
Documentation Inheritance in Literate Programs

Bart Childs Johannes Sametinger

Department of Computer Science Department of Computer Science

Texas A&M University, USA Brown University, USA

bart@cs.tamu.edu js@cs.brown.edu

and

CD Lab for Software Engineering

Johannes Kepler University Linz, Austria

Abstract

Object-oriented programming has resulted in the
reuse of class libraries and application frameworks.
This can considerably improve the productivity in
software development. Black-box reuse boosts pro-
ductivity more than white-box reuse. However,
white-box reuse is the usual means of dealing with
common parts in di�erent applications, assuming
that the same developers are building these appli-
cations or they somehow know about these common-
alties.

With a case study we will demonstrate that both
code and documentation can and have to be reused
systematically and that there is a need for methods
and tools for doing so. Literate programming and
software reuse are not in contradiction. However, cur-
rent literate programming systems do not explicitly
support software reuse, even though, as the study will
show, there is a high demand for doing so.

We will also present a way for systematic reuse
of documentation. Inheritance and information hid-
ing, that ease reusing object-oriented software, will
be applied to literate programs and thus, enable their
reuse.

Key Words: literate programming, software reuse,

software documentation, object-oriented program-

ming, documentation inheritance

1 Introduction

Software reuse is the process of creating software
systems from existing software rather than build-
ing them from scratch [13]. Reusable software
has many bene�ts, see [1, 13, 15].

Donald Knuth proposes to create each soft-
ware system as a piece of literature [12]. Can
this literature be cut into components and be
reused in various contexts? We believe that the
idea of literate programming is important in get-
ting well documented and structured software
systems. The question that arises is: \How do
literate programming and software reuse �t to-
gether?"

We will demonstrate the need for explicit soft-
ware reuse in some literate programs. We will
accomplish this by comparing existing software
systems both in reuse of code and documenta-
tion. We were interested in �nding out, how
much reuse had been done, how it had been done,
and whether there are possible improvements in
the way it had been done. We want to demon-
strate that it is possible to determine the amount
of white-box reuse, that both source code and

1

documentation can be reused, that more insti-
tutionalized software reuse can be done by sim-
ply making existing software more reusable, and
that a system done in a literate manner can be
done with signi�cant reuse in a systematic and
formalized manner. In order to achieve system-
atic and planned reuse for literate programs we
adopt object-oriented techniques.
The structure of the paper is as follows: Chap-

ter 2 gives an overview of reuse intentions, i.e.,
of black-box, white-box, and glass-box reuse.
Chapter 3 gives a short introduction to liter-
ate programming. In Chapter 4 we present an
overview of the systems we considered for inves-
tigation. In Chapter 5 we explain how the results
had been determined. The results are presented
in Chapter 6. Chapter 7 describes our approach
of applying object-oriented techniques to docu-
mentation and literate programs. Finally, con-
clusions appear in Chapter 8.

2 Reuse Intentions

Depending on whether the internals of a soft-
ware component are visible to reusers we speak
of black-box or white-box reuse. If a component
is a black box we cannot modify its internals,
we use it as-is. White-box components are usu-
ally modi�ed, even though this is not necessarily
the case. They o�er both as-is reuse and by-
adaptation reuse. The term glass-box reuse has
been coined recently and means white-box visi-
bility but black-box, i.e., as-is reuse [4].

� Black-Box Reuse

Reusing a component as a black box means
using it without seeing and knowing any
of its internals. Usually, a black box is
reused as-is. Object-oriented techniques al-
low modi�cations of black boxes by making

modi�cations and extensions to a compo-
nent without knowing its internals. How-
ever, components have to be designed so
that such modi�cations become viable.

� White-Box Reuse

White-box reuse is the typical case of to-
day's still widespread unplanned ad-hoc
reuse. It means reuse of components of
which internals are changed for the purpose
of reuse.

� Glass-Box Reuse

The term glass-box reuse is used when com-
ponents are used as-is like black boxes but
its internals can be seen from outside. This
gives the reuser information about how the
component works without letting him to
change it.

Black box reuse is more di�cult to achieve
than white-box reuse but promises higher quality
and reliability of the resulting software system.
The potential of customizing black-box compo-
nents can increase their reuse potential but has
to be considered and designed.
Our goal is to have reusable source-code, doc-

umentation, and literate program (source code
plus documentation) boxes. The purpose of
source code is to provide functionality. Thus, we
want to reuse source code as black-box when-
ever possible. The internals are not relevant
to the reuser of the source code. The purpose
of documentation is to provide information, i.e.,
the documentation itself. Hence, we have to re-
veal the internals, but do not want to have them
modi�ed. This is glass-box reuse. The doc-
umentation part of literate programs describes
internals (implementation details) and does not
have to be revealed to reusers. Literate pro-
grams should be reused as black boxes like pure

2

source code, but should also o�er extension and
mod�cation mechanisms as provided by object-
oriented source code.

3 Literate Programming

Human readers are necessary for maintenance
activities and that is an area of prime importance
in the study of software engineering. We agree
with Knuth's claim that literate programming is
a process which should lead to more carefully
constructed programs with better, relevant `sys-
tems' documentation [12]. The author of codes
in a literate programming style has to keep in
mind that the human reader is as important as
the machine reader. We take Knuth's style of lit-
erate programming as prototypical. It was used
in writing the second version of the TEX type-
setting system [8, 9] and its related components.
This Web system, as he used it, leads to:

� top-down and bottom-up programming
through a structured pseudo-code,

� programming in small sections where most
sections of code and documentation (section
in this use is similar to a paragraph in prose)
are approximately a screen or less of source
(documentation and code),

� typeset documentation (after all, it was for
and in TEX),

� pretty-printed code where the keywords are
in bold, user supplied names in italics, etc.,
and

� extensive reading aids which are automati-
cally generated including table of contents
and index.

The value of each of these items is dependent
upon the programmer, as always. For example,
the index mentioned in the last item can be sup-
plemented by user supplied entries in addition to
those automatically generated (which are similar
to compiler cross reference lists.) If the author
does not furnish these, it is our opinion that the
modi�er literate cannot be justi�ed.

4 The Subject Systems

We have studied four Webs from the TEX sys-
tem: TEX, a book quality formatting system
[8, 9]; MetaFont, a system that enables a
programmer/artist to create a family of fonts
for TEX's use [10, 11]; DVItype, a prototypical
reader of device independent (DVI) �les which
are the output of TEX [7]; and MetaPost, a
close relative of MetaFont that enables the cre-
ation of high quality graphics as encapsulated
PostScript �les [5, 6]. The most outstanding
feature of the TEX system is the complete and
careful documentation that is included. Several
of the Webs were written by Knuth himself and
some of the others were obviously carefully re-
viewed by him.

� TEX
The TEX processor converts a plain text �le
containing document markup into a device
independent graphics meta�le. It also in-
puts a number of other �les in this process
to get font charcteristics, document styles,
etc.

� MetaFont
The MetaFont processor operates in a
manner that is similar to the TEX proces-
sor and at the same time is quite di�erent.

3

MetaFont does signi�cant graphics inter-
pretations, solving of equations, and other
items associated with the creation of a con-
sistent family of fonts.

� MetaPost
MetaPost is a close relative to Meta-
Font. Instead of creating a font which has
a family of related glyphs constructed using
common strokes, serifs, etc. The output of
MetaPost is book quality �gures.

� DVItype

The DVItype processor was created to serve
two purposes. First, in the early days
when porting TEX was a common activity,
it served as a great debugging aid. Second,
since it properly reads all possible DVI �les,
it gave creators of programs to input DVI

�les and output printer �les a big help.

We have also studied the tangle and weave pro-
cessors associated with the CWeb and FWeb

systems but due to space limitations will not
present the results in this paper. More details
on this case study can be found in [2].

5 Reuse Evaluation

Reuse can be identi�ed at a number of di�er-
ent levels, i.e., words, phrases, sentences, lines,
paragraphs, sections, and chapters.

We decided to base our general comparison on
chapters. This means that we �rst decided which
chapters of two systems were being compared in
more detail. The more detailed comparison were
done automatically and were based on lines and
words. Taking any semantic information into ac-
count seemed impossible to be done automati-
cally. Yet, comparing lines and words has given

R = (100� C

T
)� 100

R reuse percentage from compar-
ing lines.
0 means no reuse,
100 means everything (all
lines) of �le a had been reused
in �le b.

C number of lines to be changed
in �le a in order to get contents
of �le b

T total number of lines of �le a

Figure 1: Reuse Evaluation

a good indication about the reuse. If line reuse
was high, then obviously much reuse had been
done. If line reuse was low, but word reuse was
high, then much reuse had been done, but the
reused text had been modi�ed on a more local
basis. Finally, if both line and word reuse were
low, then apparently there was not much reuse
at all.
The number of lines to be changed in a �le a

in order to convert it to the contents of �le b

opposed to the total number of lines (of �le a)
gives an indication of how much of �le a had
been reused in �le b. Determination of the reuse
factor is shown in Fig. 1.
As empty lines are considered to be equal, the

reuse factor, naturally, is greater than zero, if
empty lines appear in both �les. Thus, it is cru-
cial that empty lines be eliminated before the
reuse factor is determined. Of course, for two
equal �les the result of R is 100. When empty
lines are eliminated then, R is usually zero for
nominally di�erent �les.

4

Lines can be very similar and, for example,
di�er only in a single word. Therefore, we con-
sidered the reuse on a word basis as well. We
will denote Rl and Rw as reuse factors consider-
ing lines and words, respectively.

The interesting thing is to compareRl andRw.
Usually, they do not di�er very much, with Rw

slightly higher than Rl. Sometimes, however, Rw

is signi�cantly higher than Rl. This is the case,
when reused text had been modi�ed extensively,
leading to many di�erent lines (and a lower Rl),
but still remaining many equal words (leading to
a higher Rw).

6 Results

TEX, MetaFont, MetaPost, and DVItype op-
erate on various common �les, e.g., device inde-
pendent �les, font metric �les, log �les. Some
kind of similarity is certainly to be expected.
Browsing the sources of TEX and MetaFont in
book form [9, 11] reveals many chapters with
the same title. Similarities in these chapters
are obvious even from just turning the pages.
MetaPost is a direct derivative from Meta-
Font. This should show the highest degree of
reuse among them all. In the following descrip-
tion of the results a! b means the reuse of a in
b, i.e., how much of a had been reused in b.

� TEX ! MetaFont
TEX contains about 21,500 lines and 122,000
words. MetaFont consists of about 20,500
lines and 110,000 words. TEX and Meta-
Font are divided into 55 and 52 chapters,
respectively. 26 of these chapters have the
same title in both systems. These chap-
ters contain 33.4 percent of the lines of the
TEX system. 14.3% of the lines and 21.5%

of the words of TEX are reused in Meta-
Font. Of the 26 chapters with the same ti-
tle 42.8% of the lines and 60.7% of the words
are reused in the corresponding chapters in
MetaFont.

� DVItype ! TEX
Out of 15 chapters in DVItype six appear
with the same title in TEX. The descrip-
tions of the character set and the device-
independent �le format have a reuse factor
of about 70 percent. These two chapters
comprise a quarter of DVItype.

� MetaFont ! MetaPost
The highest reuse factor had been deter-
mined in comparing MetaFont and Meta-
Post. Even though the size of about 20,000
lines and more than 100,000 words, more
than 60 percent of MetaFont are reused
in MetaPost. MetaFont has 52 chap-
ters, MetaPost has 49. 44 chapters appear
in both systems with the same title. A to-
tal of 24 chapters has a reuse factor higher
than 90 percent. Except for three chapters
all the other chapters have a reuse factor
higher than 70 percent.

Tables 1, 2, and 3 summarize the results. In
Table 1 the number of lines and words are given
for the subject systems. Table 2 contains the
reuse factors yielded by comparing the entire
systems. In Table 3 only similar chapters are
considered. Column Portion speci�es how much
these chapters contribute to the whole system.
For example, the chapters common to TEX and
MetaFont contribute 33.4% to TEX. Consider-
ing only these chapters for the comparison yields
a line reuse of 42.8% and a word reuse of 60.7%
(as opposed to 14.3% and 21.5% shown in Ta-
ble 2).

5

System Lines Words

TEX 21,541 122,137
MetaFont 20,481 109,307
MetaPost 20,460 104,375
DVItype 2,136 13,606

Table 1: Line and word lengths

Systems Rl Rw

TEX ! MF 14.3 % 21.5 %
dvi ! TEX 18.8 % 32.1 %

MF ! MP 63.4 % 67.0 %

Table 2: Reuse Factors

The results clearly demonstrate that software
reuse had been applied to both code and docu-
mentation. This was done primarily by code and
documentation scavenging. There was a certain
degree of reuse that we had expected in the re-
sults. We did not expect the di�erences between
line and word reuse. These di�erences are due to
the fact that extensive word-smithing on many
segments of code and documentation had been
done to present information in the best possible
manner.

Each system was created as a self-contained,
homogeneous work. To achieve this, reused parts
from other systems sources were reworked and
adapted carefully. Such adaptations included
changing the system name (e.g., TEX to Meta-
Font), changing the word order or modifying

Systems Portion Rl Rw

TEX ! MF 33.4 % 42.8 % 60.7 %
dvi ! TEX 34.9 % 53.8 % 75.2 %
MF ! MP 80.8 % 78.5 % 85.1 %

Table 3: Reuse Factors of similar Chapters

single words for better layout results. Often,
these adaptations were real improvements like
the addition of index entries (which may also
have been useful in the original.) This is white-
box reuse at its best.

The following question arises, though: \How
can we achieve the demonstrated degree of reuse
and adaptation without scavenging code and
documentation?" Our answer to that question
is simple: \Not at all." We argue that writing
and documenting a software system from scratch
will lead to di�erent program and documenta-
tion structure than building it by reusing exist-
ing components. The intent to deliver reusable
components as a by-product of a \build it from
scratch" model also leads to a di�erent structure
(at least to more self-contained parts of the sys-
tem.)

Object-oriented development systems were
not readily and widely available at the time
TEX was built. If the TEX systems had
been implemented in an object-oriented man-
ner, many classes would likely have been reused
not by direct modi�cations but by building sub-
classes. Documentation needs a similar way to
be adapted and reused without direct modi�ca-
tion, e.g., by means of object-oriented documen-
tation [17].

7 Documentation Inheritance

Systematic reuse of documentation can be
achieved by means of [18]

� de�nition of a common structure for certain
documentation parts,

� extraction of common information for sev-
eral documentation parts,

6

documentation of dbxtool
#

dbxtool

dbx

N
a
m
e

S
y
n
o
p
si
s

A
va
il
a
b
il
it
y

D
es
cr
ip
ti
o
n

O
p
ti
o
n
s

U
sa
g
e

E
n
v
ir
o
n
m
en
t

F
il
es

S
ee
a
ls
o

N
o
te
s

B
u
g
s

Figure 2: Documentation Inheritance

� reuse and extension/modi�cation of existing
documentation (possibly without the need
of direct modi�cation), and

� de�nition of various views for di�erent kinds
of readers, e.g., casual users and professional
users.

The key concept in accomplishing this is doc-
umentation inheritance. As with object-oriented
source code, a documentation unit should inherit
the documentation of its base unit. A section
is a portion of documentation text with a ti-
tle. The sections can be de�ned by the program-
mer/technical writer and used for inheritance in
the same way as methods. Similar to methods,
sections are either left unchanged, removed, re-
placed, or extended.
Fig. 2 contains the structure of the documen-

tation of the Unix tools dbx and dbxtool. The
documentation of dbx consists of eleven sections;
dbxtool has six documentation sections. dbxtool

inherits the sections Availability, Usage, Files

and Notes. It has its own sections on Name, Syn-
opsis, Description, Options, and See also. The
section Environment is not applicable to dbxtool

and thus is hidden. This is indicated by a hori-

zontal line rather than an arrow in the �gure.
The bugs of dbx are also available in dbxtool,
therefore the Bugs section had been extended.
For more details on this kind of documentation
inheritance see [17, 18].
Inheritance can be applied to pure documen-

tation, i.e., documentation without any source
code, to systems documentation of conventional
software systems, and to systems documentation
of object-oriented software systems. The exam-
ple in Fig. 2 gives a glimpse of how documenta-
tion can be reused in the manual page domain,
i.e., in user documentation of tools and applica-
tions.
TEX, MetaFont, MetaPost, and DVItype

which have been implemented/documented as
literate programs give an excellent example of
where documentation could be reused to a big
extent. We have found out that a lot of im-
plicit, ad-hoc reuse had been done. This ad-hoc
reuse can easily be made explicit by using object-
oriented concepts for documentation. The re-
sults of this investigation strongly motivated us
in providing the prerequisites of explicit docu-
mentation reuse.
In order to realize these ideas we have taken

an existing literate programming tool and aug-
mented it with the presented features. Noweb
is a literate programming tool like Web. It has
been designed to be as simple as possible but
meet the needs of literate programmers. Noweb's
primary advantages are simplicity, extensibility,
and language independence. The primary sac-
ri�ce relative to Web is that code is not pret-
typrinted and that indexing is not done auto-
matically [16]. More details on this prototype
implementation are given in [3].
Object-oriented literate programming is the

careful design of source code and documentation
of self-contained components (functions, mod-

7

ules, classes, etc.) that allow their systematic
reuse with object-oriented concepts like inher-
itance. Still, many problems remain open for
future research. For example, so far we con-
sider object-oriented techniques only when weav-
ing the documentation, but not when tangling
source code, because object-oriented program-
ming languages provide these techniques any-
way. It would be interesting to determine the
usefulness of applying object-oriented techniques
to modular programming languages. Another is-
sue not addressed so far is multiple inheritance.
Experience will show whether there is a need for
multiple inheritance for documentation similar
to source code.

8 Conclusions

We have investigated some TEX systems for
reuse. TEX and its related systems are imple-
mented as literate programs. Thus, reuse not
only means reuse of source code but also of doc-
umentation. Comparing two software systems
by �rst determining chapters or �les where sim-
ilarities can be expected and then by doing au-
tomatic comparison based on lines and words
proofed to be quite useful in determining the
amount of white-box reuse.

The systems under consideration have been
implemented in the conventional way, i.e., from
scratch by scavenging existing documentation
and code. The amount of ad-hoc reuse, that had
been done, turned out to be surprisingly high.
Also, the di�erent results achieved by compar-
ing lines and words indicate, that any reused text
had been carefully edited and adapted. Thus, a
lot of (successful) ad-hoc reuse had been done by
Knuth (and others), but no attention had been
directed to providing, and reusing, reusable com-

ponents.
We suggest the application of object-oriented

techniques to documentation and especially to
literate programs in order to bene�t from the
ease of extension and modi�cation. Documenta-
tion inheritance provides the technical prerequi-
site for reuse. However, like source code, doc-
umentation must be designed (and written) for
reuse.

References

[1] Braun Christine: \Reuse," in [14],
pp. 1055{1069, 1994.

[2] Childs Bart and Sametinger Johannes:
\Literate Programming from the Viewpoint
of Reuse," to be published, 1996.

[3] Childs Bart and Sametinger Johannes:
\Literate Programming and Documenta-
tion Reuse," 4th International Confer-

ence on Software Reuse, Orlando, Florida,
pp. 205{214, 1996.

[4] Goldberg Adele and Rubin Kenneth S.:
Succeeding with Objects: Decision Frame-

works for Project Management, Addison-
Wesley, 1995.

[5] Hobby John: \A user's manual for Meta-
Post," Computing Science Technical Re-
port No. 162, AT&T Bell Laboratories,
April 1992.

[6] Hobby John: \Introduction to Meta-
Post," EuroTEX '92 Proceedings, pp. 21{
26, September 1992. TEX Users Group.

[7] Knuth Donald E. and Fuchs David R.:
"TEXware," Stanford Computer Science
Report 1097, April 1986.

8

[8] Knuth Donald E.: The TEX Book, Volume
A of Computer & Typesetting, Addison-
Wesley, 1986.

[9] Knuth Donald E.: TEX: The Program,

Volume B of Computer & Typesetting,
Addison-Wesley, 1986.

[10] Knuth Donald E.: The MetaFont Book,

Volume C of Computer & Typesetting,
Addison-Wesley, 1986.

[11] Knuth Donald E.: MetaFont: The Pro-

gram, Volume D of Computer & Typeset-
ting, Addison-Wesley, 1986.

[12] Knuth Donald E.: Literate Programming,

Stanford University Center for the Study of
Languages and Information, Leland Stan-
ford Junior University, 1992.

[13] Krueger Charles W.: \Software Reuse,"
Computing Surveys, Vol. 24, pp. 131{183,
June 1992.

[14] Marciniak J. (Editor-in-Chief): Encyclope-
dia of Software Engineering, Vol. 1, John
Wiley & Sons, 1994.

[15] Mili Hafedh, Mili Fatma, and Mili Ali:
\Reusing Software: Issues and Research Di-
rections," IEEE Transactions on Software

Engineering, Vol. 21, No. 6, pp. 528{562,
June 1995.

[16] Ramsey Norman: \Literate programming
simpli�ed," IEEE Software, Vol. 11, No. 5,
pp. 97{105, September 1994.

[17] Sametinger Johannes: \Object-Oriented
Documentation," ACM Journal of Com-

puter Documentation, Vol. 18, No. 1, pp. 3{
14, January 1994.

[18] Sametinger Johannes: \Reuse Documenta-
tion and Documentation Reuse," TOOLS

Europe '96, Paris, France, pp. 17{28,
Feb. 1996.

9

