On a Taxonomy for Software Components

Johannes Sametinger
Brown University
Department of Computer Science, Box 1910
Providence, RI 02912, USA

Email: js@cs.brown.edu

Abstract

Object-oriented programming has been an important step forward
in increasing the quality of software systems and the productivity of
software engineers. Objects have brought a radical change in the way
software systems are being built. Objects can be regarded as com-
ponents in that they facilitate to build software systems by putting
various classes (objects) together. In order to facilitate component-
oriented software engineering we must loosen the dependencies among
components, attain higher abstraction levels, achieve vendor/platform
neutrality, and facilitate the composition of different kinds of compo-
nents.

Components that are integrated into a system do not run on their
own. Functions and classes (objects) belong to this category. Docu-
ment-oriented computing as supported by OPENDoOC and OLE provides
components of higher abstraction than classes and objects. Further-
more, the advances in distributed computing suggest the use of com-
ponents that run on their own, have less coupling and more autonomy.

Component composition has proofed to be successful when a par-
ticular platform, i.e., operating system, run-time system, standard, has
been propagated and used, e.g., UNIX pipes and filters, VISUALBASIC,
CoRBA. Yet, we have not defined a uniform model for component
composition and there are many issues to be addressed.

Keywords: software components, software composition, component
taxonomy, open systems, software reuse

Topics of Interest: anything related to the interoperability of com-
ponents, discussion/definition of component/composition taxonomies

1 Introduction

The ideal scenario of software engineering is to build applications by putting
high-level components together. If any required components are not avail-
able, they have to be built out of lower-level components. Finally, when
even low-level components are not available, they eventually have to be im-
plemented in a certain programming language.

Software components are prefabricated, pre-tested, self-contained, and
reusable software modules. They bundle data and procedures that per-
form specific functions. Advantages of component software are distribution,
reusability, economy, (user) modifiability, extensibility, and vendor neutral-
ity [5].

Component-oriented software development means, that at the method-
ological level we design and develop software systems in a compositional
way, i.e., we create a set of components that are supposed to work to-
gether in some way. The components are not designed in isolation but
rather are meant to collaborate. From this point of view components can be
macros, functions, modules, classes, templates, etc. Technically speaking,
component-oriented software development is the integration of computa-
tional and compositional aspects of software development. Nierstrasz and
Dami define software components as “static abstractions with plugs” [8].

2 Software Composition

Constructing software systems from software components is called software
composition. Composable software has a higher degree of flexibility than
monolithic software. Raising the level of abstraction helps us in dealing
with increasing complexity. Today many examples of software components
exist at various abstraction levels.

Different languages and environments realize software composition to
different degrees. They support different notions of components and com-
positions. Component-oriented software development requires that we have
a selection of reusable components that are plug-compatible. The higher the
granularity of the components is, the higher the increase in software pro-
ductivity can be. Putting objects or applications together is more effective
and productive than putting functions together.

It is easier to recompose software in order to meet new requirements
instead of modifying a monolithic creation. Examples of successful appli-

cation of software composition exist in certain domains like user interfaces,
application frameworks, programming environments, and fourth-generation
languages. But a general model of software composition does not yet ex-
ist [7].

3 Component Reuse

Component-oriented software engineering has many benefits for software
reuse. Components can be stored in repositories and, if properly classified,
considerably increase the productivity of software engineers. Unfortunately,
most of today’s components can hardly be combined with each other. Get-
ting information about a component’s functionality is not sufficient. We
have to define the typical characteristics of software components and their
composition in order to find and select them for the reuse in various contexts.
Example questions about component candidates for reuse are:

What is the component’s functionality?

What kind of component is it?

Can the component be interconnected with our components?
Can the component be (re)used in our context? How?

Can the component be customized? How? To what extent?
What else is needed to reuse the component?

Is the component’s quality sufficient for our purposes?

In order to systematically exploit the reuse of software components we
have to classify components and compositions, adhere to open standards,
and raise the abstraction level from source code components to higher levels
of abstraction.

Open Systems

Vendor transparent environments in which users can mix and match hard-
ware and software from various vendors on networks from different vendors
are called open systems. We eventually want to combine software compo-
nents from different vendors on hardware and software from various vendors
interoperating over networks from various vendors. Interoperability, porta-
bility, integration and standards are crucial for open systems as well as the
success of component-oriented software [9, 10].

4 Component Taxonomies

Several attempts have been made to classify software components. To give
an overview we will shortly sketch several of these.

Booch made a division into three major groups of abstractions, i.e., struc-
tures, tools, and subsystems [1]. Structures are components that denote ob-
jects or classes of objects (abstract data type). Tools are components that
denote algorithmic abstractions targeted to structures. Finally, subsystems
are components that denote logical collections of cooperating structures and
tools. Additionally, forms have been introduced to classify time and space
requirements.

Wegner provides a classification of software components of different lan-
guages by using state, inheritance, concurrency, and distribution as dis-
criminating characteristics [11]. This yields to the following components:
functions and subprograms, packages and modules, classes with single in-
heritance, classes with multiple inheritance, concurrent tasks with shared
memory, distributed concurrent processes, and distributed sequential pro-
cesses.

Dusink and van Katwijk distinguish between active and passive compo-
nents [3]. Functions in libraries are considered passive components to be
used as building block in a system. Executable programs are active compo-
nents that require some kind of interprocess communication for composition.
Care must be taken not to confuse active and passive components with pro-
active and re-active components. Pro-active components become active on
their own (e.g., timer components), whereas re-active components react only
in response to certain events (e.g., when activated by another component).

In [6] a taxonomy of interface types of reusable software components
is given. The following interface types are contributed: subprogram call,
task invocation, memory sharing with subprogram or task, communication
via shared file with or without simultaneous access, and communication via
message passing or mailbox mechanism.

Bradford Kain uses the characteristics scope, purpose, granularity, and
level of abstraction to categorize components [2]. Fernandez provides a
taxonomy of coordination mechanisms in real-time software [4].

Many taxonomies concentrate on source code and do not take higher
levels of abstractions into consideration. Programming languages provide
the most common form of building reusable software components. Other
means are the use of visual programming languages, command languages,
module interconnection languages, interface definition languages, etc.

5 Workshop Goals

We are still far from the ideal scenario of composing our software systems
of existing components. Many questions are still unanswered, and much re-
search has to be done especially on the interoperability of components. But
even if we somehow reach this goal or come near to it, of course, we won’t
get rid of all our problems. It remains to be seen whether we raise the ab-
straction levels of components and at the same time get high-performance
systems by using these components. Performance is one of the key hin-
drances of clean software composition. Whenever abstraction levels have
been raising lack of performance has yielded as well, and efforts have been
made to circumvent these abstractions.

Evaluating the current situation of component-oriented programming by
classifying existing components and composition techniques is suggested for
the workshop. Based on such a classification future research efforts should
be derived and discussed. Example topics of further discussion include (mul-
tiple) interface definitions for components, integration of legacy components,
standards for component composition, the role of document-oriented compo-
nent models, influences on the software engineering life-cycle and on software
design models, etc.

References

[1] Booch G.: Software Components with Ada: Structures, Tools, and
Subsystems, Benjamin/Cummings Publishing Company, Inc., Menlo
Park, CA, 1987.

[2] Bradford Kain J.: “Components: The Basics: Enabling an Applica-
tion or System to be the Sum of its Parts”, Object Magazine, Vol. 6,
No. 2, pp. 64-69, April 1996.

[3] Dusink E.M., van Katwijk J.: “Reflections on Reusable Software and
Software Components”, in Tafvelin Sven (Ed.): Ada Components:
Libraries and Tools, Proceedings of the Ada-Europe International
Conference, Stockholm, Cambridge University Press, pp. 113-126,

1987.
[4] Fernandez J.: “A Taxonomy of Coordination Mechanisms Used in
Real-Time Software Based on Domain Analysis”, Technical Report

CMU/SEI-93-TR-34, Software Engineering Institute, Carnegie Mel-
lon University, December 1993.

[6] Meta Group: “Component Software”, Meta Group, Inc., White
Paper, December 5, 1994.

[6] NATO: Nato Standard for Management of a Reusable Software Com-
ponent Library, Vol. 2 (of 3 Documents), Nato Communications and
Information Systems Agency, 1977.

[7] Nierstrasz Oscar, Meijler Theo Dirk: “Research Directions in Soft-
ware Composition”, ACM Computing Surveys, Vol. 27, No. 2,
pp. 262-264, June 1995.

[8] Nierstrasz Oscar, Dami Laurent: “Component-Oriented Software
Technology”, in Nierstrasz Oscar, Tsichritzis Dennis (Eds.): Object-
Oriented Software Composition, Prentice Hall International (UK),
pp. 328, December 1995.

[9] Quarterman John S., Wilhelm Susanne: UNIX, POSIX, and Open
Systems, Addison-Wesley, 1993.

[10] Umar Amjad: Distributed Computing: A Practical Synthesis, Pren-
tice Hall, 1993.

[11] Wegner Peter: “Capital-Intensive Software Technology”, in Bigger-
staff Ted J., Perlis Alan J.: Software Reusability, Vol. I: Concepts
and Models, ACM Press, 1989.

