
Software—Concepts and Tools (1995) 16: 170–182 Software—Concepts and Tools
© Springer-Verlag 1995

Reverse Engineering by Visualizing and Querying

Alberto Mendelzon
Computer Systems Research Institute, University of Toronto, Toronto M5S 1A1, Ontario, Canada
e-mail: mendel@db.toronto.edu

Johannes Sametinger
Department of Computer Science, Texas A&M University, College Station, Texas 77843-3112, USA
e-mail: jsam@cs.tamu.edu

Abstract . The automatic extraction of high-level
structural information from code is important for both
software maintenance and reuse. Instead of using special-
purpose tools, we explore the use of a general-purpose data
visualization system called Hy+ for querying and
visualizing information about object-oriented software
systems. Hy+ supports visualization and visual querying
of arbitrary graph-like databases. We store information
about software systems in a database and use Hy+ for
analyzing the source code and visualizing various
relationships. In this paper we demonstrate the use of Hy+
for evaluating software metrics, verifying constraints, and
identifying design patterns. Software metrics can be used
to find components with low reusability or components
that are hard to understand. Checking the source code
against constraints can help bring design flaws to light,
eliminate sources of errors, and guarantee consistent style.
Identifying design patterns in a software system can reveal
design decisions and facilitate understanding the code. We
conclude that the flexibility achieved by using a general-
purpose system like Hy+ gives this approach advantages
over special-purpose reverse-engineering tools, although
specialized tools will have better performance and more
knowledge of specific software engineering tasks.
Combining the advantages of the two approaches is an
interesting challenge.

Keywords : reverse engineering, visualization, query,
software metrics, constraints, design pattern, object-
oriented programming, database, Hy+, GraphLog

1. Introduction

Program comprehension plays a major role in software
maintenance. The increased reuse of software
components, facilitated and supported by object-
oriented programming, makes program comprehension
even more important as existing software must be
understood during both development and maintenance.

Very often the only information a programmer can
trust is the source code. It is the only accurate,
complete and up-to-date representation of a program.
However, source code listings are hardly suited to
represent design decisions, global system structure or
interactions among components. The extraction of
high-level structural information from code, called
reverse engineering [2], is important for both software
maintenance and reuse.

Analyzing the source code can help to find
components with certain properties, to find possible
bottlenecks and weak points of a system, to identify
components and their relationships, and to better recon-
struct the chain of reasoning of the original authors.
Software metrics can be used to find components with
low reusability or components that are hard to
understand. Checking the source code against various
constraints can help to bring design flaws to light, to
eliminate sources of errors, and to guarantee consistent
style. Identifying design patterns in a software system
can reveal important facts about the design.

A large amount of information together with
complex relationships among various objects
characterizes most of today’s software systems. Tool
support is indispensable for successful analysis. Instead
of developing several tools for the various activities
mentioned above, we have used a general-purpose tool
for visualizing and querying software structure. Besides
saving the effort of developing separate tools, this has
the advantage that a general-purpose tool can easily be
extended for future applications. We chose the Hy+ and
GraphLog system [13] because of its power and high
flexibility. In this paper we demonstrate the power of
visualizing and querying in the reverse engineering
domain by applying the Hy+ visualization system and
GraphLog visual query language to the specification of
metrics, constraints and design patterns. In Section 2

Mendelzon, Sametinger: Reverse Engineering by Visualizing and Querying 171

we introduce Hy+ and GraphLog. In Section 3 we
discuss software metrics, in Section 4 constraints, and
in Section 5 design patterns. Section 6 defines the
database, and Section 7 offers conclusions.

2 . Hy+ and GraphLog

The Hy+ system is a generic tool for visualizing
objects and relationships among them. Hy+ supports a
novel visual query language called GraphLog. Hy+
provides a user interface with extensive support for vi-
sualizing structural (or relational) data as hygraphs [8],
an extension of graphs inspired by Harel’s higraphs
[12]. For simplicity, in this paper we only use standard
directed graphs, a subset of the hygraph formalism. The
Hy+ system supports visualization of the actual
database instances, not just diagrammatic representa-
tions of the database schema. The use of a query
language is essential in making this approach scale up
to large database instances. This is accomplished in
two ways.

First, Hy+ allows the user to define new relation-
ships by using queries. This is the traditional way of
using database queries: the newly defined relationship
either gives a direct answer to a user question, or it
provides a new view on the existing data. The derived
data can later be presented visually by the system. In
this way, users can abstract irrelevant details or
aggregate information into visualizations of
manageable size.

Second, in Hy+ the user can employ queries to de-
cide what data to show. The user can selectively restrict
or filter [8] the information to be displayed. Selective
data visualization can be used to locate relevant data, to
restrict visualization to interesting portions of the data
(that is, to decide which data to present), and to control
the level of detail at which the data is presented (that is,
to choose how to see the data).

Hy+ supports a visual pattern-based notation for the
specification of queries. The patterns are expressions of
the GraphLog query language. We give a short intro-
duction to GraphLog here; a full definition can be
found in [5, 6]. In the remainder of the paper we intro-
duce the basic functionality of GraphLog through ex-
amples. These examples demonstrate the application of
GraphLog to compute software metrics, verify con-
straints, and find design patterns in a database describ-
ing the structure of an object-oriented software system.

Hy+ databases are graphs whose nodes are labeled
with ground terms and whose edges are labeled with
predicates. Database instances of the object-oriented or
relational model can be visualized easily as graphs. For
example, an edge labeled p(X) from a node labeled T_1
to a node (containing a node) labeled T_2 corresponds
to the tuple (T_1, T_2, p(X)) of relation p in the rela-
tional model. No key is associated with the relation p.

For example, suppose we have a database containing
all classes and methods of some software system we
want to explore. This database can be viewed with Hy+
as a graph in which the nodes represent software
objects such as classes and methods and the edges
represent relationships. A node is labeled with a
Prolog-like term in which functors are used for typing
purposes. For example, a method node might be
labeled with a two-place functor method(Name, Class)
giving the name of the method and the name of the
class in which it appears. Methods with the same name
appearing in different classes will be represented by
different nodes. Edges are labeled by predicates of the
form p(F1, ..., FN), where the Fi’s are terms. The
meaning of a predicate p(F1, ..., FN) between a node
labeled F and a node labeled G is the literal p(F, G, F1,
..., FN). The frequent case where relationships are
binary and have no extra attributes is represented by
labeling the edge with just the predicate name p. For
example, each link in the inheritance hierarchy is
represented by an edge labeled superclass between two
classes. Additionally, a method edge exists to connect
classes and their methods. Chapter 6 describes in more
detail the contents of the database and how it is
automatically constructed from the system’s source
code. Hy+ provides different ways of visualizing such a
graph and manipulating the visualizations; more
information on this functionality can be found in [8].
Figure 1 shows a small portion of such a database.

GraphLog queries are sets of graphs whose nodes are
labeled with terms, and each edge is labeled with an
edge label. Node labels can be more general than those
in database graphs because they can include variables;
edge labels may include not only variables but also
regular expressions. An edge in a query graph may
match a path in the database graph, where the labels
along the path are constrained by the regular
expression.

There are two types of queries: define and filter. In
both, the query hygraph represents a pattern; the query
evaluator searches the hygraph designated as the
database for all occurrences of that pattern. The
difference between the two types of queries stems from
their interpretation of distinguished elements, explained
below.

A hygraph pattern in a define query (which is
enclosed in a defineGraphLog box) must have only one
distinguished edge labeled by a positive literal. The
meaning of the [define] query hygraph is to define the
predicate in this distinguished literal in terms of the
rest of the pattern. The semantics of define queries are
given by a translation to stratified Datalog [5]. Each
define graph translates to a rule with the label of the
distinguished edge in the head and as many literals in
the body as there are nondistinguished edges in the
graph. Additional rules may be necessary to define the

172 Mendelzon, Sametinger: Reverse Engineering by Visualizing and Querying

Figure 1. Visualization of a sample database.

Figure 2. Define query. Figure 3. Filter query.

predicates of nondistinguished edges that are labeled by
regular expressions. The generation of these additional
rules is based on the structure of the regular expression.
Figure 2 shows how the relation subclass can be
defined using the relation superclass.

A graph pattern in a filter query (which is enclosed
in a showGraphLog box) may have several
distinguished nodes and edges. The meaning of a filter
query graph is: for each instance of the pattern found in
the database, retain the database objects that match the
distinguished objects in the query. Given a graph in a
showGraphLog box, for each distinguished edge, we
generate a set of define queries that match the distin-
guished object, that is, when they are evaluated they
determine all instances of the edge that exist in the por-
tions of the database that match the hygraph pattern.
The query evaluator evaluates each of the define queries
in turn. The results are combined, and the answer to the
filter query is found. Figure 3 shows a very simple
filter query.

GraphLog can collect multisets of tuples and
compute aggregate functions on them. The aggregate
functions supported in GraphLog are the unary

operators MAX, MIN, COUNT, SUM and AVG. They
are allowed to appear in the arguments of the
distinguished relation of a define query as well as in its
incident nodes. As an example of the use of
aggregation in GraphLog, consider the defineGraphLog
box of Figure 4. It defines the relation coupled
between two classes. The relation coupled (C1,
C2, N)) is defined between C1 and C2 when class
C1 has a total of N variables of type C2.

3 . Metrics

Measures of the size and complexity of software
systems are helpful for estimating costs and schedules,
improving software quality, and anticipating and
reducing future maintenance requirements [1]. Software
managers desire software metrics for project planning
and evaluation and for use in enforcing quality
assurance.
In the reverse engineering process, extracting measures
from an existing software system can help in finding
candidates for:

Mendelzon, Sametinger: Reverse Engineering by Visualizing and Querying 173

Figure 4. Aggregate function in a query.

Figure 5. Filtering methods with ovCount>20.

• components with low reusability
Classes with a large number of methods are more
likely to be application-specific and thus less
reusable than others. If this is not the case, they
might be candidates for redesign.

• components that require extensive testing
Errors in leaf classes are more local than in classes
with many children (subclasses). The greater the
number of code lines in a method, the greater is the
probability of an error in that method.

• components that are hard to understand
Encapsulation is important for hiding details and
prohibiting unallowed access to the details of
certain components. Inter-object coupling should be
kept to a minimum. Understanding and testing
highly coupled classes tends to be more difficult.

Metrics oriented towards object-oriented systems can
also aid in evaluating the degree of object-orientation.
This becomes important in light of the need for many
conventional programmers to switch to object-oriented
thinking.

Environments for the evaluation of metrics do exist.
For example, ATHENA allows easy implementation of
design and code metrics with a specially designed
specification language [19]. We did not try to support
the measure of well-known metrics like McCabe or
Halstead. Their benefit in object-oriented systems is
less important than in conventional ones because the
complexity of these systems shifts from statements and
functions to components and their interactions.

With GraphLog’s ability to specify arithmetic
expressions in queries, it is a rather straightforward
process to evaluate various metrics. We will

demonstrate on a simple example how easy it is to
extract measures from (both object-oriented and
conventional) software systems.

In object-oriented systems, dynamic binding
complicates the comprehension process because send-
ing a message can cause the invocation of many
methods. Suppose we want to know all methods (and
their corresponding classes) where a call can result in
more than, say, 20 different method calls; i.e., we want
to know whether a certain method is overridden in more
than 20 subclasses, because tracing the control flow in
that case is understandably difficult. Let us see how we
could find such methods using Hy+ and GraphLog.

To find methods that are overridden in more than 20
subclasses, suppose first that our database contains an
edge labeled ovCount that connects each method M to a
node labeled with the number of methods that override
M. Then all we need to do is filter out from the graph
those methods connected by an ovCount edge to an
integer greater than 20. Figure 5 shows a filter query
that does this.

174 Mendelzon, Sametinger: Reverse Engineering by Visualizing and Querying

Figure 6. Result of the ovCount query.

Figure 7. Extended filter query.

Recall that a filter query is interpreted as a graph
pattern; for each instance of the pattern found in the
database, the distinguished (bold) objects are retained
and displayed as part of the answer. In this example,
the pattern requires methods M that are overridden by a
number NR of methods, where NR>20; the distin-
guished object is just the ovCount edge. The answer,
shown in Figure 6, will be a set of edges connecting
all methods of interest to the count of methods that
override them.

Instead of just showing how many times each
method is overridden, we would probably be interested
in knowing in which classes the overrides occur. To
see this, we simply add to the filter query another
method node M2 and a distinguished overrides edge
from M2 to M. To avoid a too complex answer for this
paper, we additionally specify the method name Draw
of class VObject instead of M in Figure 7, thus
restricting the answer to overriding methods of this
particular method. The answer, shown in Figure 8, will
then show all the classes where each of the methods of
interest is defined or redefined. In this case, we can see
that method Draw of class VObject is overridden 32
times (ovCount). On the left side all the overriding
methods are listed.

We could add even more information by adding a
separate showGraphLog box requesting that the
subclass hierarchy also be displayed, as shown in the

left box of Figure 9. C1 is a direct or indirect subclass
of class CompositeVObject; this relationship is
indicated by the use of transitive closure in the regular
expression subclass+. The transitive closure is drawn
dashed to indicate that it may match a path of arbitrary
length in the database, not just an edge. For the
resulting nodes the subclass relationship is shown in
the answer (indicated by the distinguished subclass
relation to C2). And again we restrict the query to a
certain subclass hierarchy (class CompositeVObject) in
order to obtain an answer that is not too complex to be
clearly shown in this paper. The answer is in Figure
10.

Mendelzon, Sametinger: Reverse Engineering by Visualizing and Querying 175

Figure 8. Result of filter query in Figure 7.

Figure 9. Filter query for additionally displaying the subclass hierarchy.

Unfortunately, the relations overrides and ovCount do
not exist in our database. But with GraphLog we can
easily define new relations based on existing ones.
(This provides the flexibility to define arbitrary
metrics.) Thus, in Figure 11 we define ovCount as
being the number of methods M1 that override M2.
Note that this is a define query. The distinguished
object, i.e., the one being defined, is the ovCount
relationship. This query also shows the use of
aggregation, in this case to count, for each method M2,
how many methods M1 override it.

Finally, we define the relation overrides. A method
in class C1 overrides another method in class C2 if
both have the same name (without taking parameters

into account), and if C1 is a superclass of C2. This fact
is expressed by drawing two classes (see Figure 12),
each with a method named M. C2 is a direct or indirect
superclass of C1, which is indicated by the use of
transitive closure in the regular expression superclass+.
And, of course, C1 and C2 have to be different. This is
ensured by drawing a non-equals edge between them.
The crossing-out of an edge is GraphLog’s general
mechanism to indicate negation. As a result of the
query described above, we obtain the graph shown in
Figure 7. The methods are specified by method name
and class name. Thus the methods PrintOn of class
EvtHandler and ReadFrom of class VObject are
overridden by 28 methods, and so on.

176 Mendelzon, Sametinger: Reverse Engineering by Visualizing and Querying

Figure 10. Result of the query specified in Figure 9.

Figure 11. Definition of the relation ovCount. Figure 12. Definition of the relation overrides.

Examples of metrics that can be specified in a very
similar way include:

• methods per class
• depth of inheritance
• number of children (subclasses)
• coupling between objects
• response for a class
• lines of code (for classes, methods, functions, files)
• number of methods (for clients, heirs, friends)
• number of (instance) variables
• number of strongly coupled classes

These metrics are targeted at the source code only. It is
often argued that monitoring metrics after coding is far
too late in a software project. Hy+ enables shifting the

focus to other software artifacts, e.g., requirement
specification. However, it has not been our goal to
provide a general software metrics tool with Hy+, but
rather to use its flexibility for program comprehension
and reverse engineering purposes.

We have used Hy+ to extract measures from a large
C++ class library in order to easily find out things
listed above. The library (application framework) ET++
[20] was constructed by experienced programmers.
Therefore it was not our goal to detect flaws but rather
to support the comprehension process by visualizing
the system structure and to give prominence to classes
and methods with certain characteristics. On the other
hand, querying student projects helped in locating
sources of trouble, which were then discussed in order
to improve the design and/or eliminate existing flaws.

Mendelzon, Sametinger: Reverse Engineering by Visualizing and Querying 177

Figure 13. Definition of classes with lower case letters.

4 . Constraints

Most programming languages do not allow expression
of many important constraints about our software
systems. Such constraints contain design,
implementation and stylistic conventions and are
necessary to achieve improvement in software quality
attributes like reliability, maintainability and
readability. Automatic detection of violations can help
to ensure style consistency across project or company
and thus to eliminate a variety of sources of troubles.
This is important as well in software maintenance and
reverse engineering [3].

There are different ways to detect constraint
violations. Assertions or annotations are available for
various languages like Ada, Eiffel and C++. CCEL,
the C++ Constraint Expression Language, is a very
powerful language that allows users to specify and
automatically detect violations of C++ constraints
[15].

The following constraints are taken from [3, 14,
15], where they are explained in more detail. We list
some examples for design, implementation, and
stylistic constraints.

Design Constraints
Design constraints are not specific to a certain pro-
gramming language. They can, however, be specific to
certain libraries and/or applications. Typical examples
are:

• Subclasses must not redefine inherited nonvirtual
methods.

• A method in a certain class must be overridden in
all subclasses of that class.

• A class should not have any public data members
(encapsulation).

• Structures in C++ should not be used like classes;
i.e., they should have only public members, no
methods and no base class.

Implementation Constraints
Implementation constraints are design-independent.
Violations against them can lead to incorrect program
behavior. Thus it makes sense to have a closer look at
locations where implementation constraints are
violated. Typical examples are:

• An assignment operator and a copy constructor
must be defined for classes that declare a pointer
member.

• Every base class should declare a virtual destructor.

• Every class with a constructor should declare a
destructor and vice-versa.

• If there exist multiple public inheritance paths from
a derived class to one of its base classes, then all
these paths should be declared as virtual.

Stylistic Constraints
Some set of naming conventions are adopted in almost
all software projects. They are intended to increase the
readability of software systems. Typical examples are:

• Class and method names must begin with an upper
case letter.

• Constants and global variables must begin with the
lower case letters ‘c’ and ‘g’, respectively.

• Public, protected and private members of a class
must be specified in this order.

• Variable (or any other) names may not contain any
underscore characters (“_”) or two consecutive
underscore characters (“__”).

The power of Hy+ and GraphLog depends on the
database being queried. Basically, we can check against
all constraints that can be specified, e.g., with CCEL.
However, we must admit that for efficiency reasons we
do not store as much information as would be
necessary to compete with CCEL. But in contrast to
CCEL we graphically define queries in order to find
violations against various constraints. Additionally, we
do not need a special language and a separate, constraint
specific tool. We are also currently working on
investigating the dynamic behavour of object-oriented
software systems. Whereas CCEL is limited to
checking static information, we will be able to process
dynamic information as well.

Finding stylistic constraints is rather trivial because
in GraphLog we can use regular expressions. Figure 13
shows how to simply find classes which start with a
lower case letter and therefore violate one of the
stylistic constraints mentioned above.

A more complex, but still simple example is how
to find classes that redefine nonvirtual methods (design
constraint). For this purpose we need the relation

178 Mendelzon, Sametinger: Reverse Engineering by Visualizing and Querying

Figure 14. Definition of the relation overridesVirtual.
Figure 15. Definition of methods that override

nonvirtual methods.

overrides defined in Figure 12. In C++ it is sufficient
(and necessary) that the first method in the inheritance
path be declared as virtual. We define the relation
overridesVirtual between a method M3 and a method
M2 if M3 overrides M2 and M2 overrides another
method M1 which is virtual (see Figure 14). The
attributes node contains information about a method;
virtual(yes) indicates that the method has been defined
as virtual.

Next, we can simply define the relation
overridesNonVirtual (see Figure 15). Method N
overrides a nonvirtual method M when N overrides M
and the relation overridesVirtual does not hold between
M and N.

We have been rather successful in checking student
projects against constraint violations. This is not
surprising. For example, our students liked to have
public data members, hardly ever implemented a copy
constructor or an assignment operator, and sometimes
failed to clean up their systems with destructors. This
has become better now, because we explicitly mention
these points in the lectures.

However, one of the amazing facts was that there
were constraint violations in the framework ET++ that
could lead to incorrect program behavior, although the
framework had been in use by many programmers for
years. We found two classes with nonvirtual methods
that were overridden in subclasses. Additionally, in
ET++ classes, assignment operators are not defined.
However, this is not a problem as long as all objects
are declared as pointers. Nevertheless, users of the
framework could run into troubles.

5 . Design Patterns

Reverse engineering involves the identification of
groups of building blocks like modules and
subsystems. For example, the Rigi system provides
support for subsystem structure identification [16]. In
object-oriented systems the identification of modules,

i.e., classes, becomes obsolete. Thus we tried to go
one step further by identifying design patterns in a
subject system. With patterns, piecework is standard-
ized to larger units. For example, a symphony consists
of single notes, but various patterns (which are well-
known to composers and other musicians) express the
design of a piece of music. Software design patterns
capture the intent behind the design of a software
system. For example, a special arrangement of classes
and/or objects might recur frequently in order to avoid
reuse errors. A subsystem is a set of classes with high
internal cohesion and low coupling to classes outside
the subsystem. Design patterns can correspond to
subsystems, but often they have a finer level of
granularity.

Design patterns have been identified to avoid
dependence on [10, 11]:

• classes when creating objects,
• particular operations,
• specific representation or implementation,
• particular algorithms, and
• subclassing as an extension mechanism.

Examples of such patterns are:

• Chains of responsibi l i ty
create hierarchies of responsibilities, typically
arranged from more specific to more general,
among objects for handling a request.

• Factory methods
allow base classes to create instances of subclass-
dependent objects.

• Flyweights
provide stateless objects that can be shared.

• Glue objects
provide a higher level of encapsulation for
subsystems by providing an interface for clients to
access services of and objects in a subsystem.

• Solitaires
are classes that have only one instance (e.g., to
access unique global services and variables).

Mendelzon, Sametinger: Reverse Engineering by Visualizing and Querying 179

Figure 16. Definition of pGlue.

Figure 17. Definition of subclassHasRefOutside and hasRefOutside.

For more patterns and more details, see [4, 10, 11, 17].
Research work on design patterns is still going on and
it is not yet clear which patterns will become widely
accepted. But they promise to be one further step in
increasing the abstraction level in software
development. They can help both in improving the
development process and in recapturing design
decisions behind the structure of certain parts of a
system.

Recapturing design decisions is the crucial point in
reverse engineering. This can be done much more
easily if existing design patterns can be identified in a
given architecture. Design patterns could be made
visible in software systems by special language
constructs or special conventions for comments, i.e.,
annotations. But such constructs or conventions will
not be available as long as the fundamentals of the
patterns are not clear. Besides, this would help only for
identifying patterns in future software systems.

Many of the patterns published so far do not have a
clear, identifiable structure. Most of them are defined
by various inheritance and use relations. We tried to
find some heuristics in order to find possible candidates
for various patterns. Sometimes naming conventions
are the only way for successful identification. The
following heuristics can be used to identify the patterns
presented above:

• Chains of responsibi l i ty
Classes with Handler (e.g., EvtHandler) or Delegate
in their name or classes that maintain a reference to
objects of the same class might be candidates for
responsibility chains.

• Factory methods
Possible factory methods are virtual methods
containing the words Make or Create, e.g.,
DoMakeWindow, MakeMenus, CreateScrollbar.

• Flyweights
Any classes without state or only minimal state
(<3 instance variables) are possible flyweights.

• Glue objects
We can look for subsystems that have no references

to the outside world and vice versa (i.e., a class’
subclasses have no references to classes other than
themselves, and classes outside this subtree have no
references to any of these subclasses.

• Solitaires
We regard all classes that have at least one static
method and/or variable as possible solitaires.

GraphLog makes it very simple to define queries in
order to find possible design patterns with the
heuristics described above. For example, the query for
finding factory methods is rather trivial; all we have to
do is to look for virtual methods containing the word
Make or Create. This is easy because GraphLog lets
the user specify regular expressions.

Let us demonstrate how to easily specify a more
complex query to find subsystems that have no outside
references and vice versa. Figure 16 defines the relation
pGlue, which holds for classes that have no subclasses
with a reference outside the subtree of the class
(relation subclassHasRefOutside) and that lack classes
outside the subtree with a reference within the subtree
(relation notSubclassHasRefInside). The superclass
relations to a superclass and from a subclass indicate
that we do not want to check root and leaf classes.

Next, we define the relation subclassHasRefOutside,
which is true if any of the subclasses has a reference
outside the class. For this purpose we use another
relation, hasRefOutside (see Figure 17).

180 Mendelzon, Sametinger: Reverse Engineering by Visualizing and Querying

Figure 18. Definition of notSubclassHasRefInside.

Figure 19. Factory methods and the inheritance tree.

The relation isOfType had been defined in the database
already. It simply indicates that the type of a variable is
of a certain class. The relation notSubclassHasRefIn-
side is very similar to subclassHasRefOutside (see
Figure 18).

The output of a GraphLog query can be modeled
very flexibly as well. Besides simply showing the
resulting methods (and corresponding classes), the
result can, for example, be embedded in the inheritance
tree with all classes. Figure 19 shows part of the
inheritance tree with factory methods. On the screen
different colors facilitate distinguishing between the
relations superclass and factoryMethod.

We must stress that the results yielded by the design
pattern queries neither contain all patterns in a software
system nor contain only patterns. The heuristics used
are helpful in finding possible candidates for certain
patterns; however, the final decision can be made only
by looking at the source code.

We tried to identify design patterns in the
application framework ET++. Although we have not
been able to define heuristics for all patterns, we were
able to extract useful information for the compre-
hension process. For example, many factory methods
could be identified that even programmers who were
familiar with the inspected class library were not aware
of. Factory methods are available not only for
application, document and dialog classes, which are
used by application programmers, but also for system,
window and printer classes, which need not be extended
in order to build applications. In student projects we
have never found any of these design patterns. This
stems from the fact that they are not experienced
enough to make good (excellent?) designs, their
projects are rather small, and they know nothing about
these patterns because they are busy learning more
fundamental things.

The GraphLog queries we used so far have been
tailored to the application framework ET++. More
research work has to be done on the design patterns
and, subsequently, on the heuristics and queries in order
provide users with a powerful tool for extracting design
decisions from a given software system.

6 . Defining the Database for Reverse-
Engineering Purposes

Information about a software system can be obtained
by doing syntax and semantics analysis and storing
everything a compiler has to know about a system,
i.e., structural information (classes, methods) as well

Mendelzon, Sametinger: Reverse Engineering by Visualizing and Querying 181

Hy+

GXF

Visualizing and
Querying Tool

Programming
Environment

C++
source code

DOgMA

Figure 20. Architectural overview.

as detailed information about the definition and the use
of any identifiers. One possible way to obtain this
information is to extend any tool that has information
about a software system, e.g., a compiler or a
programming environment, in order to output the
necessary information in the desired format. We
extended the programming environment DOgMA [18]
to generate structural information in GXF format [9],
which can be read by Hy+, which stores both databases
and queries in the GXF format (see Figure 20).

We tried to keep the database very simple and reduce
the amount of information wherever possible. We tried
to find a good compromise between less information
that can be retrieved from software systems easily and
efficiently, and still useful queries that allow software
engineers to support the comprehension process.

For the queries described in this paper we used the
following information in our database:

• classes: class name, line numbers,
superclasses

• methods method name, class name,
line numbers, virtual, scope

• variables: variable name, class name,
line number, reference, scope, type

• files file name, number of lines

The number of metrics, constraints and design patterns
that can be evaluated, checked and identified,
respectively, depends on the amount of information in
the database. With the information shown above, for
example, we cannot determine the metric lack of
cohesion in methods (see [1]). Also, some constraints
listed in [14] require information about parameter types
and single statements. For example, the following
constraints on the assignment operator apply:

• Do not return a reference to *this.
• Assign a value to all data members.
• Do not assign a value to self.
• Determine that the return type must be a reference

to the class.

It is not possible to check for these constraints without
the necessary information. With little effort, however,
this and other information can be added to the database
as well. In contrast to metrics and constraints, more
information in the database would not help much in
recognizing more design patterns. To achieve better
results, we need more research work on the design
patterns themselves.

7 . Conclusion

The importance of program comprehension, the
necessity of familiarization with unknown source code,
and the need to extract information from low-level data
increases with the object-oriented programming para-
digm. The comprehension process could benefit
additionally from extending the database and finding
more valuable queries. Especially, taking dynamic
behavior into consideration could bring new insights.

Reverse-engineering activities become necessary not
only for maintenance but also for development
purposes. With Hy+ and GraphLog we have a very
flexible tool that we can use for these purposes.
Special-purpose tools—like ATHENA, CCEL and
Rigi—are custom tailored and can hardly be surpassed
in their application domains by general-purpose tools.
However, the power of Hy+ and GraphLog lies in
universality, which makes this approach more readily
applicable for future formulations of questions as well.
Additionally, the visualization and navigation features
can help in mastering the complexity of large-scale
software systems. In this papers we mainly focused on
querying features, but Hy+ also offers a lot of
functionality for adjusting the visualization of results
(e.g., using fisheye views), applying filters, etc. [7,
13]. And, even if Hy+ and GraphLog are not applicable
in certain domains for performance reasons (which
might apply when the database becomes very
extensive), they are excellent tools for evaluating
needed functionality before special-purpose tools are
built.

References
1 . Chidamber SR, Kemerer CF (1991) Towards a Metrics

Suite for Object Oriented Design. OOPSLA ‘91
Proceedings, 197-211

2 . Chikofsky EJ, Cross II JH (1990) Reverse
Engineering and Design Recovery: A Taxonomy.

182 Mendelzon, Sametinger: Reverse Engineering by Visualizing and Querying

IEEE Software, Vol. 7, No. 1, 13-17
3 . Chowdhury A, Meyers S (1993) Facilitating Software

Maintenance by Annotated Detection of Constraint
Violations. IEEE Conference on Software
Maintenance, Montréal, Canada, September 1993,
and Brown University, Technical Report No. CS-93-
37

4 . Coad P (1992) Object-Oriented Patterns. Commu-
nications of the ACM, Vol. 35, No. 9, 152-159

5 . Consens MP (1989) GraphLog: “Real Life” Recursive
Queries Using Graphs. Masters Thesis, Department of
Computer Science, University of Toronto

6 . Consens MP, Mendelzon AO (1990) GraphLog: A
Visual Formalism for Real Life Recursion.
Proceedings of 9th ACM SIGACT-SIGMOD,
Symposium on Principles of Database Systems, 404-
416.

7 . Consens M, Mendelzon A, Ryman A (1991)
Visualizing and Querying Software Structures. IBM
Canada Laboratory, Technical Report TR 74.053

8 . Consens MP, et al. (August 1994) Architecture and
Applications of the Hy+ System. IBM Systems
Journal

9 . Eigler FC (1993) GXF: A Graph Exchange Format.
Contained in [13]

10. Gamma E et al. (1993) Design Patterns: Abstraction
and Reuse of Object-Oriented Design. European
Conference on Object-Oriented Programming,
Kaiserslautern, Germany

11. Gamma E et al. (1995) Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley

12. Harel D (1988) On Visual Formalisms.
Communication of ACM, Vol. 31, No. 5,514-530

13. Mendelzon AO (1993) Declarative Database
Visualization: Recent Papers from the Hy+/GraphLog
Project. Computer Systems Research Institute,
University of Toronto, Technical Report CSRI-285

14. Meyers S (1992) Effective C++: 50 Specific Ways to
Improve Your Programs and Designs, Addison Wesley

15. Meyers S., et al. (1993) Constraining the Structure
and Style of Object-Oriented Programs. Brown
University, Technical Report No. CS-93-12

16. Müller HA, et al. (1993) A Reverse-engineering
Approach to Subsystem Structure Identification.
Software Maintenance: Research and Practice, Vol. 5,
No. 4, 181-204

17. Pree W (1995) Design Patterns for Object-Oriented
Software Development, Addison-Wesley/ACM Press

18. Sametinger J (1992) DOgMA: A Tool for the
DOcumentation & MAintenance of Software Systems,
VWGÖ, Vienna

19. Tsalidis C, et al. (1992) ATHENA: A Software
Measurement and Metrics Environment, Software
Maintenance: Research and Practice, Vol. 4, No. 2,
61-81

20. Weinand A, et al. (1989) Design and Implementation
of ET++, a Seamless Object-Oriented Application
Framework. Structured Programming, Vol. 10, No.2

