
DISCRETE EVENT SIMULATION USING THE
JAVABEANS COMPONENT MODEL

Herbert Praehofer, Johannes Sametinger, Alois Stritzinger
Department of Systems Theory and Information Engineering

C. Doppler Laboratory for Software Engineering
Johannes Kepler University, A-4040 Linz / Austria

e-mail: hp@cast.uni-linz.ac.at, [sametinger | stritzinger]@swe.uni-linz.ac.at

KEYWORDS

JavaBeans, discrete event simulation, simulation components, simulation
beans, DEVS formalism

ABSTRACT

This paper reports on an effort to use both the system theoretic DEVS
formalism and the JavaBeans component model as a basis for a compo-
nent-based discrete event simulation framework. While the DEVS for-
malism can serve as a formal, mathematical base for modular, hierarchi-
cal discrete event modeling and simulation, the JavaBeans component
model provides the appropriate implementation base. The result of the
synergism of DEVS and JavaBeans is a powerful component-based
simulation framework together with a set of flexible bean components
for building simulation systems.

In this paper we try to give answers to several questions like whether the
JavaBeans component model is suitable for the creation of such a com-
ponent set and whether the available bean environments are powerful
and flexible enough to serve as simulation tools. We will describe the
DEVS formalism, the JavaBeans component model, the architecture of
the SimBeans framework and component set, the problems we have
encountered in developing SimBeans, problems we had with various
builder tools, and experiences with the JavaBeans component model.

1. INTRODUCTION
In the project SimBeans we have developed a set of JavaBeans compo-
nents for the creation of discrete event simulations. The goal of the
project was twofold. First, component models, in general, and the Java-
Beans component model, in particular, should be evaluated in a specific
application. Second, it should be investigated, whether discrete event
simulation applications can profit from an up-to-date component tech-
nology.

The idea was to create a set of basic simulation components together
with visualization and animation components that can be arranged and
connected on a worksheet. Comfortable visual composition of simulation
scenarios together with visualizations and animations should be possible
with these components.

In the spirit of component technology, simulation components should be
designed to be reusable in different contexts, customizable for a wide
range of different applications, and extensible for particular unforeseen
requirements. We have tried to accomplish these objectives by pursuing
the following goals in component design:

§ Defining abstract component functions in the form of Java interface
specifications.

§ Providing modular interfaces for components to make them inde-
pendent of the environment in which they should operate.

§ Making a strong separation between components and coupling of
components.

§ Composing complex components from primitive ones and coupling
them together hierarchically.

Our modeling approach is based on the DEVS formalism (Zeigler 84,
90). The DEVS formalism is a formal, system theoretic formalism for
discrete event modeling and provides a theoretic framework for modular,
hierarchical modeling (Zeigler et al 98).

In this paper we try to give answers to several questions in this context.
For example:

§ Is the JavaBeans component model suitable for the creation of a
component set for simulation?

§ Are the available bean environments powerful and flexible enough
to serve as simulation tools, or is it necessary to create a dedicated
tool?

§ Is the resulting simulation tool more flexible and more general than
comparable tools that have been implemented with different tech-
nology?

We describe

§ the enabling concepts in particular, the DEVS formalism and the
JavaBeans component model

§ the architecture of the framework and component set we have devel-
oped,

§ the problems we have encountered in developing it,
§ problems we had with various commercially available tools, and
§ our experiences with the JavaBeans component model.

2. DISCRETE EVENT SIMULATION WITH
JAVABEANS

2.1 Vision of a Component-Based Simulation Method-
ology
A component-based modeling and programming framework for simula-
tion applications should enable developers to interactively pick compo-
nents from libraries and place them onto a worksheet. Such components
comprise simulation units (model components) as well as components
for output, visualization, animation and statistics calculations. As a next
step, wiring among these components has to be accomplished somehow,
such that signals and data can be exchanged among the components.
Additionally, convenient interactive customization of component pa-
rameters has to be supported by the framework. Such a component
system should simply be executed and used as a simulation application
or be usable as a more complex component in other simulation applica-
tions. In case complex components are created by assembling, it is
necessary to precisely define the new component’s interface.

We envision a component-based simulation methodology which provides
component libraries for different purposes, different users, and different
applications. However, the main objective is reusability, i.e., simulation
systems can be built with less effort by mainly selecting, extending,
customizing, and coupling together components from libraries. Thereby,
we see different type of users which use different libraries in different
ways:

§ The application engineer uses a set of predefined, ready-to-use com-
ponents modeling his application entities, customizing the components
by setting various parameters in convenient user interface dialogs, in-
teractively connecting the components together, and running experi-
ences with them. He does not want to do any programming in Java. He
must be supported in quickly setting up different system configurations
and experiments. This type of user needs a predefined set of compo-
nents for modeling his application-specific entities, couplings, and
control mechanisms. Besides the components, the application engineer
needs an easy-to-use tool for setting up his system configurations and
for doing his experiments.

2

§ The simulation programmer has to realize the components which are
needed in the application context by the application engineer. He will
mainly rely on a library of elementary components for simulation
modeling as well as for output and visualization/animation. But he will
also need to program in Java in order to implement parts for which no
components can be found. He should heavily use program develop-
ment tools and interactive builder tools in order to set up and test sin-
gle simulation components and entire simulation systems.
§ The simulation expert has to realize elementary simulation compo-

nents for different application domains. He needs a good understand-
ing of the underlying modeling and simulation concepts, the Java-
Beans technology, and the application domain. He will mainly do pro-
gramming in Java using the underlying simulation concepts and,
eventually, components from other application domains.

We see the simulation programmer as the main client for a component-
based simulation methodology. He will profit most from the component
technology. It should be less effort for him to realize application-specific
components or application-specific simulation systems and environ-
ments, which can then be used by application engineers. The simulation
expert is responsible for providing the elementary components for the
simulation programmer. He is faced with the challenge of designing
components in a way so that they can be reused by the simulation pro-
grammer in a wide range of applications. The application engineer,
however, will profit from a component-based simulation technology that
facilitates the realization of customized simulation systems and tools
with application-specific component libraries and user interfaces.

We argue that such a vision of a component-based simulation methodol-
ogy is feasible by relying on the DEVS formalism, which supports
modular, hierarchical modeling, and the JavaBeans component technol-
ogy. In the following we shortly review the DEVS formalism and Java-
Beans in this sense.

2.2 DEVS Formalism
The base of the component library for discrete event simulation is the
DEVS formalism as a system theoretic formalism for modular hierarchi-
cal simulation modeling. Modular, hierarchical system modeling (Zeigler
84, Zeigler 90, Pichler, Schwärtzel 92) is an approach to complex dy-
namic system modeling where modular building blocks, i.e., system
components with a well defined interface in the form of input and output
ports, are coupled in a hierarchical manner to form complex systems. In
system modeling, we distinguish between atomic and coupled models.
While an atomic model specifies its internal structure in terms of its set
of states and state transition functions, a coupled model’s internal struc-
ture is specified by its components and its coupling scheme, i.e., how
ports are connected. System modeling means building complex systems
by interface based object composition. Modularity allows for setting up
bases of reusable building blocks which can be plugged into a system
through their well defined input and output interface.

Modular hierarchical system modeling concepts have been applied in
several domains, most notably in hardware design and communication
engineering. Zeigler (Zeigler 76, Zeigler 90) introduced modular hierar-
chical modeling for discrete event simulation. The DEVS-formalism is
an application and computer implementation independent formalism for
discrete event modeling and parallels the differential equation specified
and finite state automaton formalism. Zeigler (Zeigler 90) compares
modular hierarchical system modeling and the object oriented paradigm.
While both share various concepts they also show major differences.
System models as well as objects use the concept of internal states.
However, objects are not dynamic systems in the sense of system theory
which show dynamic, concurrent behavior specified over a time base.
Nor are objects modular units in the above sense. In particular, objects
lack an explicit output interface. The output interface is only given
implicitly by the method calls to other objects. Therefore, an object has
to have knowledge of objects that it communicates with. In contrast to
that, a system model only defines an output port, the communication
with other components is defined independently on the higher coupled
system level. Additionally, object oriented systems are not hierarchical in
the above sense.

Component based software engineering represents a step towards a
modular system modeling approach. Components define an explicit input
and output interface in the form of method calls they accept and events

they generate. Component based programming should primarily mean
interface based component composition. Components can be constructed
hierarchically using smaller components.

2.3 JavaBeans Component Model
JavaBeans is the component model of Java and has been introduced in
1997 (Sridharan 97, Sun 97). A JavaBean is a reusable software compo-
nent that can interactively be modified and composed with other compo-
nents. Tools that support component assembling range from simple
layouting tools to complex component-based, visual programming
environments. JavaBeans components support the following concepts:
§ properties

Properties are named attributes that can be read and written by call-
ing appropriate methods. Naming conventions have to be obeyed for
the definition of methods. Two methods, get<Property> and
set<Property> have to be provided for reading and writing property
values. So-called bound properties allow PropertyChangeListeners
to watch properties for value changes. PropertyChangeListeners are
added to properties by the method addPropertyChangeListener.
PropertyChangeListeners become informed of changes in the prop-
erty by a call of their propertyChange method.

§ events
Events are used for event communication among bean components.
With events, a bean can notify other beans that something interesting
has happened. For that purpose event listeners are registered to
event sources. An event source has to provide two methods that al-
low the registration of listeners, i.e., add<Event>Listener and re-
move<Event>Listener to register components that are interested in
receiving <Event> events, where <Event> is the name of the event.

§ introspection
Information about properties, events, and operations of JavaBeans
components can be provided by means of naming conventions in
classes, see examples above. Tools for JavaBeans components have
access to variables and methods of Java classes and, thus, recognize
such conventions. Instead of adhering to naming conventions a pro-
grammer can also choose to develop a BeanInfo class, where infor-
mation about properties, events, etc. is provided explicitly.

§ persistence
In order to keep modified properties, a component has to be able to
serialize its state onto an external storage medium. A built-in seriali-
zation mechanism simplifies the support of persistence.

§ customization
Modifying simple properties is not always sufficient for convenient
customization of complex components. Additional support may be
necessary to allow the modification of complex properties. Specific
property editors and customizers may be provided for ease of cus-
tomization.

JavaBean components can be arbitrary Java classes conforming to a few
(non-critical) requirements. The component interface is being defined by
events, properties, and methods. The interface can be defined by adher-
ence to naming conventions or by the definition of a separate BeanInfo
class which provides all the information about a component. A JavaBean
can be a simple Java class, but it can also consist of many classes and
persistent objects, which are typically stored in a Java Archive File
(JAR).

3. CONCEPTS AND ARCHITECTURE OF
SIMBEANS

3.1 Main Ideas
In the SimBeans simulation framework, the realization of simulation
systems is based on the following ideas and concepts:

§ A set of elementary, yet powerful building blocks is provided for
simulation modeling and simulation output, for statistical evaluation,
and for visualization.

§ A library of utility and support objects are provided. By them, model
components can be customized in their functionality in order to meet
particular requirements.

3

§ Model interfaces are defined which specify where and how model
components can be used. The interface specifications are put into a
classification hierarchy to define compatibility between model com-
ponents (Thomas 94).

§ Interfaces and interface-based classification of model components
are used to define generic templates for coupled models which de-
fine the components’ interfaces and coupling structure but not the
components itself. At design time, these generic components can be
configured by instantiating model components which obey to the
interfaces. For example, a ParallelProcessor coupled model will
specify that it has several parallel components and that all have to
obey to the Processor interface. At design time we can choose from
different processor realizations.

§ Simulation systems are primarily built bottom-up by hierarchical
composition and coupling of model components.

§ The component library can easily be extended to meet special needs.
§ Employing the elementary component library, special purpose

simulation environments for particular application domains can be
realized.

Figure 1 illustrates how simulation systems are put together from com-
ponents. According to these ideas, we distinguish the following ways for
component composition:
§ selection

Select concrete model components in a coupled model for which
only the interfaces are specified in a top-down manner.

§ customization
Customize simulation components to meet different requirements by
using utility components, e.g., random distribution functions, control
strategies.

§ coupling
Couple models in a hierarchical bottom-up way.

§ attachment
Attach components for simulation output, statistical computation,
visualization and animation to state variables (properties) of models.

3.2 Architecture
SimBeans is a set of model components together with components for
visualizations and animations, that can be used to build discrete event
simulation systems. All these components are realized as JavaBeans. In
correspondence with the different types of users envisioned (see above)
we identify the following layers in the SimBeans framework:

JavaBeans Extensions for Simulation

The lowest layer is the Java programming language and the JavaBeans
component model. The Beans specification does not define the semantics
of invocation order and synchronization of multiple event handlers
listening to the same event. A default implementation exists for synchro-
nous event handling (class PropertyChangeSupport). The coupling of
beans is usually done by means of adapter objects that have to be defined
by an individual adapter class leading to an opulent proliferation of
classes. With the help of Java's reflection features, we implemented a
class Delegate, that can deliver events to any target object.

Besides minor additions to the basic infrastructure we introduced
§ synchronous and asynchronous event delivery mechanisms and a
§ delegate mechanism for flexible event coupling

to meet the special needs of discrete event simulation.

Simulation Kernel

The simulation kernel layer provides the simulation infrastructure and
implementation concepts for the simulation components. This layer is
specific for different types of simulations, e.g., there is a infrastructure
for discrete event simulation, for continuous simulation and for com-
bined simulation.

For discrete event simulation, this layer includes support for
§ event scheduling, event sets and event handling,
§ models, model containers and hierarchies of models,

model modelcomp

model

configure

object

customize

couplingscouple

attach

property

attach

output

util

output

models

output

couple

property

Figure 1: Putting together simulation systems from components

§ state variables and property change mechanism ,
§ utility services for simulation data collection and analysis, and for
§ elementary output and visualization.

Elementary Simulation Components

This is the main layer containing the elementary simulation components
from which simulation systems are built. It is specific for the application
domain, for example, there is one library for classical discrete process
simulation (discussed in more detail below). The layer contains compo-
nents for
§ elementary model units,
§ classical control schemes,
§ component coupling,
§ utility services, and
§ domain specific, elementary analysis, output, and visualization.

This layer is crucial for the success of the component-based simulation
framework. It is the challenge for the simulation expert to foresee a wide
range of applications in the domain and provide a set of easy-to-use and
easy-to-extend components.

Application-Specific Simulation Components

Using the elementary simulation components, application specific com-
ponents should be built which realize specific real world elements. They
have a customized visualization and user interface which is meaningful
for the application engineer.

Application-Specific Simulation Systems and Environments

At the top of the hierarchy of layers there are application-specific simu-
lation systems or environments. They are built up from the lower layer
components as stand-alone programs. They are specific for the applica-
tion at hand and provide a user interface in the context of the application
engineer. We distinguish between simulation systems, which have a
single simulation model and are often part of a bigger application, and
simulation environments, which allow to build and test different configu-
rations by composing components from a library.

We observe that the design of the elementary simulation components is
crucial. In the following we describe the design of elementary simulation
components for classical discrete process simulation in more detail.

3.3 Component Library for Discrete Process Simula-
tion
The library of elementary simulation components for discrete process
simulation has been designed to facilitate utmost reusability and extensi-
bility. Recall from above that we regard modular interfaces, separation of
component and coupling, hierarchical component coupling as key design
principles to achieve reusability.

For discrete process simulation we have identified the following princi-
pal types of elements:
§ resources, which are active or passive and can be occupied by items,

4

§ items, which flow through the system from resource to resource and
occupy them,

§ couplings, which realize the item flow, and
§ control of the item flow.

A simulation system, therefore, is viewed as consisting of several re-
sources, where items are placed and processed, and a coupling structure
which realizes the flow of the items from one resource component to the
next. The control part then decides which items can flow from which
resources to the next based on requirements of items and availability of
resources. This is a general, abstract view which fits to all types of
discrete event simulation. The systems then differ in what type of re-
sources are used, the types of items used, the structure of coupling, and
in particular, who is in control and how is the control of the item flow.

The components were designed according to those principal types.
Components are not of a particular type but rather they play the role of a
particular type. A component also can serve different roles and, there-
fore, belong to different types. For example a transportation component
may on the one hand serve as a container, that is a resource for some
items, but on the other hand it may flow as item through the transporta-
tion system.

The Java interface concept corresponds to the roles components can play.
A component which wants to play a particular role has to implement the
corresponding interface. The first step towards a reusable component
library, therefore, was the design of the interfaces for the different ele-
ment types. In the following we show the interface design for the re-
sources and the coupling schemes.

Resource Interfaces

Recall that a resource can be active, i.e., it can do some processing on an
item, or passive, i.e., it can only passively store items. In any case, their
elementary functions are to receive items, hold them, and provide them
to other components. While a passive storage component will only store
received items and provide them for access, an active server component
will process received items, which will take some time, and afterwards
want to get rid of them. Also resource components may have space
available, i.e., they may need or be able to take a further item.

Two general interface definitions are crucial to the realization of the
resource components. These are the Receiver for any component which
may receive items and the Provider for a component which may provide
items. Simulation then works by distributing items between providers
and receivers. Receivers may be occupied and not be able to receive
further items. Providers signal the availability of items and provide
access to them. The interfaces for providers and receivers have the
following features:

Receiver

§ receiveItem(Item)
a method for handing over an item to the component

§ boolean needsItem
a bound property to signal that the component can receive an item
(the component may also need an item)

§ testItem(Item)
a predicate used to see if an item is appropriate to be received by the
component

§ itemReceived
an event which is triggered at the time when an item is actually re-
ceived

Provider

§ Item provideItem()
a method allowing other components to access available items

§ boolean hasItem
a bound property to signal that an item is available in the component

§ Item inspectItem()
an access method to get the next item for preliminary inspection only

§ itemProvided
an event which is triggered at the time when an item is actually pro-
vided

BasicProvider

Provider

BasicDEVSModel

BasicModelReceiver

Server

Storage

Generator

BasicReceiver

Sink

BasicReceiverProvider

BasicStorage

SingleServer

Place

Queue

Delay

Figure 2: Class hierarchy for elementary model bean
(interfaces are gray, model beans are bold)

The interfaces Provider and Receiver are not coupled directly, but rather
additional components are used. We discuss how coupling should be
done after presenting some elementary resource components.

Resource Components

A set of elementary building blocks are realized on base of the receiver
and provider interfaces and implement them in different ways. Building
blocks include Generator, Sink, Processor, Queue, Place, and Delay.
Figure 2 shows the class hierarchy of the resources implementation.

The components implement the Provider/Receiver interfaces in different
ways. All of them also implement the Item interface to be able to be used
as flowing items. The Generator only implements the Provider interface
and makes a new item available after some interarrival time. The Single-
Server can process one single item at a time. It signals that it needs a new
item when the last one has been moved on. Upon receipt of an item it
gets occupied and immediatly starts processing. After some processing
time, it signals that an item is available and waits that it is accessed from
another component. A Delay component is never occupied and can
always receive items. It delays them for some time and then makes them
available for access. A Place is a passive component which can take one
item. It signals that is needs an item and has no item when there is no
item on the place. When it receives an item it signals that it is occupied
and does not need any further item and that it has an item available for
access. The other components are implemented in analogous way.

Other more complex components should be built by either coupling
together components in a hierarchical way (see below) or by imple-
menting them in Java using elementary simulation functions. By imple-
menting the Provider/Receiver interface, they can be used in bigger
coupled models according the the same coupling concepts.

Coupling and Control: Realization of Item Flow

More complex components and simulation (sub-)systems are built up
from the basic components. The general idea of coupling components is
that the containing model listens to property changes (hasItem and
needsItem) of its subordinates and reacts to those by distributing items
between its subordinate providers and receivers based on its individual
control scheme. Figure 3 shows a hierarchical coupling of provider and
receiver components. The coupled model listens to changes in the prop-
erty values of its subordinate and reacts according to its control scheme
by distributing items from providers to receivers.

We use the event and bound property change concepts to realize event
coupling and communication in discrete event models. Models which
rely on states of other models are registered as listeners of the other
model’s state property and are, thus, informed whenever a change in
state happens. For example, a processor needing a particular tool regis-
ters itself as a listener of the needsItem property of the tool pool. As soon
as a tool gets available, it is informed and can access it. In a similar way,
events can be used to distribute objects between model components in an
eventistic way.
Control and coupling can be arbitrarily complex, ranging from simplest
linear forwarder to a transportation system built up by a complex coupled

5

receive (SItem) SItem provide ()

needsItem()hasItem()

receive (SItem) SItem provide ()

needsItem()hasItem()

control and
coupling

coupled model

receive (SItem) SItem provide ()

needsItem()hasItem()

Figure 3: Hierarchical coupling of provider and receiver components

model by itself. Let us depict the range of couplings by considering
different examples.

A Forwarder realizes a direct flow of items from a Provider to the next
Receiver. It listens to the hasItem property of the Provider and the need-
sItem property of the Receiver and, when both are true, takes the item
from the Provider and hands it over to the Receiver. No control decision
is needed here.

An extension of the Forwarder is the ReceiverDecisionPoint. It is used
to coupled a single provider with a set of receivers. The selection of the
receiver of the next item available is based on a control strategy, a Re-
ceiverSelector, which is a component selecting from a set of receivers.
Components realizing different control strategies can be envisioned, for
example, selecting at random, based on given percentages, the receiver
waiting longest, etc. In the same way a ProviderDecisionPoint couples a
set of providers with a receiver. With Forwarder, ProviderDecisionPoint
and ReceiverDecisionPoint, coupled systems can be built which are
typical for Flow Shop models.

A different coupling scheme should be used when modeling a robotized
manufacturing cell. Here the item flow and control scheme is much
more complex. A roboter has direct access to the places in the cell and
the control has to take the whole cell state into account. Nevertheless, we
use the same components and coupling principals. The cell controller
listens to the hasItem and needsItem properties of the cell components
and generates transport commands to the robot. The robot then realizes
the item flow by accessing the item from the given provider and placing
it on the given receiver.

Modeling a manufacturing system with a complex transportation system
again needs a different item flow mechanism. In such a system, different
system and control layers are identified. At the upper layer, the work-
piece flow between the machines is controlled by a disposition control
system which decides which workpieces are assigned to which machines.
On the lower layer the transportation system realizes the workpiece flow.
This is again a system consisting of resources and items. Typically, the
transportation system can be built as a Flow Shop model, where the
vehicles are the flowing items and the paths, intersections, parking lots,
etc. are the resources. Coupling is linear with decision points at intersec-
tions. The machining and transportation system are coupled at load-
ing/unloading stations. It should be emphasized that the same type of
components can be used in the different layers of the system.

3.4 Visualization and Animation
Model components are used for modeling a simulation scenario. They
can be made visible during a simulation run to the user in order to dem-
onstrate the model scheme of the simulation. However, a model compo-
nent’s properties and property changes cannot be made visible to the
user. This has to be accomplished by dedicated components for visuali-
zation and animation. For example, the state of a container component
may be visualized by a simple number, a progress bar, or by a graphical
representation of the items in the container. In addition, statistics compo-

nents may receive events of model components or items, calculate vari-
ous useful numbers, store the results for later evaluation, and display
graphical representations of the results.

It is important for real simulation applications to have powerful visuali-
zation, animation, and statistics components available. We have put our
primary effort into developing model components in order to test the
usefulness of our approach. Therefore, we have currently only basic
components available in this category.

4. EXPERIENCES

4.1 Experiences with JavaBeans
JavaBeans provides an attractive platform-independent component
model. Our experiences with the model have been quite positive. A few
weaknesses have been encountered, however.

§ The JavaBeans specification does not contain any information about
hierarchically structured beans. Therefore, there is no defined access
of super- or subordinate beans. In our application we regard hierar-
chical composition of component essential and we missed an explicit
representation of the component hierarchy. In JDK version 1.2 there
will be appropriate interfaces (BeanContext and BeanContextChild).

§ The property change mechanism propagated by the JavaBeans stan-
dard only knowing synchronous event handling fails when feedback
occurs. Coupling mechanism defined by JavaBeans with event cou-
pling seem to be too weak for complex applications. We foster cou-
pling schemes at a higher level where components are coupled based
on their interface specifications (which then are realized by primitive
event communication mechanisms).
§ There is no restriction for tool developers on how code should be

generated and where it should be inserted. This leads to different
approaches, which prohibits using several builder tools together or
switching from one tool to another.

4.2 Experiences with Bean Tools
The purpose of the SimBeans project has not been to gather experiences
with various tools and programming environments. However, during our
development process we have encountered significant differences in the
support of JavaBeans which we believe is interesting to the reader and
potential Bean developer and user.

VisualAge

VisualAge V1.0 by IBM had promised sophisticated support for Java-
Beans due to their support of visual composition. But even the installa-
tion of our SimBeans components had been a painful task. Every bean
needed a BeanInfo class, which we had not yet available at that time. In
particular, modifying beans and reinstalling them had been time con-
suming. The visual composition tool generated extensive code for each
component instantiation and for each link between components. In
contrast to other tools the high number of generated methods was amaz-
ing. Even though it was possible to include one’s own source code lines
in most of the generated methods by means of special comments, it was
quite difficult to combine visual composition with manual coding. Be-
lieving that visual composition is not sufficient in all circumstances,
VisualAge did not sufficiently satisfy our needs in the development and
use of SimBeans components. Another drawback of the tool was that
having more than 100 classes lead to unacceptable response times.

VisualCafe

VisualCafe V2.5 by Symantec offers sufficient support for the use of a
component library. However, using the environment is sometimes cum-
bersome, and several times faulty beans had lead to crashes of Visual-
Cafe. In contrast to VisualAge, VisualCafe generates only a single code
fragment in the constructor of the application class where all components
are being instantiated and their properties are being initialized. Including
code of our own was straightforward and without any further problems.
One major drawback of VisualCafe is that serialization of JavaBeans is
not being supported. Even though there is a Bean Wizard available, we
found it often cumbersome to use by its long sequences of modal dialogs.
Also, the wizard cannot be used to create additional information for
existing components. The property sheet supports built-in types, a few

6

special object types, and allows the use of special property editors. But it
lacks support for properties which are beans by themselves.

JBuilder

JBuilder V2.0 by Inprise (Borland) promises convenient support for
development and use of JavaBeans. We do not have sufficient experi-
ences yet with this tool, but currently it offers the best support for Java-
Beans that we have encountered so far. A Bean Wizard is provided
which allows the interactive specification of BeanInfo classes. The
generated code is highly readable and written into one method. Manual
modification and extension of the code are simple and straightforward.
Assigning complex properties, i.e., properties which are beans by them-
selves, is supported elegantly.

We believe that currently the availability of powerful tools that support
JavaBeans is satisfactory. However, existing programming environments
may be too complex to be used as a simulation tool by application engi-
neers. We are still missing simple JavaBeans builder tools which are
flexible enough to configure them as simulation tools.

5. CONCLUSION
Initially, the objectives of the SimBeans project were to evaluate the
JavaBeans technology and to investigate JavaBeans as an implementa-
tion technology for simulation. We also used a prototypical version of
the SimBeans components as an educational vehicle for teaching mod-
eling and simulation (Praehofer et al. 98). Due to the good experiences
we made, we decided to continue the project and make the system more
mature in order to additionally serve as a simulation framework for real
world applications. At the current time we are making a major redesign
of the system in order to broaden its applicability. We also plan to extend
the framework to allow continuous and combined simulation. This part
will be employed in realizing a training simulator for papermill opera-
tors.

In this paper we have investigated and assessed the Java programming
language and the JavaBeans component model as an underlying technol-
ogy for the realization of a component-based discrete event simulation
methodology. The DEVS formalism provides the fundamental concepts
for a modular hierarchical modeling methodology facilitating the design
of reusable components. According to our experience JavaBeans together
with the DEVS modeling methodology is a superiour combination to
enable a simulation technology for developing advanced simulation
systems.

6. REFERENCES
F. Pichler and H. Schwärtzel (eds.), CAST Methods in Modeling,
Springer, 1992.
H. Praehofer , A. Stritzinger, and J. Sametinger, Using JavaBeans to
teach Simulation and using Simulation to teach JavaBeans, ESM98, 12th

European Simulation Multiconference, Manchester, UK, June 16-19,
1998.
C. Thomas, Interface-based classification of simulation models, WSC 94,
Orlando, FL, 1994.
Sridharan Prashant, JavaBeans-Developer`s Resource, Prentice Hall,
1997
Sun Microsystems: JavaBeans 1.01 API Specification. 1997. see
http://java.sun.com/Beans/spec.html
B.P. Zeigler, Multifacetted Modelling and Discrete Event Simulation.
Academic Press, 1984.
B.P. Zeigler, Object Oriented Simulation with Modular, Hierarchical
Models. Academic Press, 1990.
B.P. Zeigler, H. Praehofer, T.G. Kim, Theory of Modeling and Simula-
tion, 2nd Edition. Academic Press, 1998 (in preparation).

