specifi-
cation, the DEVS formalism represents the system
theoretical basis for discrete event modeling and the
DEV&DESS formalism [27], [15] as a combination
of both serves as a basis for combined dis-
crete/continuous multiformalism modeling.

A state space model is a modular unit. It comprises
input and output interfaces through which all the
interactions with the environment occur. The interior
of the model is represented by state variables. Dy-
namic behavior definition occurs by state transition
and output functions which adopt different forms in
the different types of formalisms. In DESS modeling
state behavior is specified using a derivative function
to specify continuous state behavior while in DEVS
state behavior specification is event-like.

In DEVS modeling and its extensions [12], we dis-
tinguish the following types of events:
§ External events are caused by external event inputs

at the input interface.
§ Conditional events depend on event conditions and

are caused by value changes of discrete variables.
§ State events depend on event conditions and are

caused by continuous changes of continuous states
and inputs.
§ Time events are scheduled and occur when the

simulation time is forwarded to the time of the
event.

Visual Representation of State Space Models
Visual representations are a preferable form for

model specification and documentation. While block
diagrams [3], as employed in SIMULINK [9] and
others, are advantageous visual representations of
continuous models, we use state transition diagrams
in the state chart form [6], [14], [2] for representing
event behavior. Our model implementations as dis-
cussed in Section 4.1 are direct translations of these
visual representations.

In the DEVS formalism and its multiformalism ex-
tensions, atomic model specification is organized
around various phases that denote abstract system
states. Actually the different phases of a model define
a partitioning of the state space into a set of mutually
exclusive blocks, where the different blocks identify
qualitatively different system behaviors [14]. In
combined modeling, the phases can be used to asso-
ciate different continuous behaviors. The state space
phase partitioning and the dynamic behavior specifi-
cation organized around phases can serve as a basis
for a graphical state diagram model representation.
The phases and phase transitions are naturally repre-
sented by a state transition diagram.

In the state transition graph, the nodes depict the
phases and the edges the event transitions. According
to the different types of events in event models as
discussed above, we distinguish different types of
transition edges that are labeled in different ways:
§ External event edges are labeled by the triggering

external event input.
§ Conditional event edges and state event edges are

labeled by the triggering event condition, usually in
squared brackets.
§ Time events edges are labeled by the scheduled

time advance of the transition.
Filler

Inspection

FillingStation

in out

Fig. 2 Bottle filling station

As an illustrative example we adopt a model of a
bottle filling station as shown in Fig. 2 (the model

5

has been selected since it is appropriate for showing
the different modeling features). Bottles enter a fill-
ing station and are filled with liquid. The station uses
a filler which is also used by others and therefore
represents a scarce resource. After filling up, the
bottles are inspected and then released/ejected. The
bottles’ content is modeled by a continuous state
variable whose derivative is given by the outflow of
the filler. The operation of the filling station is dis-
crete and modeled by various events.

Figure 3 shows a state chart representation of the
bottle filling station behavior. The filling phase is
expanded to show the underlying block diagram
model of the continuous bottle process. In the initial
phase idle, an input event input(bottle) will bring the
model into phase wait, where it has to wait for the
filler resource. The conditional event transition mod-
els the transition to the filling phase upon availability
of the resource. The next transition is a state event
transition that models the event when the bottle is
full. The last event is time scheduled; it models the
output of the bottle and the transition to phase idle
after inspection, which lasts 1 time unit.

[bottle.level >= 10] /
filler.available= true

 1 / ^put-out (bottle)

idle wait

[filler.available] /
filler.available= false

input(bottle)

test filling

Filler bottle

outflow inflow level∫
content

f

Fig. 3 State transition diagram of a bottle filling station

The block diagram models the bottle filling proc-
ess. The derivative of content is defined by the cur-
rent inflow, which in turn is directly connected to the
outflow from the filler. The level output variable is
computed by a function f from the content.

Coupled Models
Complex coupled models are specified by con-

necting the output and input interfaces of model
components as shown in Figure 4. Components pro-
vide their interfaces, and coupled models rely on
these interfaces to define

§ how components are coupled and
§ how their own input and output interfaces are real-

ized based on the components’ interfaces.

coupled model

control and
coupling

o
u
t
p
u
t

i
n
p
u
t

component

outin
o

component

outin
o

component

outin
o

coupled model

control and
coupling

o
u
t
p
u
t

i
n
p
u
t

component

outin
ocomponent

outin
o

component

outin
o

Fig. 4 Hierarchical coupling of components

In contrast to classical system modeling, our cou-
pling schemes are not restricted to pure port and
variable connections. For utmost flexibility we allow
the following:
§ Coupled components employ arbitrary coupling

schemes, e.g., direct coupling, broadcast coupling,
cellular coupling, etc.
§ For variability of component structure and coupling

[26], [22], [1], the coupled model changes its
structure dynamically.
§ The coupled model specifies its own dynamic be-

havior.
We regard the modular hierarchical composition of

components as our approach to accomplishing model
reusability. We strive to design the model interfaces
carefully so that they are independent of the envi-
ronment in which they are embedded. In Sections 4.2
and 4.3 we further elaborate on this idea by discuss-
ing the implementation of coupled models in Java
and the design of interfaces for resources and discrete
item flow.

2.2 JavaBeans Component Model

JavaBeans is the component model of Java [19]. A
JavaBean is a reusable software component that can

6

interactively be modified and combined with other
components. Tools that support component assem-
bling range from simple layouting tools to complex
component-based, visual programming environ-
ments. To realize components based on JavaBeans
has the advantage that it defines a common and gen-
erally accepted standard (design patterns) for com-
ponent analysis and handling. Components based on
JavaBeans can be used in any development tool sup-
porting the JavaBeans standard.

JavaBeans components are defined and imple-
mented by Java classes that have to adhere to certain
conventions. For example, bean classes need to have
a public null-constructor, so that they can be instati-
ated in any context. Bean instances have also to be
serializable so that they can be made persistent. A
bean’s features can be accessed via an introspection
mechanism that provides (meta-) information about
method, property and event sets for the environment.
The two most important concepts for our simulation
model implementation are events and bound proper-
ties. We review these in more detail below.

Events
JavaBeans provides a standard event model to al-

low event firing and event communication between
components. A particular event type is realized by
providing an event object (class <EventType>-
Event), which must be a specialization of the stan-
dard class EventObject, and an interface for event
listeners (interface <EventType>EventListener)
with specifications of event methods. Any compo-
nent firing the event must implement methods to add
and remove event listeners (methods add<Event-
Type>EventListener and remove<EventType>
EventListener). Upon firing an event, the compo-
nent calls the listeners registered for the event with
the respective event method.

Let us illustrate events by an event type implemen-
tation, bottleEvent, which will be used in Section
4.1 to realize distribution of bottles (objects of type
Bottle) between stations in our implementation of
the bottle filling station.
REFFORMATVERBINDENFigure 5 shows the
bottleEvent realization. BottleEvent is the
event object as a specialization of EventObject.
BottleEventListener is an interface with event
method bottleInput. Any component signaling
bottleEvents has to realize methods addBottle-

EventListener and removeBottleEventList-
ener to register event listeners. Firing a bottle output
event will distribute a Bottle object in a Bottle-
Event object to the registered BottleEventListen-
ers.

EventObject BottleEvent

«Interface»
BottleEventListener

+bottleInput(e : BottleEvent)

BottleModel

+addBottleEventListener (l : BottleEventListener)
+removeBottleEventListener (l : BottleEventListener)
+bottleOutput(b : Bottle)

BottleEvent bottleEvent = new BottleEvent (this, bottle);
for all bottleEventListeners do
 bottleEventListener.bottleInput(bottleEvent)

Fig. SEQARABISCH5 Bottle event

Properties
Properties are named attributes of a bean compo-

nent that allow controlling the appearance and be-
havior of the component. Properties provide state
information of components. Properties can be read
and set at building (design) time and of course at run
time via getter and setter methods. These methods
have to obey the naming convention get<Prop-
erty> and set<Property>. A builder tool typically
provides a property sheet to visualize the current
property states and a set of property editors to change
property values.

Bound properties are properties that use the event
concept to signal state changes to its environment.
For this purpose, class PropertyChangeEvent and
interface PropertyChangeListener are defined.
A bean implementing a bound property has to define
add and remove methods to allow registration of
PropertyChangeListeners (the naming conven-
tion is add<PropertyName>ChangeListener and
remove<PropertyName>ChangeListener). Any

7

other component interested in changes of the prop-
erty can be added and will be informed whenever the
value changes.

The bound property change mechanism is import in
our implementation concepts of the simulation
model. As we show in Section 4.1, an extension
thereof (VariableChangeListener) is used to
realize state dependencies between model compo-
nents.

3 Architecture of SimBeans

3.1 Layered Architecture

In accordance with the different types of users en-
visioned in Section 1.1, we identify various layers in
the SimBeans framework; see Figure 6.

simulation kernel
· simulation algorithm: event handling and numerical
integration
· state variables and change events
· data collections and utilities
· basic output

basic simulation components
· elementary model components (e.g. processors,
queues, delays, ...)
· coupling schemes
· control strategies
· output components (visualization, animation and
statistics)

application-specific simulation components
· e.g.: machines, transporters, storages, vehicles,
...

application-specific simulation tools, tool plug-ins
· framework for simulation tool development

Java / Java Beans and extension
· delegate mechanism
· asynchronuous property change event handling

SEQARABISCHFig. 6 Layers of SimBeans framework

Layer 1: Java/JavaBeans Extensions for Simulation
The lowest layer is the Java programming language

and the JavaBeans component model. Besides minor
additions to the basic infrastructure, we introduced
the following to meet the special needs of discrete
event simulation:
§ asynchronous event delivery mechanisms
§ a delegate mechanism for flexible event coupling

Asynchronous Event Delivery Mechanism:
The JavaBeans specification does not define the

semantics of invocation order and synchronization of
multiple event handlers listening to the same event. A
default implementation exists for synchronous event
handling (class PropertyChangeSupport) which calls
listeners’ event methods in the sequence the listeners
have registered. However, this simple approach be-

comes problematic when feedback occurs in event
handling, i.e., when the property triggering an event
is changed in a listener method. The effect is that the
next event listener may receive a property change
with the old value but the value has been changed in
the meantime. We have experienced that this mecha-
nism results in obscure behavior in discrete event
simulations; such behavior is impossible to track and
handle.

For this reason we implemented an asynchronous
property change mechanism (called Variable-
ChangeEvent; see below). A change event is not
executed directly but registered at the simulator. The
simulator processes events in FIFO order and thus
guarantees that an event is fully executed before the
next change event is launched.
Delegate Mechanism:

Beans are usually coupled by means of adapter ob-
jects that listen to one or more event sources and
provide the code for handling the events. The event
handling code is adapter-specific and easily leads to
an opulent proliferation of adapter classes. The situa-
tion becomes even worse when many specific
event/listener types are used. In order to reduce the
number of adapter classes and avoid trivial adapters,
we provide a generic adapter class Delegate, which
simply delegates the concrete event handling to any
target object. Delegates hold a target object and a
target method (object) and implement an EventLis-
tener interface. The behavior of delegates is simple:
"on event handling, invoke target method on target
object and pass the event source as argument." The
constructor of the Delegate expects two arguments:
the target (Object) and the target method name
(String). During construction of a delegate object, the
specified method is searched for in the target class;
next the constructor checks whether this method
expects an event as a single argument (this can be
done using Java’s reflective features) and assigns the
method object to the targetMethod variable. Our
delegate class resembles Microsoft’s J++ delegate
concept without extending Java, but instead using
reflective method lookup and invocation. Naturally,
delegate construction with dynamic method lookup is
less efficient. Fortunately, delegate construction does
not happen frequently (typically before listener reg-
istration). During event handling the "installed"
method is invoked, which is as efficient as a regular
method invocation.

8

Layer 2: Simulation Kernel
The simulation kernel layer provides the simulation

infrastructure and implementation concepts for the
simulation components. This layer is specific to dif-
ferent types of simulations; e.g., there are infrastruc-
tures for discrete event simulation, for continuous
simulation, and for combined simulation.

This layer includes support for the following:
§ models, model containers and hierarchies of models
§ event scheduling, event sets and event handling
§ numerical integration for continuous simulation
§ discrete and continuous variables and variable

coupling
§ utility services for random number generation
§ utility services for simulation data collection and

analysis
§ elementary output and visualization

Layer 3: Elementary Simulation Components
This is the central layer containing the elementary

simulation components. It is specific to the problem
domain; for example, there is one library for discrete
process simulation (discussed in more detail below)
and one for hydrodynamic systems. The layer con-
tains components for the following:
§ elementary model units
§ classical control algorithms
§ component coupling schemes
§ utility services
§ output, output analysis as well as visualization

components
This layer is crucial for the success of the compo-

nent-based simulation framework. It is a challenge
for the simulation expert to foresee a wide range of
applications in the domain and to provide a set of
easy-to-use and easy-to-extend components. Model-
ing is based on system theoretic formalisms. We
describe the modeling approach in more detail in
Section 4.

Layer 4: Application-Specific Simulation Compo-
nents

In layer 4 application-specific components have to
be provided. In contrast to components of layer 3,
these components are to model concrete real-world
entities that are meaningful for the application engi-
neer. They already have customized visualization and
user interfaces using the representations usual in the
application domain. They are assembled mainly by

using and adapting elementary components from
layer 3.

Layer 5: Application-Specific Simulation Systems
and Environments

At the top of the hierarchy of layers there are appli-
cation-specific simulation systems and environments.
They are built up from the lower layer components as
stand-alone systems. Like components of layer 4, the
simulation systems and environments of layer 5 are
specific to the application at hand and provide a user
interface in the context of the application engineer.
We distinguish between simulation systems, which
have a single simulation model and are often part of a
bigger application (plug-ins), and simulation envi-
ronments, which allow building and testing different
configurations by assembling components from a
library.

We regard the design of a simulation tool frame-
work as a special challenge. Such a tool framework
should allow building customized simulation tools in
an easy way. We strive for a framework that will
allow the application engineer together with the
simulation expert to specify the following:
§ the kind of model components used in the applica-

tion domain
§ the different ways how these components can be

customized by utility components
§ the different types of coupling schemes available
§ a set of controller components and means to define

such
§ the possibilities for output and output analysis

By means of these features, the tools should be able
to support the application domain. We can achieve
these objectives by heavily relying on the following
concepts:
§ the modeling approach and component libraries as

discussed above
§ an object-oriented model representation in UML

notation
§ meta-representations of simulation components and

systems.

3.2 Modules

In each layer, different modules realize different
problem domains. Modules become more and more
specific in the higher layers; see Figure 7. While at
the lowest kernel layer we distinguish modules for
implementations of discrete event, continuous and

9

combined simulation mechanisms, at the layer of
basic simulation components, differentiation occurs
based on the elementary behavioral aspects. For
example, the task of the discrete items module is to
provide elementary components for items and re-
sources. The moving objects module should allow
the realization of entities that move in space and on
predefined paths; these entities rely heavily on the
discrete event simulation part. By contrast, the liquid
flow module is based mainly on continuous and
combined simulation. Its objective is to provide ele-
mentary building blocks for modeling liquid in vats
and liquid flow in pipes.

simulation kernel

continuous discretecombined

....
basic simulation components

discrete
items

moving
objects

liquid
flow

application-specific simulation components

paper
industry

steel
industry

road
traffic

transportation

application-specific simulation tools and systems

Pulper
system

VAI
rolling mills

Linz
highways

TGW
conveyors

Fig. 7 Modules of the SimBeans Framework

At the next higher application-specific component
layer, modules are created for particular application
domains. For example, the paper industry module
provides building blocks for paper mill plants and is
based mainly on the liquid flow module. At the high-
est layer, there are modules that realize particular
simulation systems and tools, for example, a simula-
tion system for simulating the pulper in a paper mill,
or a simulation tool for rolling mills of the steel
equipment manufacturer.

The design of the elementary simulation compo-
nents is crucial. In the following we describe these
components in more detail.

4 Simulation Model Implementation

In this section we present the translation of the
system modeling concepts discussed in Section 2.1
into Java source code. This translation is strongly
based on the JavaBeans component model. We first
show how atomic model behavior is realized by bas-
ing on a set of components and various event models
from the simulation kernel layer. In Section 4.2 we
discuss realization of interface-based coupling of

simulation models, and we illustrate the ideas with an
example component architecture in Section 4.3.

4.1 Implementing Atomic Models

Recall state space representation of simulation
models from Section 2.1. A simulation model in state
representation is a modular building block with an
input and output interface, internal state variables,
and a behavior specification in the form of derivative
functions for continuous models and discrete events
for discrete models. In the following we show how
state space models can be implemented. The imple-
mentation of state space models is low level and
meant to serve as a basis for higher coupled model
concepts as discussed in Section 2.1, but also for
future higher model description languages like state
transition diagrams or rule-based formalisms.

We show atomic model implementation by pre-
senting the implementation of the bottle filling model
introduced in Section 2.1.

Defining Models and Variables
Models in our environment are subclasses of Ba-

sicModel. Models first of all have to define the
static structure, that is, its subcomponents, if any, its
variables, and their coupling.

States as well as input, output, and auxiliary vari-
ables in simulation models are implemented by sub-
classes of Variables (like BooleanVariable,
IntVariable, DoubleVariable and Object-
Variable) that encapsulate values of different type.
Read and write access has to occur through the meth-
ods getValue and setValue. The reason for using
these wrapper objects to store state information is –
in the sense of Proxies [4] – to allow additional func-
tionality for state variables. Thus Variables objects
provide elementary implementation of change event
mechanism and ContVariable contains the funda-
mental functionality for numerical integration.

Figure 8 shows the definition of variables in Fill-
ingStation, Bottle and Filler classes. Bottle
defines the input variable inflow, the output vari-
able level, and the continuous-state variable con-
tent. The Filler is a resource and shows its avail-
ability through BooleanVariable available.
Additionally, it provides its liquid output in the vari-
able outflow. FillingStation models the dis-
crete operations and has the discrete variables phase

10

for its phase and bottle to hold the current bottle to
be filled.

public class Bottle extends BasicModel {
public ContVariable content =

new ContVariable(Variable.VARIABLE,0);
public DoubleVariable inflow =

new DoubleVariable (Variable.INPUT);
public DoubleVariable level =

new DoubleVariable (Variable.OUTPUT);
...

public class Filler extends BasicModel {
public BooleanVariable available =

new BooleanVariable (Variable.VARIABLE, true);
public DoubleVariable outflow =

new DoubleVariable (Variable.OUTPUT);
...

public class FillingStation extends BasicModel
implements VariableChangeListener, BottleEventListener

{
public StringVariable phase =

new StringVariable (Variable.VARIABLE, “idle”);
public BottleVariable bottle =

new BottleVariable (Variable.VARIABLE, null);
...

Fig. SEQARABISCH8 Filling station model implementation:
Class definition

Continuous Model Implementation
Continuous model implementation is accomplished

by translating the block diagram representation as
discussed in Section 2.1 to a set of Variables.
ContVariable is the class for realizing a continu-
ous state variable over which integration occurs. The
derivative for a state variable is defined by using
setDerivative with the derivative variable as
parameter. Direct connections between variables is
established using function connect. Other more
complex dependencies can be implemented in the
model method equation, which is called during
integration to set variables values.

// Bottle class continued
public Bottle () {

inflow.setValue(0.0);
content.setDerivative(inflow);

}
public void equation() {

level.setValue (levelFromContent (content.getValue());
}
protected double levelFromContent (double content) { ... }

Fig. 9SEQARABISCH Bottle model implementation: continuous
model equation

Figure 9 continues the implementation of the con-
tinuous model Bottle. In the constructor the deriva-
tive of content is set to be equal to the variable
inflow, and method equation computes the cur-
rent level from content using the auxiliary
method levelFromContent. Inflow is set to 0.0
initially but will be connected to outflow of
Filler when bottle filling (see Fig. 11).

External Events
Recall that we identified four different types of

events in discrete models: external events, condi-
tional events, time events and state events. The
simulation kernel layer provides elementary inter-
faces and components for dealing with the different
types of events.

Input events are realized with standard JavaBeans
event methods (see BottleEvent in Section 2.2).
Simulation model components fire particular events
(event outputs) to which other components react
accordingly. Listener interfaces with event methods
are specified for model classes with input events.

Figure 10 shows the implementation of the input
event bottleInput in FillingStation. This
FillingStation is registered as an event listener
of the previous bottle station. Upon input of a new
bottle in a BottleEvent object (method bot-
tleInput), the bottle is stored in the variable bot-
tle, the model transits to phase wait, and the model
sees whether the filler is available and can start fill-
ing. Additionally, a fullGuard state event object is
set to monitor the fill level of the bottle (see below).

// FillingStation continued: input event
previousStation.addBottleEventListener (this);

public void bottleInput (BottleEvent bottleEvent) {
if (phase.getValue() == “idle”) {

bottle.setValue (bottleEvent.getBottle());
fullGuard.watch (bottle.level, 10);
phase.setValue(“wait”);
startFilling();

}
}

Fig. 10 Model implementation FillingStation: input event

Conditional Events
To realize conditional events, variable change

events have been realized as an extension of the stan-
dard bound-property change mechanism of Java-
Beans. Variable change events extend bound-

11

property change mechanisms by introducing asyn-
chronous event handling (see Section 2.2). In discrete
model realization, variable change events are used to
realize state dependency of model components, for
example, the dependency of a model from the avail-
ability of some resource. Here variable change
mechanism can be seen as an efficient version of the
activity scanning modeling approach [23] in other
simulation systems.

Variable change events are realized by the event
object VariableChangeEvent, which is a speciali-
zation of PropertyChangeEvent, and by the inter-
face VariableChangeListener as a specialization
of PropertyChangeListener. Variable classes
as discussed above implement the variable change
event handling in that they allow adding and remov-
ing listeners and fire variable change events in the
writer method setValue.

// FillingStation continued: conditional event
Filler filler;
filler.available.addVariableChangeListener (this);

}
public void variableChange () {

startFilling ();
}
public void startFilling () {

if (phase.getValue() == “wait” &&
filler.available.getValue()) {

filler.available.setValue(false);
filler.outflow.connect(bottle.inflow);
phase.setValue (“filling”);

}
}

Fig. 11 Model implementation FillingStation: conditional
event filler available

Figure 11 shows the use of the variable change
mechanism for implementing the conditional event of
the model FillingStation. The transition from
phase wait to phase filling is triggered by the
availability of the resource filler. The Filling-
Station adds itself as a listener for changes of
BooleanVariable available of its Filler.
Upon occurrence of a variable change, first method
variableChange is called, which in turn calls
method startFilling. After the phase and the
availability of filler has been tested, the filler is
seized by setting available to false, the outflow
of filler is connected to the inflow of the bot-
tle, and the phase is set to filling.

State Events
Time events and state events as well as events

originating from user inputs are handled by the
simulation event list implemenation and are based on
the simEvent event type. Figure 12 shows the
classes and interfaces for simEvents. As the direct
descendant of EventObject, SimEvent is the gen-
eral class for simulation events and specializes into
TimeEvent, StateEvent and InputEvent. Sim-
EventListener and its specializations Time-
EventListener, StateEventListener, and
InputEventListener are the respective event
listener interfaces.

EventObject SimEvent

«Interface»
SimEventListener

+processSimEvent(e : SimEvent)

TimeEvent

StateEvent

InputEvent

«Interface»
StateEventListener

«Interface»
TimeEventListener

«Interface»
InputEventListener

Fig. 12 SimEvents

These different types of events are triggered by dif-
ferent components. For example, different interface
components are available that trigger inputEvents
to insert user input values into the simulation model
for visual interactive simulation. Timer is a compo-
nent that triggers time events and functions similar to
a clock. It can be set by calling activate-
In(deltaT) or activateAt(t) and will trigger a
timeEvent when the simulation time has come.
StateGuard implementations are employed to

signal state events. They are set to watch particular
continuous variables and then trigger whenever the
continuous variable passes this threshold.

Figure 13 shows the implementation of the state
event that is triggered using a StateGuard full-
Guard when the bottle is full. The fullGuard was
set in method startFilling (Fig. 10) to watch for
the variable level to reach 10. Below an anonymous

12

StateEventListener is created to listen to this
event and to call method handleFull. In method
handleFull the phase is changed to test, the vari-
able outflow of filler and variable inflow of
bottle are disconnected, the fullGuard is passi-
vated, and an endOfTestTimer timer object is
scheduled to trigger in 1 time unit (see below).

// FillingStation continued: state event
StateGuard fullGuard = new StateGuard (level, 10);
fullGuard.addStateEventListener (new StateEventListener () {

public void processSimEvent (SimEvent e) {
this.handleFull(e);

}});

public void handleFull (StateEvent e) {
if (phase.getValue()==“filling” && level.getValue()>=10) {

phase.setValue (“test”);
filler.outflow.deconnect(bottle.inflow);
bottle.inflow.setValue(0.0);
filler.available.setValue(true);
fullGuard.passivate ();
endOfTestTimer.activateIn (1.0);

}
}

Fig. 13 Model implementation FillingStation: state event full

Time Events
Figure 14 shows the implementation of the transi-

tion of the time event from phase test to idle; this
event was scheduled in the full event. A Timer end-
OfTestTimer and an anonymous TimeEventLis-
tener are created. The TimeEventListener lis-
tens to the time events and calls endOfTest, where-
upon firing the output event bottleOutput ejects
the bottle, the bottle is set to null, and the idle
phase is entered. Finally the implementation of bot-
tleEvent is shown.

4.2 Realizing Interface-Based Coupling of Simula-
tion Components

While atomic model implementation as presented
above is low level in nature, we provide concepts and
implementations for interface-based coupling of
simulation components that we regard as higher
level. In the following we discuss how this can be
accomplished in Java/JavaBeans.

Recall from Section 2.1 that modular hierarchical
modeling means building autonomous (modular)
units and coupling them hierarchically employing
different coupling schemes. The strict separation of

component interfaces and coupling structure is our
most fundamental design principle.

// FillingStation continued: time event
Timer endTestTimer = new Timer (“endTest”);
endTestTimer.addTimeEventListener(new TimeEventListener(){
public void processTimeEvent (TimeEvent e) {

this.endTest(e); }});

public void endTest (TimeEvent e) {
bottleOutput (bottle.getValue());
bottle.setValue (null);
phase.setValue (“idle”);

}
Vector bottleEventListeners = new Vector();
public void addBottleEventListener(BottleEventListener l){

bottleEventListeners.addElement (l); }
public void removeBottleEventListener(BottleEventListener l) {

bottleEventListeners.removeElement (l); }
protected void bottleOutput (Bottle b) {

//call input of all bottleEventListeners
...};

Fig. 14 Model implementation FillingStation: time event
endTest

We use Java interface definitions as the basis for
coupling and hierarchical composition. Generic inter-
faces are defined for various simulation modeling
problems to specify access to simulation components.
According to the modeling features for continuous
and discrete event modeling, interfaces can contain
the following:
§ for continuous couplings: access to input and out-

put variables which can be connected directly call-
ing connect
§ for conditional events: add and remove methods to

register variable change listeners
§ for event outputs: add and remove methods to reg-

ister various event listeners
§ for input events: input event methods

These interface definitions are implemented by
simulation modeling components and are used for
coupling components but also for adding control
strategies and attaching visualization, animation, and
output analysis components.

Our methods to identify components and coupling
schemes and definition of interfaces follow the ideas
of bond-graph modeling [10], [3], which distin-
guishes flow and effort variables as well as 0- and 1-
junctions. In bond-graphs a flow is a variable typi-
cally representing some flowing quantity, while an
effort typically represents a status (although the se-
lection is arbitrary). A 1-junction represents an effort

13

reservoir and is associated with Kirchoff’s voltage
law; a 0-junction represents a linkage of effort reser-
voirs and is associated with Kirchoff’s current law.

Our component technology interprets this rather
abstract way of thinking clearly (see [7] for a similar
approach). We distinguish between reservoirs, which
store states, and coupling components, which model
flows. Reservoirs are the model components that
have interfaces for providing the state information of
their effort states, e.g., the pressure in a hydrody-
namic system, and that define their flows in and out,
e.g., the amount of liquid flow in and out. On the
other side, coupling components implement the flow
between reservoirs, e.g., a pipe system with liquid
flow based on the reservoirs’ state information. In the
next section we present the design of components for
discrete item processing and distribution and show
that this approach is also appropriate for discrete
modeling. A similar component library has been
designed for pulp processing and flow in paper mills
[17].

4.3 Component Library for Discrete Item
Processing

In discrete item process simulation we have identi-
fied the following principal types of elements:
§ resources, which are active or passive and can be

occupied by items
§ items, which flow through the system from resource

to resource and occupy them
§ couplings, which implement the item flow
§ control of the item flow

A simulation system, therefore, is viewed as con-
sisting of several resources where items are placed
and processed and a coupling structure that imple-
ments the flow of the items from one resource com-
ponent to the next. The control part then decides
which items can flow from the current resource to the
next based on requirements of items and availability
of resources. This is a general, abstract view which
fits to all types of discrete process simulation. The
systems then differ in what type of resources are
used, the types of items used, the structure of cou-
pling, and in particular, who is in control and how the
control of the item flow is accomplished.

In the view of flows, efforts, effort reservoirs, and
flow components, our modeling elements are classi-
fied as follows:
§ Items are the flows.

§ Reservoirs are the resources that can receive items,
hold items, process items and provide items.
§ States of resources signaling whether items are

needed and items can be provided are the efforts.
§ Coupling structures together with decisions on item

distributions are the flow components.
Accordingly we defined the following elementary

core interfaces and classes for our discrete process
component library.

EventObject

ItemEvent

+getItem() : Item
+setItem(item : Item)

-item : Item

«Interface»
ItemEventListener

+itemGenerated(e : ItemEvent)
+itemProvided(e : ItemEvent)
+itemReceived(e : ItemEvent)
+itemDiscarded(e : ItemEvent)
+itemStarted(e : ItemEvent)
+itemFinished(e : ItemEvent)
+...()

Fig. 15 ItemEvents

Core Interface and Class Definitions
Item

The Item interface is a general interface for the
items that can flow through the system. It defines
general methods for operating with items, like ob-
taining/assigning a unique ID for the item and react-
ing to events that are triggered by resources on vari-
ous operations on items (see below).
ItemEvent and ItemEventListener

We defined a general event type ItemEvent ac-
cording to the JavaBeans event model for any event
that might happen to be an Item. The resource com-
ponents will signal various events to give other com-
ponents a chance to listen and react to them.

Figure 15 shows the ItemEvent event type im-
plementation. ItemEvent is the event object and
refers to the item. ItemEventListener is an inter-
face and specifies a set of event methods, like item-
Received, itemProvided and itemStarted, for
reacting to various events that involve items.

14

Provider
Together with the Receiver, the Provider inter-

face is fundamental for the realization of model com-
ponents. These two components represent the basis
for coupling. The Provider defines the output inter-
face for an item reservoir to provide an item. It de-
fines properties to provide its state, i.e., whether an
item is available (bound property hasItem), methods
to provide access to the item (retrieveItem), a
method to allow inspection of the next item that can
be provided (inspectItem), as well as an event
interface to signal retrieval of an item (item-
Provided event).
§ boolean hasItem is a bound property to signal

that an item is available in the component.
§ Item retrieveItem() is a method allowing

other components to access an available item.
§ Item inspectItem() is an access method to

retrieve the next item for preliminary inspection
only.
§ itemProvided is triggered when an item is actu-

ally retrieved.
Receiver

The complement of the Provider is the Re-
ceiver. The Receiver defines the input interface
for an item reservoir. It defines properties to provide
its aggregate state, i.e., whether an item can be re-
ceived (bound property needsItem), methods to
receive an item (receiveItem), a method to test
whether an item can be retrieved (testItem), as
well as an event to signal receipt of an item (item-
Received event).
§ boolean needsItem , a bound property, signals

that the component can receive an item.
§ receiveItem(Item) is a method for handing

over an item.
§ testItem(Item), a predicate, is used to deter-

mine whether an item is appropriate to be received
by the component.
§ itemReceived is an item event that is triggered

when an item is actually received.
In additional to these interfaces for item flow, sev-

eral further interfaces define what components can do
with items. For example, the Processor is an inter-
face for components doing processing on items,
Transporter is an interface for components trans-
porting items, and Storage is an interface for com-
ponents passively storing items. These interfaces are

implemented by different types of components. For
illustrative purposes we present the Processor
interface.
Processor
§ boolean idle is a bound property to signal that

the component is not processing items currently.
§ boolean busy, a bound property, signals that the

component is processing items currently.
§ itemStarted is an item event that is triggered

when the component starts to process an item.
§ itemFinished is an item event that is triggered

when the component has finished the processing of
a particular item.

Resource Components
A set of elementary building blocks is realized on

the basis of the Receiver and Provider and other
interfaces. Building blocks include Generator,
Sink, SingleServer, MultipleServer, Queue,
Place and Delay. Figure 16 shows the class hierar-
chy of some elementary resource implementations.

The components implement the interfaces in differ-
ent ways. The Generator only implements the Pro-
vider interface and makes a new item available after
some interarrival time. The SingleServer can
process one item at a time; it signals that it needs a
new item when the previous one has been moved on.
Upon receipt of an item it is marked as occupied and
immediately starts processing. After some processing
time, it signals that an item is available and waits
until it is retrieved from outside. Then it becomes
free to receive the next item. The MultipleServer
can process a number of items (its capacity) concur-
rently before being marked as occupied. A Delay
component is never occupied and can always receive
items; it delays items for some time and then makes
them available for access. A Place is a passive com-
ponent that can hold one item. When it receives an
item, it signals that it is occupied and does not need
any further item and that it has an item available for
access. The other components are implemented
analogously.

More complex components can be built by either
coupling components in a hierarchical way (see be-
low) or by implementing them in Java using ele-
mentary simulation functions. By implementing the
Provider/ Receiver interface, they can be used in
larger coupled models according the same coupling
concepts.

15

BasicProvider

Provider

Receiver

Processor

Storage

Generator

BasicReceiver

Sink

BasicReceiverProvider

BasicStorage

BasicProcessor

Place

Queue

Delay

SingleProcessor

MultipleProcessor

Fig. 16 Class hierarchy for elementary model bean
(interfaces are gray; model beans are bold)

Coupling and Control: Realization of Item Flow
The interfaces Provider and Receiver are not

coupled directly; instead, additional components
corresponding to the flow components are used. We
use the variable change event concepts to realize
event coupling and communication in discrete event
models. The general idea of coupling components is
that the coupling components listen for changes of
variables hasItem and needsItem of its connectors
and react to these by distributing items among its
connector providers and receivers based on their
individual control schemes. Control and coupling can
be arbitrarily complex, ranging from simple linear
connections to a transportation system comprising a
complex coupled model. Let us depict the range of
couplings by considering some examples.

A Connection (Fig. 17(a)) realizes a direct flow
of items from a Provider to the next Receiver. It
listens to the hasItem variable of the Provider and
the needsItem variable of the Receiver and, when
both are true, takes the item from the Provider by
calling retrieveItem and hands it over to the Re-
ceiver by calling putItem. No control decision is
needed here.

The ReceiverDecisionPoint (Fig. 17(b)) is
used to couple a single provider with a set of receiv-
ers. The selection of the receiver of the next available
item is based on a control strategy, a ReceiverSe-
lection, which is a strategy component [4] select-
ing from a set of receivers. Components implement-
ing different control strategies are possible, for ex-
ample, selecting at random, based on given percent-
ages, the receiver waiting longest, based on an next
item operation, etc. In the same way a ProviderDe-
cisionPoint (Fig. 17(c)) couples a set of providers
with a receiver. With Connection, Provider-
DecisionPoint and ReceiverDecisionPoint,

coupled systems can be built that are typical of Flow
Shop models.

(b)

(c)

putItem(Item)

needsItem

Receiver

putItem(Item)

needsItem

Receiver

Receiver
Decision

Point

selection
strategy

Item retrieveItem ()

hasItem

Provider
putItem(Item)

needsItem

Receiver

Item retrieveItem ()

hasItem

Provider

Item retrieveItem ()

hasItem

Provider

Provider
Decision

Point

selection
strategy

Item retrieveItem ()

hasItem

Provider
putItem(Item)

needsItem

Receiver

(a)
putItem(Item)

needsItem

Receiver

Connection
Item retrieveItem ()

hasItem

Provider

Fig. SEQARABISCH17 Connection, ReceiverDecisionPoint and
ProviderDecisionPoint

A different coupling scheme should be used when
modeling a robotic manufacturing cell. Here the item
flow and control scheme is much more complex. A
robot has direct access to the places in the cell. Con-
trol has to take the whole cell state into account.
Nevertheless, we use the same components and cou-
pling principals. The cell controller listens to the
hasItem and needsItem properties of the cell
components and generates transport commands to the
robot. The robot then realizes item flow by accessing
the item from the selected provider and by placing it
on the selected receiver.

Modeling a manufacturing system with a complex
transportation system needs yet a different item flow
mechanism. In such a system, different system and
control layers are identified. At the upper layer, the
workpiece flow between the machines is controlled
by a disposition control system that decides which
workpieces are assigned to which machines. On the
lower layer, the transportation system realizes the
workpiece flow. This is again a system consisting of
resources and items. Typically, the transportation
system can be built as a Flow Shop model, where the
vehicles are the flowing items and the paths, inter-
sections, parking lots, etc. are the resources. Cou-
pling is linear with decision points at intersections.

16

The machining and transportation systems are cou-
pled at loading/unloading stations. Note that the
same type of components can be used in the different
layers of the system.

5 Visualization, Animation, and Output Analysis

Visualization, animation, output, and output analy-
sis in our simulation framework are realized by a
component-based approach as well. The design ob-
jective has been to achieve maximum flexibility.
Therefore no output or statistical analysis is fixed
with a model component beforehand, but can be
attached as requirements dictate. The property and
events defined by model components represent the
glues to attach any output and analysis component.
Visualization, animation, output, and output analysis
components serve as pure observers [4] of model
states and events.

To illustrate the flexibility of the component-based
approach, we present the realization of statistical
analysis in some detail. In statistical analysis, two
elementary types are important: time-dependent sta-
tistics (values per time units) and observational sta-
tistics (values per observation). The time-dependent
statistics component VariableStatistics can be
attached to any state variable (property) with numeric
values as simple observers (Fig. 18). The variable
change events report any state changes to the statis-
tics bean, which can directly compute the statistics.

model model

attach

property

attach

statistics

models

ItemEvent
Statistics

itemReceived itemProvided

VariableStatistics

Fig. SEQARABISCH18 Attaching statistics beans.

The computation of time duration statistics per item
(e.g., the statistics over the waiting time in a queue or
the turnaround time in the system) is accomplished
by the ItemEventStatistics bean. The Ite-
mEventStatistics is based on the itemEvent
implementation as presented in Section 4.3. It is
attached to two item events, a begin event and an end
event as ItemEventListener, measures the dura-
tion between the two events for the individual items,
and computes statistics from the measurements (Fig.

18). Any statistical calculation for item duration in
particular system parts can be accomplished easily by
attaching an ItemEventStatistics to the par-
ticular begin and end item events.

6 Current State of implementation

The modeling and simulation concepts discussed
above have been realized as a prototype and tested on
various examples. The prototype also has been used
as an educational tool to teach modeling and simula-
tion for computer scientist students [13].

Currently the focus is still on the lower layers of the
architecture, the simulation kernel layer and layer of
elementary simulation components. The main objec-
tives of the implementation have been the evaluation
of Java in general and the JavaBeans component
model in particular as a platform for simulation pro-
gramming. Also, we have evaluated several Java
interactive developments environments (IDE) with
JavaBeans builders. We investigated whether these
can serve as simulation program development tools.
Subsequent sections summarize our experiences.

One of the main advantages of strongly basing on
the standardized JavaBeans component model is that
it is possible to use any JavaBeans builder tool for
simulation modeling. Although these tools have
proven to be of limited use as general simulation
modeling and experimentation environments in the
long run (see Section 6.3), it was still possible to do
interactive simulation program development already
in early phases of our project. In the following sec-
tion, we show how simulation programming can be
done using the JBuilder 2 IDE.

6.1 Simulation Programming with JBuilder

Simulation programming with JBuilder can be done
by alternating between interactive component instan-
tiation, customization and source code editing. We
briefly show three programming tasks of differing
complexity that use different component palettes.
According to various tasks, components are grouped
into simulation kernel components, model compo-
nents, output components, and statistic components.
The examples emphasize the use of the inspector tool
for interactive customization of components.

17

Fig. SEQARABISCH19 Atomic processing model implementa-
tion

Implementing Atomic Simulation Models
Figure 19 shows the implementation of an atomic

processor model from components of the SimKernel
palette. Various Variables and a Timer component
are instantiated from the pallete to build up the static
structure of the model. A view to visualize the cur-
rent item being processed and a statistic component
to compute statistics over the busy variable are in-
stantiated from the palletes SimOutput and Sim-
Statistics, respectively. With the Timer compo-
nent eosTimer an event method is specified interac-
tively in the inspector tool; this method can then be
edited in the source code editor. An anonymous
TimeEventListener to delegate the event to the
method endOfService is introduced thereupon
automatically by the tool.

Implementing Coupled Simulation Models
Figure 20 shows a two-processor station as a cou-

pling of elementary model components from the
palette SimModels. Items enter the station at input
place in and then are forwarded by a ReceiverDe-
cisionPoint to one of the processors. After proc-
essing, a ProviderDecisionPoint places them on
an output place out for further distribution. Figure
20 also shows how coupling Providers and Re-
ceivers in ReceiverDecisionPoint can be done
in the inspector. Properties x1stReceiver,
x2ndReceiver etc. are of type Receiver. JBuilder
allows interactively setting these properties to any

component of type Receiver that has been instanti-
ated in the worksheet.

Fig. SEQARABISCH20 Coupled two-processor station imple-
mentation

Implementing Simulation Systems
Figure 21 shows the building of a simple manufac-

turing system together with visualization and output
analysis. Workpieces are transported to workstations
by a conveyor system with a ring structure. This
system was built mainly interactively by instantiating
and customizing components. Workpiece distribution
to workstations is accomplished based on an opera-
tion sequence for workpieces. Figure 21 shows the
specification of control of workpiece distribution in
ReceiverDecisionPoint based on the next work-
piece operation. A control component NextOpera-
tionReceiverSelection is instantiated (using our
own property editor [8]) and the operation for the
first receiver is defined to be “schleifen” (grinding).
Any workpiece whose next operation is grinding is
forwarded to the first receiver.

6.2 Assessment of JavaBeans

JavaBeans provides an attractive platform-
independent component model. Our experiences with
the model have been quite positive. In particular, the
JavaBeans event model nicely accommodates the
requirements of discrete event simulation. The Java
interfaces give a nice implementation concept to
realize the idea of interface definitions and interface-
based coupling of simulation components.

However, we have encountered a few shortcomings
in the JavaBeans model:

18

§ The JavaBeans specification does not contain any
information about hierarchical bean structure.
Therefore, no access is defined for superordinate or
subordinate beans. In our application we regard hi-
erarchical composition of components as essential;
hence we missed an explicit representation of the
component hierarchy. In JDK version 1.2, however,
which we are not using currently, there is corre-
sponding support (BeanContext and BeanCon-
textChild).
§ The property change mechanism propagated by the

JavaBeans standard for synchronous event handling
fails when feedback occurs. As discussed in the pa-
per, we have extended the standard property change
mechanism with variable change events for pro-
viding more powerful concepts.
§ JavaBeans does not define how code should be

generated by bean builder tools. This leads to dif-
ferent approaches in tools and thus prohibits using
several builder tools together or switching from one
tool to another.

6.3 Assessment of Bean Tools

Relying on the JavaBeans standard allowed us to
use existing bean tools for visual interactive simula-
tion programming. We have used and evaluated three
tools for that purpose: IBM’s VisualAge, Symantec’s
Visual Cafe, and Inprise’s JBuilder. Of these we
found JBuilder 2 to serve our purposes best. We
found that support for visual interactive program-
ming helps in implementing single simulation sys-
tems. However, although we tried hard to adapt our
simulation components to the needs of bean tools, we
found them unsatisfactory to serve as a simulation
environment. Current bean tools have one or more of
the following weaknesses:
§ They do not support the full JavaBeans standard.
§ Their implementation is immature.
§ The code they generate for coupling of components

is hard to track.
§ They do not allow access to their instantiated beans

at design time.
§ They do not allow access to subcomponents of

instantiated beans at design time.
§ The possibilities to customize components at design

time are limited.
To serve our purposes, we would like bean tools to

offer the following additional features:

§ access to instantiated beans and their hierarchical
structure at design time
§ possibilities to define and constrain the types of

components allowed
§ user definition and use of various concepts for bean

coupling
§ user definition of the kind of code generated by the

tool
One of the points of emphasis for our future work,

therefore, will be the realization of a specialized bean
tool for simulation model development. This bean
tool should overcome the above shortcomings and
will be a basis for realizing customized, application-
specific modeling and simulation environments as
discussed in Section 3.1.

7 Summary and Outlook

In this paper we have investigated and assessed the
Java/JavaBeans component model as an underlying
technology for the realization of a component-based
discrete event simulation methodology. The DEVS
formalism and its extensions have been discussed as
providing fundamental concepts for a modular hier-
archical model that facilitates the design of reusable
components.

We have presented how a simulation framework
can be built based on the JavaBeans component
model. We have shown how the event model of
JavaBeans nicely accommodates the implementation
of discrete event systems. With the design of a com-
ponent architecture for discrete item processing, we
have demonstrated how interface-based, hierarchical
coupling of simulation component can lead to reus-
able components.

In the architecture of the simulation framework we
identifiy several layers, from elementary simulation
algorithms to elementary simulation components,
application-specific simulation components, and on
to application-specific simulation systems and envi-
ronments. All layers comprise reusable components.
The architecture is open, allowing for extension and
adaptation to specific needs.

Motivated by the good experiences in realizing the
prototype, we will continue our work to realize the
component framework for modeling and simulation.
In that, we see the following points of emphasis for
our future work:
§ The different layers of the architecture will be

elaborated to make them maturer.

19

§ We will implement our own bean tool for simula-
tion model development.
§ We will investigate possibilities for higher forms

for atomic model specification, like state transition
diagrams or rule-based formalisms, and investigate

how a translation to our implementation concepts
can occur.
§ We will investigate how object-oriented design

tools (providing UML notation) can support simu-
lation model development.

Fig. 21 Implementation of a flexible manufacturing system

20

References

[1] Barros, F.J., Modeling Formalisms for Dynamic
Structure Systems, ACM Transaction on Modeling
and Simulation, Vol 7, No. 4, 1997, pp. 501- 515.

[2] Booch, G., J. Rumbaugh, and I. Jacobson, The Uni-
fied Modeling Language, Users Guide, Addison
Wesley, 1998.

[3] Cellier, F.E., Continuous System Modeling, Springer-
Verlag 1991.

[4] Gamma, E., et al, Desgin Patterns, Addison Wesley,
1994

[5] Gosling, J. and H. McGilton, The Java Language
Environment – A White Paper; Sum Microsystems,
MV California, 1995.

[6] Harel, D. and M. Politi, Modeling Reactive Systems
with Statecharts, McGrawHill, 1998.

[7] Helmquist et al 98, ModelicaTM – A Unified Object-
Oriented Language for Physical Systems Modeling;
Tutorial and Rationale, Version 1.1, December 15.
1998, URL: http://www.modelica.org.

[8] Hilpold, T., JavaBeans Property Editors, Technical
report, C. Doppler Laboratory for Software Engi-
neering, Johannes Kepler University, Linz, Austria
1999 (in German).

[9] Mathworks Inc., SIMULINK User’s Guide, 1996.
[10] Payntner, H. M., Analysis and Design of Engineering

Systems, MIT Press, Cambridge 1961.
[11] Pichler, F. and H. Schwärtzel (eds.), CAST Methods

in Modeling, Springer, 1992.
[12] Praehofer, H., An Environment for DEVS-Based

Multiformalism Modeling and Simulation in C++.
Proc of Annual Conference on AI, Simulation, and
Planning in High Autonomy Systems, San Diego, CA,
1996.

[13] Praehofer, H., A. Stritzinger, and J. Sametinger,
Using JavaBeans to teach Simulation and using
Simulation to teach JavaBeans, ESM98, 12th Euro-
pean Simulation Multiconference, Manchester, UK,
June 16-19, 1998.

[14] Praehofer, H., and D. Pree., Visual Modeling of
DEVS-based Systems Based on Higraphs. Winter
Simulation Conference, 1993, S. 595-603.

[15] Praehofer, H., Systems Theoretic Foundations for
Combined Discrete-Continuous System Simulation,
PhD Thesis, Johannes Kepler University, Linz, Aus-
tria 1991.

[16] Sametinger, J., Software-Engineering with Reusable
Components, Springer-Verlag, 1997.

[17] Schöppl, A., Training simulators for papermill op-
erators, Diploma thesis, Dept of Systems Theory and
Information Engineering, Johannes Kepler Univer-
sity, Linz, Austria 1999 (in German).

[18] Stritzinger, A., Komponentenbasierte Software-
entwicklung, Addison-Wesley, 1997.

[19] Sun Microsystems: JavaBeans 1.01 API Specifica-
tion. 1997. see http://java.sun.com/Beans/spec.html

[20] Szyperski, C., Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, 1998.

[21] Thomas, C., Interface-based classification of simula-
tion models, Winter Simulation Conference 94, Or-
lando, FL, 1994.

[22] Uhrmacher, A.M. and B.P. Zeigler, Variable Struc-
ture Modelling in Object-Oriented Simulation, Inter-
national Journal on General Systems, Vol. 24(4),
359-375, 1996.

[23] Zeigler, B.P., Theory of Modeling and Simulation;
Wiley 1976

[24] Zeigler, B.P., Multifacetted Modelling and Discrete
Event Simulation. Academic Press, 1984.

[25] Zeigler, B.P., Object Oriented Simulation with
Modular, Hierarchical Models. Academic Press,
1990.

[26] Zeigler, B.P. and H. Praehofer, Sytems Theory
Challanges in the Simulation of Variable Structure
Systems, EUROCAST ’89; LNCS 410, Springer-
Verlag, 1990, pp. 41-50.

[27] Zeigler, B.P., H. Praehofer, and T.G. Kim, Theory of
Modeling and Simulation, 2nd Edition. Academic
Press, 1999 (in preparation).

