
1

USING JAVABEANS TO TEACH SIMULATION AND
USING SIMULATION TO TEACH JAVABEANS

Herbert Praehofer
Department for Systems Theory and Information Engineering

Johannes Sametinger, Alois Stritzinger
Department for Software Engineering

Johannes Kepler University
A-4040 Linz / Austria

hp@cast.uni-linz.ac.at, sametinger@swe.uni-linz.ac.at, stritzinger@swe.uni-linz.ac.at

KEYWORDS

Simulation education, discrete event simulation, Java, Java
Beans, general systems theory

ABSTRACT

This work reports on two courses for computer scientists.
The first is a graduate course on modeling and simulation and
the second is a course on component based software
engineering. For both of these courses we principally use the
same basis, that is, the Java Beans component technology and
the DEVS system theory formalism for discrete event
simulation. However, in the two coursed, we pursue quite
different objectives. While in the first course the Java Beans
technology is used to teach discrete event simulation, in the
second course we use simulation as an example to show how
a component library can be realized using Java Beans.

MODELLING AND SIMULATION COURSE

Introduction

The first course is a classical modeling and simulation course
for computer science students. Emphasis is more on
simulation modeling and simulation programming than on
system analysis and experimental data evaluation. The course
takes into account the background and also the interests of the
students. They have a strong background in software
engineering and object oriented programming but also a good
knowledge of statistical methods. However, many students
lack knowledge and experience in classical technical fields
and mathematics, e.g. differential equations. The course is an
attempt to teach simulation from a systems theoretic
perspective and using modern software engineering
approaches. Much efforts have been put into the pedagogical
preparation of the topic.

So the emphasis is to give them an overview and an general
understanding of simulation and programming of simulation
systems. After the course students should

§ have a general understanding what simulation is and how
simulation works

§ have an understanding of the different simulation
approaches

§ have an overview of the manifold application areas of
simulation

§ know when and where the different simulation
approaches can be applied

§ be able to see potential applications and limitations of
simulation approaches

§ be able to evaluate the advantages and limitations of
various simulation languages and tools

§ know in detail how simulation systems are built up
and how they are implemented

§ have a broader view of programming, especially, be
able to work with state space descriptions and state
transition diagrams, event communication, and
hierarchical object composition (see below).

We try to achieve these manifold objectives pursuing the
following points:

§ We base on a general systems theoretic background
and a state space description for continuous models,
discrete time models as well as for discrete event
models.

§ We work out that system simulation in general deals
with the complexity emerging from components‘
dynamic behavior and components‘ interaction.

§ We work out the essential of the modeling approaches
without considering any particular application,
however, with referring to examples in different
application domains.

§ We work out more the commonalties of the modeling
approaches and application domains than stressing
their differences and specialties.

§ Instead of taking a commercial simulation language
or system students work with a general purpose
programming language (Java) and a library of
simulation components which, however, does not
enforce any particular modeling approach.

Course outline

The students are introduced step by step into the concepts
of modeling and simulation:

§ By starting with finite state automata, they should get
a first flavor of modeling and simulation. They should

2

get a feeling what dynamic systems are. Simulation is
explained as the generation of behavior over time.

§ By cellular automata it is shown how complex behavior
emerges from elementary components and
communication between components.

§ An event based simulation of cellular automata is
introduced to show the efficiency advantage of an event
approach to simulation.

§ The DEVS formalism as a system theoretic formalism is
used to introduce event behavior and event scheduling.

§ Discrete process modeling and simulation is discussed as
involving three fundamental elements:
- resources which are needed to do the processing of

some items
- items which need and occupy resources and are

distributed between the resources
- control which decides which items get which

resources.
§ A component library is introduced which provides

elementary building blocks for the three elements.
§ It is shown how this general schemes manifests itself in

various application domains and on different system
levels.

§ Continuous simulation is discussed from a systems
theoretic perspective.

§ By discussing elementary continuous systems it is shown
that feedback is the reason for complex behavior.

§ Combined discrete/continuous modeling is presented as a
combination of DEVS modeling and continuous
modeling.

§ The course is finished by presenting the automatic
highway simulation (AHS) architecture [Eskafi and Göllü
98] as an advanced example showing elements of
combined simulation as well as process simulation.

In the accompanying exercises small groups of students
realize some basic simulation programs. In line with the
course the students realize a cellular automata simulator first,
then use the component library to realize several discrete
event simulation examples and finally use a block oriented
simulation system to get some experience with continuous
simulation. Emphasis however strongly is on the discrete
event part and on using the JavaBeans implemented
component library for simulation. We, therefore, describe in
detail the background, objectives, design, and the use of this
component library in the following.

JAVABEANS COMPONENT LIBRARY FOR
DISCRETE EVENT SIMULATION

The basis for the component library for discrete event
simulation is (1) the DEVS formalism as a system theoretic
formalism for modular hierarchical simulation modeling, (2)
the JavaBeans component model. As we will see these two
complement each other. We will shortly review these two
topics.

DEVS Formalism as a Formal Basis for Modular
Hierarchical Simulation

Modular, hierarchical system modeling [Zeigler 84,
Zeigler 90, Pichler, Schwärtzel 92] is an approach to
complex dynamic system modeling where modular
building blocks, i.e., system components with a well
defined interface in the form of input and output ports, are
coupled in a hierarchical manner to form complex
systems. In system modeling, one distinguishes between
atomic or coupled models. While an atomic model
specifies its internal structure in terms of its set of states
and state transition functions, a coupled model's internal
structure is specified by its components and coupling
scheme, i.e., how ports are connected. System modeling
means building complex systems by interface based object
composition. Modularity allows for setting up bases of
reusable building blocks which can be plugged into a
system through their well defined input and output
interface.

Modular hierarchical system modeling concepts have been
applied in several domains, most notably hardware design
and communication engineering. Zeigler [Zeigler 76,
Zeigler 90] introduced modular hierarchical modeling for
discrete event simulation. The DEVS-formalism is an
application and computer implementation independent
formalism for discrete event modeling and parallels the
differential equation specified and finite state automaton
formalism.

Java/JavaBeans as a Simulation Language

Java is a programming language with interesting features
for simulation. It is purely object oriented, it is widely
available, already well-known and appreciated, and easy
to use. Its run-time environment providing garbage
collection frees the programmer from storage management
duties. Due to its popularity, many libraries are available.

JavaBeans is the component model for Java. JavaBeans
are ordinary Java classes that adhere to certain property
and event interface conventions. JavaBean components
are portable and platform-independent. They enable
developers to write reusable components that may run
anywhere. Beans are manipulated and composed together
into applications in visual builder tools. JavaBeans defines
a convention for events and event communication which
can advantageously be used for discrete event simulation.
We adopted the JavaBeans event model for the realization
of event couplig and communication in discrete event
modeling. We review the JavaBeans event model in this
sense.

Events: Events are used for event communication among
bean components. With events, a bean can notify other
beans that something interesting has happened. For that
purpose event listeners are registered to event sources. An
event source has to provide two methods that allow the
registration of listeners, viz., add<Event>Listener
and remove<Event>-Listener to register compo-

3

nents that are interested in receiving <event> events (where
<event> is the event name).

Properties: Properties are named attributes that can be read
and written by calling appropriate methods. Naming
conventions have to be obeyed for definition of methods. Two
methods, ‘get<Property>’ and ‘set<Propert>’ have to be
provided for reading and writing property values. So-called
bound properties allow PropertyChangeListeners to watch
properties for value changes. PropertyChangeListeners are
added to properties by method addPropertyChangeListener.
PropertyChangeListeners and are intended to be informed of
changes in the property by a call of their propertyChange
method.

We use the event and bound property change concepts to
realize event coupling and communication in discrete event
models. Models which rely on states of other models are
registered as PropertyChangeListeners of the other model’s
state property and are so informed whenever a change in state
happens. For example, a processor needing a particular tool
registers itself as a listener of the available property of the
tool pool. As soon as a tool gets available, it is informed and
can access it. In similar way, events can be used to distribute
objects between model components in an eventistic way.

Synergism between DEVS Formalism and
JavaBeans Component Technology

Zeigler [Zeigler 90] compares modular hierarchical system
modeling and the object oriented paradigm. While both share
various concepts they also show major differences. System
models as well as objects use the concept of internal states.
However, objects are not dynamic systems in the sense of
system theory which show dynamic, concurrent behavior
specified over a time base. Nor are objects modular units in
the above sense. In particular, objects lack an explicit output
interface. The output interface is only given implicitly by the
method calls to other objects. Therefore, an object has to have
knowledge of the other objects with whom it communicates.
In contrast to that, a system model only defines an output
port, the communication with other components is defined
independently on the higher coupled system level. Object
oriented systems also are not hierarchical in the above sense.

The component based software engineering represents a step
towards a modular system modeling approach. Components
define an explicit input and output interface in the form of
methods calls they accept and events they generate.
Component based programming should primarily mean
interface based component composition. Components can be
constructed hierarchically using smaller components.

JavaBeans Simulation Framework

In the Java Beans simulation framework, the realization of
simulation systems is based on the following ideas and
concepts:

§ A set of elementary, most general, yet powerful
building blocks for simulation modeling and
simulation output, statistical evaluation, and
visualization is provided.

§ A library of utility and support objects are provided.
By them, model components can be customized in
their functionality to meet particular requirements.

§ Model interfaces are defined which specify where and
how model components can be used. The interface
specifications are put into a classification hierarchy to
define compatibility between model components
[Thomas 94].

§ Interfaces and interface-based classification of model
components are used to define generic templates for
coupled models which define the components’
interfaces and coupling structure but not the
components itself. At design time, these generic
components can be configured by instantiating model
components which obey to the interfaces. For
example, a ParallelProcessor coupled model will
specify that it has several parallel components and all
have to obey to the Processor interface. At design
time we can choose from different processor
realizations.

§ Simulation systems are primarily built bottom-up by
hierarchical composition and coupling of model
components.

§ The component library can easily be extended to meet
special needs.

§ Employing the elementary component library, special
purpose simulation environments for very particular
application domains can be realized.

model modelcomp

model

configure

object

customize

couplingscouple

attach

property

attach

output

util

output

models

output

couple

property

Figure 1 Putting together simulation systems from
components

Figure 1 illustrates how simulation systems are put
together from components. According the ideas above, we
distinguish the following ways for component
composition:

§ customize: Means to customize simulation
components to meet different requirements by using
utility objects, e.g. random distribution functions,
control strategies etc.

§ configure: Choose and instantiate concrete models for
component in a coupled model for which only the
interfaces are specified in a top-down manner.

4

§ couple: Couple together models in a hierarchical bottom-
up way.

§ attach: Attach beans for simulation output, statistical
computation, and visualization and animation to state
variables (properties) of models.

Simulation Beans for Discrete Process Simulation

For discrete process simulation a library of elementary beans
for simulation modeling is used which is designed according
to the view of simulation as encompassing the three elements,
that is, resources, items flowing through the system, and
control of the item flow. It is supposed to give a perspective
of simulation which abstracts from classical process
interaction and transaction oriented world views.

Interfaces

Elementary to the whole package are two very general
interface definitions for the components in the resource layer.
These are the SItemReceiver for any component which
may receive items and SItemProvider for any component
which may provide items. Simulation then works by
distributing items between providers and receivers.

Interface SItemReceiver specifies the following features:

§ a method receive(SItem) for handing over an item
to the component

§ a bound property free to signal that the component is
free to receive an item (can also be interpreted that the
component needs an item)

§ a predicate test(SItem) used to see if an item is
appropriate to be received by the component

§ an event sItemReceived which is triggered at the
time when the item is actually received.

Analogously, the interface SItemProvider specifies the
following features:

§ a method SItem provide() for allowing other
components to access available items

§ a bound property available to signal that an item is
available in the component

§ an access method SItem inspect() to get the next
item for inspection

§ an event sItemProvided which is triggered at the
time when the item is actually retrieved.

Model beans
Based on these two very general interfaces a set of elementary
building blocks are realized which implement the interfaces in
different ways. Building blocks include Generator, Sink,
Processor, Queue, Place, and Delay (Figure 2).

BasicProvider

SItemProvider

BasicDEVSModel

BasicModelSItemReceiver

SItemProcessor

SItemStorage

BasicGenerator

BasicReceiver

BasicSink

BasicReceiverProvider

BasicStorage

BasicProcessor

BasicPlace

BasicQueue

BasicDelay

SItemProvidedListener

SItemReceivedListener

SItemFinishedListener

SItemEventListener

EventListener

SItemEventEventObject

Figure 2 Class hierarchy for elementary model beans:
interfaces are gray, model beans are bold.

Coupling components
More complex components and simulation (sub-)systems
are built up from these basic components. The general
idea of coupling components is that the containing model
listens to the property changes (free and available)
of its subordinates and reacts to those by distributing the
items between its subordinate providers and receivers
based on its individual control scheme (Figure 2).
coupled model

receive (SItem) SItem provide ()

free available

receive (SItem) SItem provide ()

free available

control and
coupling

receive (SItem) SItem provide ()

free available

Figure 3 Hierarchical coupling of provider and receiver
components: The coupled model listens to changes in the
property values of its subordinate and reacts according to its
control scheme by distributing the items from providers to
receivers.

Usage of the beans library in the simulation
course

This general approach then is used to demonstrate various
modeling approaches and different applications domains.

Modeling of typical Flow Shop systems is demonstrated
by introducing components to realize the linear couplings
typical for those systems. A Forwarder is a component
which directly forwards an item from a provider to a
receiver as soon as an item is available at the provider and
the receiver is free to take it. A ReceiverDecision-

5

Point is a component to couple one provider with several
receivers. The selection of the receiver for an available item
can be customized by different control strategies, like
random, according to a percentage, least recently received,
longest free or user defined strategy. The component
ProviderDecisionPoint is analogous for the selection
from several providers.

The next step in the course is to show to the students how
JobShop models can be realized. The same elementary
components are used which, however, now are coupled in
more complex way by individual coupling and control
schemes.

Finally by considering manufacturing and transport systems it
is shown how the same elementary components are used for
quite different purposes at different system levels, e.g., once
in the flow of items and then also in the transport system.

COMPONENT PROGRAMMING COURSE

The objective of the component programming course is to
introduce this new programming paradigm to software
engineering students. Those students already have a strong
background in object oriented programming and also Java.
They are supposed to learn component programming,
theoretically and also practically.

The component approach to programming has emerged from
graphical user interfaces and has not widely been used in
other areas yet. Simulation certainly is an area where
component-based programming can be applied. The following
points were relevant for our decision to used simulation as an
example:

§ the basics of discrete event simulation are easy to
comprehend and can be introduced in a few lessons

§ components can easily be identified
§ through its event-driven nature, discrete event simulation

is most appropriate to teach event-driven programming.

Especially the last point makes simulation an most interesting
area to study the problems of component-based, event-driven
programming. For example, during the development of the
simulation beans, we identified several severe problems in the
event handling of the standard JavaBeans model which are of
general nature and of which the software engineering
community seems not to be aware (see [Stritzinger,
Sametinger, Praehofer 98] for details). It is our opinion that
simulation can and should play a similar important role for
the development of component-based programming as it
played for the development of object-oriented programming.

SUMMARY AND OUTLOOK

In this work we have reported on two courses which combine
two areas which complement in an optimal way. Using
JavaBeans as a basis for discrete event simulation makes this
new powerful programming paradigm available for
simulation programming. On the other side, discrete event

simulation with its complex event handling can give
interesting insights into component based programming in
general. The positive feedback from the students strongly
confirm this. Also after having done similar modeling and
simulation courses using other languages, namely Scheme,
object-oriented Pascal, and C++, in former years, we very
much appreciate Java/JavaBeans and regard it a milestone
in computer science.

Students were able to realize quite nice simulation system
in very short time. However, the first steps were not that
as easy as supposed. It took them some time to get an
understanding and overview of the component library and
how to work with it. The general message from them was
that they began to comprehend and appreciate this type of
programming not before they had finished the
programming examples. So the plans for the future are to
spend an even greater time on the discrete event part and
also to provide a continuing student project where they
should deal with a more realistic simulation application.

REFERENCES
F. Eskafi and A. Göllü, Simulation Framework Requirements
and Methodologies in Automated Highway Planning.
Transactions of the SCS, 14(4), 1997, pp. 167 - 180.

Java Beans: A Component Architecture for Java. Sun
Microsystems, WhitePaper, Dec. 1996.

M. D. McIlroy, Mass Produced Software Components. In J.M.
Buxton, P. Naur, and B. Randell, eds., Software Engineering
Concepts and Techniques, pp. 88-98, 1968 NATO Conference
on Software Engineering, 1976.

Anthony Wasserman and S. Gutz, The Future of Programming,
CACM, 25 (3), 1982.

Oscar Nierstrasz and Laurent Dami, Component-Oriented
Software Technology. In Oscar Nierstrasz and Dennis
Tsichritzis, Object-Oriented Software Composition, Prentice
Hall, pp 3-28, 1995.

Oscar Nierstrasz and Dennis Tsichritzis, Object-Oriented
Software Composition, Prentice Hall, 1995.

F. Pichler and H. Schwärtzel (eds.), CAST Methods in Modeling,
Springer, 1992.

 A. Stritzinger, J. Sametinger, and H. Praehofer, Perspectives of
component-based programming with Java Beans. Johannes
Kepler University, Linz, Austria, 1998.

Clemens Szyperski, Component-Oriented Programming:A
Refined Variation on Object-Oriented Programming. The
Oberon Tribune,1(2):1, pp. 4-6, 1995.

C. Thomas, Interface-based classification of simulation models,
WSC 94, Orlando, FL, 1994.

B.P. Zeigler, Theory of Modeling and Simulation. Wiley, 1976.

B.P. Zeigler, Multifacetted Modelling and Discrete Event
Simulation. Academic Press, 1984.

B.P. Zeigler, Object Oriented Simulation with Modular,
Hierarchical Models. Academic Press, 1990.

