
1 of 18

Design and Implementation Aspects of an
Experimental C++ Programming Environment

J. SAMETINGER AND S. SCHIFFER
Institut für Wirtschaftsinformatik, C. Doppler Laboratory for Software Engineering

Johannes Kepler University of Linz, A-4040 Linz, Austria

SUMMARY

A good programming language alone is not sufficient for economic software pro-

duction. The programming environment has a significant influence on the producti-

vity of software engineers. Providing a programmer with information about an

object-oriented software system requires extracting information from the source

code, e.g., class, method, and variable names. We use separate structure files for

holding this information and take advantage of proven tools like make and the C

preprocessor for keeping the structure files up to date and for processing software

systems that heavily use macros.

In this paper we describe the concepts used for comfortable processing of C++ soft-

ware systems, and discuss interesting design and implementation aspects, including

structure files, the applied make mechanism, and the exploitation of the C prepro-

cessor.

KEYWORDS Programming Environment Design Implementation C++ UNIX make

C preprocessor Macros

INTRODUCTION

Large software systems comprise many thousands of lines of source code. Sequential
reading and writing is inadequate for mastering this complexity. In particular, the struc-
ture of object-oriented software systems makes it necessary to inspect many locations in
order to get the picture of the class hierarchy, of overridden methods, and so on. Simple
file browsers that were acceptable for conventional software systems are insufficient in
object-oriented programming.

Presenting structural information about complex object-oriented software systems re-
quires obtaining this information from different source files. Working on very large sy-
stems (consisting of hundreds of thousands of lines of source code) calls for a strategy
to efficiently get this information in order to provide users with both comfortable and

Design and Implementation Aspects of an Experimental C++ Programming Environment

2 of 18

fast browsing mechanisms. Additionally, obtaining structural information from C++
programs may be hindered by the macro capabilities of the language.

In the following sections we describe concepts and interesting design and implementa-
tion details of the programming environment DOgMA (see [Sam91]). Thereby, a pos-
sible way to provide a comfortable and efficient (in time and memory) environment for
object-oriented software systems written in C++ is depicted. We presume the reader has
a basic knowledge of the object-oriented programming paradigm, the C++ program-
ming language, the C preprocessor, and the UNIX make mechanism.

GOALS

Typically, object-oriented software systems are not built from scratch, but rather exi-
sting components are reused. Furthermore, component descriptions, i.e., classes, are
relatively small units, but have many interrelations with other classes. This complicates
the comprehension process, makes linear reading inadequate, and raises the need for
tools that present complex structures to the user and allow comfortable navigating
through a web of components.

Program comprehension is a major problem with software reuse. It is the most time-
consuming task. One of the most important ways to improve program comprehension is
system documentation. Thus the improvement of both program comprehension and
documentation promises a major reduction in software costs. An early version of
DOgMA, as described in [Sam91], has been developed primarily to support the com-
prehension process of object-oriented software systems. We defined the following
goals for the achievement of such an improvement :

• Concentration on the comprehension process

Rather than trying to support all activities of the software development process, the
main goal was to attain a considerable improvement in the familiarization process
with justifiable effort.

• Synthesis of new concepts

The synthesis of useful new concepts like literate programming and hypertext
promised to emerge as a much better aid than the combined use of tools for each
concept (e.g., the separate use of hypertext tools and literate programming tools).

• Compatibility

An isolated tool does not help very much unless it supports all activities of the soft-
ware life cycle process. Therefore an easy integration in an existing environment
was essential.

• Documentation access and completeness

The user has to be told whether documentation exists for a given part of the source
code and where it is. The amount of documentation will vary from project to project.

J. Sametinger and S. Schiffer

3 of 18

However, a maintenance tool must be able to tell the user which parts of the systems
are documented and where, and which are not.

• Documentation consistency

Documentation is seldom up-to-date and therefore gives incorrect or misleading in-
formation. This is certainly worse than no documentation at all. A tool cannot really
check consistency of a documentation text, but it should help the programmer to
check it.

• Information access

As important as the access to documentation is the (fast) access to the source code it-
self. Understanding a piece of code hinges on the answers to many questions, e.g.:
Where is this variable defined/set/used? An effective maintenance tool must help the
user to answer questions like these in an easy and fast manner.

• Preventing side effects

Side effects of a maintenance change are very often triggered by just making a little
improvement. The reason for this is incomplete understanding of the system to be
maintained and can again be prevented by easy and fast access to relevant infor-
mation (see above).

• Dealing with high complexity

Being better able to deal with complex software systems is another important goal
because new paradigms like object-oriented programming tend to result in even
more complex system structures.

Despite the many advantages of DOgMA (see [Sam90], [Sam92]), experience revealed
some major drawbacks. The reasons for these drawbacks were that a modified compiler
had been used in order to get information about the source code, and all the information
had been held in main memory. This led to the following problems:

• Dealing with large projects became very inefficient and storage consuming.

• Switching to a new compiler (or even to a new version of a compiler) made it neces-
sary to adapt the new compiler. This, in addition, required the availability of the
compiler's source code.

• Only syntactically correct programs could be processed with DOgMA, because the
compiler, naturally, did not turn a blind eye on syntax and/or semantic errors.

In order to overcome these drawbacks, we started a new project and defined the fol-
lowing goals for improvement:

• Efficiency

It must be possible to deal with very large software systems without hogging very
large amounts of main memory and with acceptable response time.

Design and Implementation Aspects of an Experimental C++ Programming Environment

4 of 18

• Fuzzy parsing

The user must be able to work on incomplete software systems that are not syntacti-
cally correct.

• Compiler independence

The programming environment must not be dependent on a particular compiler
(version).

• Documentation

The documentation structure must be better harmonized with the structure of object-
oriented software systems.

In this paper we describe the essential concepts of the new version of DOgMA and
design and implementation aspects of these improvements.

CONCEPTS

Presenting the Logical Model

Typically, an object-oriented program system written in C++ consists of a set of files
that contain class definitions, method implementations and global declarations. Global
declarations can be used in more than one class and in the corresponding methods.
There is no restriction on what has to be written in a single file. A file can contain more
than one class definition, and a class definition together with its method implementati-
ons can be spread over several files. There exists a relation among the classes of an ob-
ject-oriented software system, the inheritance relation. A class inherits the properties,
i.e., the instance variables (these are variables local to a class), and the methods of its
superclass. Since usually the definition of classes is kept in different files, it is cumber-
some to obtain complete information about a class.

Using simple file browsers to process object-oriented software systems is absolutely in-
adequate because the physical (file) structure does not necessarily correspond to the
logical (class) structure and because simultaneous access to various source-code and
documentation locations is required in order to inspect classes and/or methods.

What we need is a programming environment that effectively and efficiently presents the
logical model of very large software systems and gives fast and comfortable access to
information needed for the comprehension of logical units (e.g., classes and methods).

Graphical User Interface

Our user interface was designed to let the user operate on the logical model of a
software system rather than on the physical file structure. It is based on modern
application frameworks and their supported concepts (see [Shn86], [Wei89]). It
provides a menu bar, an information box, an editor window, and selection lists (see
Fig. 1).

J. Sametinger and S. Schiffer

5 of 18

1

2

3
4

5

6

Fig. 1: User Interface of DOgMA

The menu bar (1 in Fig. 1) is grouped into commands for files, editing, and projects.

The information box (2) displays useful information about the text part currently under
inspection, i.e., the name of the text currently shown (file, class, or method), its
filename, and the inheritance path (i.e., all the superclasses). When multiple inheritance
is used, all the paths are shown in the box.

The editor window (3) displays the text part depending on the selections made in the
selection lists on the right side (see below). It offers the usual editing capabilities (like
cut, copy, and paste) and text processing facilities.

The first selection list (4) shows all the nodes of the information web of the software
system (all classes, all files) or a subset thereof (depending on various pre-defined
categories). In the second and third lists (5 and 6 in Fig. 1), nodes are shown that have
a certain relation to the one selected in the first list (e.g., methods, documentation
sections). The text bars above the various lists indicate the category of nodes that can be
seen in the lists, and can be used as pop-up menus to select other categories.

Browsing Facilities

When a programmer is inspecting a software system, information in related code pieces
is of utmost importance. In object-oriented software systems these related code pieces
are the superclasses and the overridden methods because they contain most of the in-
formation that is needed to understand a subclass or a(n overriding) method. What we
need is easy access to this related information, e.g., to all direct and indirect superclas-
ses and subclasses of a class, to all overriding and overridden versions of a method,
and to the files that contain these classes and methods.

Design and Implementation Aspects of an Experimental C++ Programming Environment

6 of 18

Fig. 2: Information Box

We provide most of this information in the information box, which displays the name of
the class or method currently being inspected, the name of the file containing the class
or method, and information about the inheritance path (see Fig. 2). In this example we
see that the method Control of the class HyperFindDialog is currently displayed (the
method’s name being shown in C++ notation). This method is contained in the file
HyperFindDialog.c. The superclasses of HyperFindDialog are Dialog, DialogView,
View, etc.

The class’s inheritance path in the information box enables the user to instantly inspect
any of the superclasses of the class and to get back again by simply selecting an item in
it. Additionally, if the browser displays a method, then all the classes in the current in-
heritance path that implement the same method are highlighted. Thus the user can see at
a glance which classes implement a certain method for a given inheritance path. In
Fig. 2 the class names HyperFindDialog, Dialog, DialogView and EvtHandler are
highlighted (shown in boldface) because they implement the method Control. The
classes View, VObject and Root do not implement a method Control. Selecting a high-
lighted superclass causes the respective method of the superclass to be displayed in the
editor window.

In programming languages like C++, not only the classes and methods under conside-
ration are of interest, but also the files where they are defined, because files can contain
global declarations that are used in classes and methods. Therefore, the file name is ne-
cessary in the information box and—as with superclasses—provides easy access to
these global declarations by simply clicking on the file name. Using this possibility to-
gether with the features of the inheritance path allows easy inspection of all the files
related to the superclasses and their method implementations, even if they are spread
over several files and directories.

Notion of Program

One of the shortcomings of current browsing tools is that they do not support the notion
of program (see [Wu90]). Browsers usually help to view the methods of a selected
class. But what programmers need is to view the methods intended for the reuse of a
class, i.e., part of the methods of the selected class and part of the methods of its super-
classes (inherited methods). C++ distinguishes among private, protected and public
methods. The access of clients of a class is restricted to public variables and methods,
whereas builders of subclasses (i.e., heirs) may also use any protected data. Anything
private to a class must not be used outside (except friends, see [Str91]). Besides view-
ing private, protected and/or public methods of a class, DOgMA offers the possibility to
view methods for clients (i.e., the public methods of a class and all its public superclas-

J. Sametinger and S. Schiffer

7 of 18

ses), methods for heirs (i.e., the public and protected methods of a class and all of its
superclasses), and the methods for the implementor and friends (i.e., the public, protec-
ted and private methods of a class and the public and protected methods of all of its su-
perclasses). Figure 3 shows the menu that allows the selection of any of these method
categories. When methods are overridden in a subclass, only the downmost methods
are displayed. (With the information box mentioned above, the overridden methods can
easily be accessed, too).

The current version of DOgMA displays only the methods of a class for browsing. For
future versions the inclusion of variables, constants, types, and macros is planned as
well.

Fig. 3: Menu for method selections

Find Mechanism

Object-oriented programming supports the reuse of existing source code. This enhances
the need for comfortable searching in order to speed up the process of understanding. It
is necessary to find both the classes and methods to be reused as well as examples
where the use of these classes and methods can be inspected.

We use a very comfortable and powerful—yet simple—find facility (see Fig. 4), where
the user can specify where to search (in the currently displayed class or method, in the
whole corresponding file, in the inheritance path, or in the whole project) and what to
search for (any strings, class names or method names). Any items found are displayed
in a list (located in the lower half of the find dialog in Fig. 4). With this list a simple
mouse click suffices to jump to any of these items. The user can also specify whether
the list should display the text titles (i.e., the names of the classes and methods contain-
ing the search string) or the line contexts of the found locations.

The main advantage of this simple tool is the rapid access to all places where a textual
piece of information occurs even if it is spread over dozens of files or directories.

Integrated Documentation

When writing programs, we should not try to instruct the computer what to do, but
rather we should try to tell humans what we want the computer to do. Integrating the
source code and the documentation is the main idea of literate programming [Knu84].
We chose a simple mechanism for this integration by relating documentation sections to

Design and Implementation Aspects of an Experimental C++ Programming Environment

8 of 18

Fig. 4: Find/Change

classes or methods and displaying them whenever a class or method is selected. We
also apply object-oriented techniques to the documentation (for more details see
[Sam94]). Similar to the source code, a class inherits the documentation of its supercl-
asses. Documentation sections are defined by the user (programmer) and used for in-
heritance in the same way as methods. Similar to the methods' inheritance mechanism,
sections are either left unchanged, removed, replaced, or extended in subclasses (see
Fig. 5). Examples of such sections are: short description, conditions for use, instance
variables, and instance methods. Depending on the classes, other sections have to be
added, for example: event handling or graphical objects.

Rectangle
Shape
Object

documentation of class Rectangle

Conditions
for Use

Short
Description

Storing
on Files

Graphical
Objects

class:

Fig. 5: Inherited and overridden documentation of class Rectangle

J. Sametinger and S. Schiffer

9 of 18

Figure 5 shows the documentation of class Rectangle, which is composed of documen-
tation of classes Object, Shape, and Rectangle itself. The relevant sections can be iden-
tified by looking from the top vertically into the documentation “building”: "Conditions
for Use" and "Graphical Objects" are inherited from class Shape, "Storing on Files" is
inherited from class Object, and the "Short Description" is defined in class Rectangle
itself. Thus, the documentation of class Rectangle consists of four sections, although
only one has been written for this class.

In Fig. 1 we see various documentation sections that have been inherited from the
classes Document, EvtHandler, and Object. In this case, too, no extra documentation
has been written for the class DProject under consideration.

DESIGN ASPECTS

The most obvious way to realize the programming environment presented in the previ-
ous chapter is to scan a whole project each time the tool starts up in order to get infor-
mation about the logical structure of the software system and to load all the related
pieces of text into main memory. This straightforward approach has some drawbacks,
however.

First of all, large software systems consist of hundreds of thousands of lines of source
code and documentation which comprise dozens of megabytes of data. Keeping masses
of textual information in memory is well supported by standard text classes of most
class libraries and therefore simple to achieve, but inadequate for our purposes. Related
tools like file browsers implemented with such memory-consuming text classes are able
to display files only if they entirely fit into memory. This restriction prevents users from
browsing really large amounts of data on systems with moderate-sized main memory
shared by many processes.

Another issue is performance. Quick response to selected actions highly influences the
acceptance of any software tool by users. Early prototypes of DOgMA were substanti-
ally too slow. It took a few minutes to start up the tool and to present the overall struc-
ture of a project. Selecting an item in the selection lists did not immediately cause the
appropriate text to be displayed.

In order to avoid these disadvantages, we tried another approach. First, the project is
scanned and the information about its structure is stored on disk. When the pro-
gramming environment is started, it suffices to read in the structure information. This
can be done quickly even with very large projects. The source itself is not kept in main
memory. The parts the user wants to see or work on are read in whenever needed.

This results in two different tools, depicted in Fig. 6. The tool dogmamake analyzes the
source code and stores the structure information on separate files. DOgMA, the actual
programming environment, reads the structure information of an entire project, presents
it to the user, and reads source code whenever necessary.

Design and Implementation Aspects of an Experimental C++ Programming Environment

10 of 18

dogmamake

DOgMA

source
code

dogma
info

Fig. 6: General Design

We use the structure information for the documentation also. Chapters are stored in files
and are treated like classes and methods. While the user is editing with DOgMA, the
structure information is updated. However, it is not stored on disk because the stored
structure information is updated anyway when DOgMA is restarted. This guarantees
consistent structure information with little effort. We must mention that the structure
information can get inconsistent when files are edited with other tools simultaneously.
When this happens, the displayed text does not correspond with the class to be shown.
In this case the user has to quit DOgMA, run dogmamake, and restart DOgMA in order
to obtain consistent information.

Structure Information

Of the information about the logical structure of a software system in C++, certainly the
inheritance hierarchy is the most important. Additionally, file names, line numbers, and
scope information are used. The following list shows the information we use:

• file: name of file, classes and methods contained in the file, number of lines

• class definition: name of the class, names of the superclasses, line number where
class definition starts in its containing file, names of methods defined in class defi-
nition, line number where class definition ends

• method definition: name of method, line number of definition, scope (private, pro-
tected, public), in-line or separate implementation

• method implementation: name of method, name of corresponding class, line num-
bers where method starts/ends in its containing file

• documentation: name of the section, name of the class or method the section belongs
to, name of the file containing the section, line numbers where the section
starts/ends in this file.

J. Sametinger and S. Schiffer

11 of 18

file: StyleDialog.h {
 class: StyleDialog:Dialog 16 {

Control 29 private def
DispatchEvents 30 private def
StyleDialog 34 public def
~StyleDialog 35 public def
GetStyle 37 public inline
Show 40 public def
DoCreateDialog 41 public def

 } 42
} 45

file: StyleDialog.c {
 method: StyleDialog::StyleDialog 35 160
 method: StyleDialog::~StyleDialog 162 164
 method: StyleDialog::DoCreateDialog 166 368
 method: StyleDialog::Show 370 373
 method: StyleDialog::Control 375 456
 method: StyleDialog::DispatchEvents 458 461
} 462

file: StyleDialog.d {
 docu: StyleDialog 1 {

section: Description 87
section: Setup 143
section: Validation 189
section: Cancellation 243

} 244

Fig. 7: Structure Information

The structure information shown in Fig. 7 describes the file StyleDialog.h (45 lines)
containing the definition of the class StyleDialog, the file StyleDialog.c (462 lines) con-
taining several method implementations of the class StyleDialog, as well as the file
StyleDialog.d (244 lines) containing documentation describing the class StyleDialog.
The class definition starts at line 16 and ends at line 42. StyleDialog is a subclass of
Dialog and has two private and six public methods, one of which is written in-line. For
example, the public method DoCreateDialog is defined at line 41 in the file
StyleDialog.h; its implementation starts at line 166 and ends at line 368 in the file
StyleDialog.c. The documentation in file StyleDialog.d contains 244 lines and consists
of four sections entitled Description, Setup, Validation, and Cancellation.

The structure information can be stored in a single file for an entire software system, or
an extra structure file can be created for each source-code file. A single structure file
might necessitate rescanning of the entire software system every time a change has been
made in the system. Multiple files require an extra structure file for each source-code
file. We decided to use both single and multiple structure files. We pack the structure
information of parts of the software system that are not likely to be changed into a single
file, e.g., reused class libraries or application frameworks. All other parts of a project,
i.e., files that are currently being worked on, have an extra structure file. This strategy
minimizes both the number of structure files and the number of source-code files having
to be scanned after any changes. The user can choose between these alternatives by
specifying an option for the dogmamake command.

Design and Implementation Aspects of an Experimental C++ Programming Environment

12 of 18

Generating structure information does not require syntactical correctness of a software
system. It must be guaranteed, however, that braces and parentheses match.

Internal Administration of the Structure Information

In order to provide users with comfortable browsing capabilities, the structure informa-
tion is read in at startup time and represented internally by a set of interrelated objects.
Various objects exist, describing files, classes, methods and documentation sections
(see Fig. 8). These objects are entirely held in memory and are necessary for providing
users with any needed information about a software system. The following interrelati-
ons are held in memory:

• class: list of methods, list of superclasses, list of subclasses, corresponding file, list
of documentation sections, corresponding source-code text

• method: corresponding class, corresponding file, list of documentation sections,
corresponding source-code text

• file: list of classes and methods contained in this file, corresponding source-code
text

• documentation sections: corresponding class or method, corresponding file (contai-
ning the section), corresponding documentation text

class

class

class

file

method

section

text

superclasses file

subclasses

methods

documentation
sections

…

…

…

…

Fig. 8: Internal Information Web

This information web provides users with a lot of useful information. Besides simple
capabilities like listing the methods of a class or the documentation sections of a me-
thod, the tool can easily determine inherited methods, methods that are intended for cli-
ents, heirs or friends, overridden methods, overridden documentation sections, the
inheritance path, etc.

As mentioned above, another big benefit is the fact that the corresponding source-code
(or documentation) text does not have to be kept in main memory. It is read in from the
files only when the user chooses to display a certain text by selecting, for example, a
class or method. This text can be thrown away as soon as the user inspects another text.
Multiple text pieces have to be kept in main memory when several browsing windows
of the tool are active. When any changes are made in a text, the changed text is also kept
in main memory as long as the changes are not saved to disk or canceled by the user.

J. Sametinger and S. Schiffer

13 of 18

Updating the Structure Information

The programming environment manages the structure information, presents it to the
user, and reads in parts of the source code (e.g., classes, methods) whenever needed.
In order to keep the structure information correct, it has to be updated whenever any
source-code file has been modified. Updating the structure information is also required
whenever a directly or indirectly included file has been modified because macros might
have been changed that are used in the source file.

This source file dependency is very similar to the dependencies among source files and
object files. A source file that is newer than the corresponding object file requires re-
compilation to create an up-to-date object file. A source file that is newer than the corre-
sponding structure-information file requires reparsing to ensure valid links from struc-
ture information to source code.

Due to the similarity of these dependencies, we choose the make mechanism [Fel79] to
keep structure information up to date. DOgMA is wrapped by a shell script startDogma
that calls the UNIX command make to check for source-code changes which in turn in-
vokes the parser whenever necessary. After this is done, startDogma starts DOgMA.
However, when the user alters the source code using the editing facilities of DOgMA,
then changes to the structure information are made directly and saved to disk as soon as
the user confirms the modifications. (Further explanations of the make mechanism are
given below).

IMPLEMENTATION ASPECTS

DOgMA was implemented with C++ [Str91] under UNIX on a SUN workstation using
the application framework ET++ [Wei88, Wei89]. The implementation is separated into
a language-independent browser, a language-dependent parser for C++ (used to get
needed information about the inspected program text), and some shell scripts that guar-
antee that the structure information is kept up to date.

Language-Independent Browser

The logical structure of object-oriented software systems is very similar regardless of
the programming language used. Only the notation is different in Eiffel, Smalltalk, and
C++, for example. However, programs written in these languages consist of classes
and methods and use the inheritance mechanism. Therefore the concepts presented so
far are applicable and advantageous to all of these languages.

This means that the presented programming environment should be usable with most
other object-oriented programming languages. In fact, DOgMA was designed with these
considerations in mind to support various languages with minor changes.

The browser component controls the user interface, reads the structure information of a
software system (see Fig. 7), and manages the following information (see Fig. 8):

Design and Implementation Aspects of an Experimental C++ Programming Environment

14 of 18

• class definitions, method implementations, documentation sections, files

• any relations among these pieces for browsing (e.g., inheritance)

• additional information (e.g., file location, corresponding class)

Language-Dependent Parser

Obviously each programming environment has to have a part specialized for the suppor-
ted language. We tried to bundle all language-specific code into a separate component, -
the language-dependent parser, which may be replaced completely and easily by another
language-dependent version.

The parser scans the source code, recognizes classes and methods, and stores relevant
information in a file. Syntactic correctness of the source code is not necessary; howe-
ver, it is assumed that class and method declarations are correct and that braces match.
This simple and light-weight parsing is also referred to as fuzzy parsing (see [Bis92]).
An example parser output can be seen in Fig. 7.

A well-known problem for developers of programming environments for C or C++ is
the use of macros, which make it impossible for simple parsers to easily extract struc-
ture information from source-code files. This is the case when macros are used instead
of syntactic constructs of the language, e.g.:

#define begin {
#define end }
…
if (…) begin
 …
end

Macros can also be used to combine variants in a single source-code file, e.g.:

#ifdef sun
…
#else
…
#end

Depending on whether sun is defined, either the then or the else part has to be conside-
red by the parser. This simple construction can lead to serious parsing problems when it
is combined with parts of a syntactic construct, e.g.:

#ifdef sun
void xyz::abc(int a) {
#else
void xyz::abc(int a; int b) {
#end

Without considering the preprocessor statements, any parser would recognize a syntax
error because of nested method definitions (as would Sniff, see [Bis92]).

For the above reasons, we used the C preprocessor output rather than the original
source-code file as input for the parser. That allows a maximum of flexibility and makes

J. Sametinger and S. Schiffer

15 of 18

cpp dogmaparse

dogmamake

source
code

cpp
output

dogma
info

Fig. 9: Preparsing with integrated C preprocessing

us independent of future expansions of the macro language. The C preprocessor cpp
and the parser dogmaparse are connected together within the shell script dogmamake
(see Fig. 9).

This concept lets the user specify any flags as well as control the output of the prepro-
cessor, thus obtaining the special view to the software system wanted.

Dependency Mechanism

Each time a source file is modified, it is necessary to update the corresponding
structure-information file. In this section we describe in more detail how this depen-
dency is managed using shell scripts and the UNIX make facility (see [Fel79]).

Let us assume that an application myTool consists of three files, namely main.C, my-
Class.C and myClass.h. The main program additionally uses a library whose interface
is declared in the directory /local/include/C++/common.h.

Using make to automatically perform recompilation requires the definition of the depen-
dencies among all files involved. This is done by writing a make-file as shown in
Fig. 10.

1 INCDIR=/local/include/C++
2 CCFLAGS=-I$(INCDIR)

3 myTool: main.o myClass.o
4 cc -o myTool main.o myClass.o

5 main.o: main.C $(INCDIR)/common.h
6 myClass.o: myClass.h

Fig. 10: Simple make-file

Lines 1 and 2 define two macros. INCDIR specifies a nonstandard include directory
and CCFLAGS instructs the C++ compiler (strictly speaking, the C preprocessor) to
look into the directory specified in INCDIR whenever encountering the include state-
ments. Line 3 contains the dependency for the entire application, which states that my-
Tool has to be rebuilt if main.o and/or myClass.o do not exist or are newer than
myTool. The command to be used for making myTool is given in line 4. It is the invo-
cation of the C compiler (actually the C linker), which links the object files into an exe-
cutable application. Lines 5 and 6 define the dependencies of the object files; e.g.,
main.o has to be rebuilt if it is older than main.C or $(INCDIR)/common.h ($(INCDIR)
just expands to the string defined in line 1). For the benefit of short rules, it is not

Design and Implementation Aspects of an Experimental C++ Programming Environment

16 of 18

necessary to explicitly specify the dependency between a source file and its correspond-
ing object file (as in line 5). Line 6 contains such a hidden dependency which omits the
.C file from the right side; make knows that a .o file always depends on a .C file with
the same base name and automatically establishes the proper relationship.

Information for the Preprocessor

DOgMA uses the C preprocessor cpp to correctly expand sources and header files. As
with “ordinary” compiling, cpp needs to know something about the environment, e.g.,
where to find header files or what flags to use for conditional compilation. This
information is commonly collected in the CCFLAGS macro of the make-file. Using that
macro, a simple UNIX pipeline like

cpp $CCFLAGS $sourceOrHeader | dogmaparse >$structInfo

is sufficient to precompile a source or a header file by cpp and convert the resulting out-
put into structure information by dogmaparse.

However, the question still is where to place a command containing such a pipeline in
the make-file and how to call that command whenever something has changed.

Dependencies between Source Files and Structure-Information Files

A good way to get along with that is to copy the original make-file to a new one, leaving
all contents untouched, and to append a few lines for our purposes. First, we install a
directory .dogma, which is used to keep all the structure-information files. Then the ex-
isting make-file is copied into this directory and automatically adapted for preparsing
purposes; i.e., the same dependencies are used, but structure information is generated
into the .dogma directory instead of compiling object code. The generated make-file for
the above example is shown in Fig. 11.

All the appended lines are created by the shell script dogmamake.make, which reads the
original make-file on its standard input channel and writes the converted file to standard
output.

Line 12 defines the main target for preparsing. Lines 13-15 contain a list of all files that
contain structure information. The files are written to the directory .domga and named
according to the related sources, i.e., to the header files. Line 17 defines that every
structure-information file depends on a file with the same name in the current directory.
Line 19 calls the shell script dogmapase.sh (containing the pipeline mentioned above)
for every dependent source file $< that is out of date with respect to the target structure-
information file $@. Finally, from line 21 to the end of the make-file all dependencies
are listed.

J. Sametinger and S. Schiffer

17 of 18

1 INCDIR=/local/C++/include
2 CCFLAGS=-I$(INCDIR)
3 myTool: main.o myClass.o
4 cc -o myTool main.o myClass.o
5 main.o: main.c $(INCDIR)/common.h
6 myClass.o: myClass.h
7
8 # ---
9 # Original makefile ends here.
10 # Next lines were appended by dogmamake.make.
11
12 dogma: \
13 .dogma/main.c \
14 .dogma/myClass.c \
15 .dogma/myClass.h
16
17 .dogma/%: %
18
19 @echo "parsing $<"; dogmaparse.sh $< $@
20
21 .dogma/main.c:/local/C++/include/common.h
22 .dogma/main.c:main.c
23 .dogma/main.h:/local/C++/include/common.h
24 .dogma/main.h:main.c
25 .dogma/myClass.c:myClass.c
26 .dogma/myClass.c:myClass.h
27 .dogma/myClass.h:myClass.c
28 .dogma/myClass.h:myClass.h

Fig. 11: Extended make-file

CONCLUSION AND PROSPECTS

Design and implementation aspects of the programming environment DOgMA have
been presented. The use of external structure information served as a means of provid-
ing detailed information about a software system as well as high performance. Using
the C preprocessor for obtaining structure information makes DOgMA applicable for
any real-world C++ program (without imposing any restrictions on the use of macros).
Furthermore, utilizing the make mechanism together with UNIX's powerful concepts of
filters, pipelines, and shell scripts made it possible to reduce the capacity needed for
keeping the structure information up to date.

DOgMA has been used in various projects at our institute and in industry. Its usefulness
has been proven by a drastic reduction of necessary effort to develop and maintain
software systems, and especially to get familiarized with large class libraries and appli-
cation frameworks. DOgMA does not cover a wide range of supported activities like
other tools do. But its representation of the logical model of software systems
outperforms any other tools the authors know. Additionally, the concept of object-
oriented documentation promises to bring the advantages of object-oriented program-
ming to the documentation as well.

For the development of DOgMA we have integrated UNIX tools like make. Tools like
compilers and debuggers can be used together with DOgMA. However, their integration
is not as fully developed as is, for example, in TakeFive's SNiFF+ or HP's Softbench.

Design and Implementation Aspects of an Experimental C++ Programming Environment

18 of 18

DOgMA offers less support for the various software life-cycle activities than SNiFF or
Softbench do. However, its advantages are better support for documentation and better
presentation of the logical model of a software system.

Besides various enhancements, we are currently working on the integration of a deduc-
tive database in order to provide users with a simple, yet flexible query mechanism for
obtaining metrics or checking constraints. Additionally, visualization of dynamic
aspects, like animating objects and their interactions, is being investigated.

Because of its experimental nature, DOgMA is not publicly available. Please contact the
authors, if you are interested in more details.

REFERENCES
[Bis92] Bischofberger W.: Sniff—A Pragmatic Approach to a C++ Programming

Environment, Proceedings of the USENIX C++ Conference, Portland,
Oregon, August 1992.

[Fel79] Feldman S.I.: Make—A Program for Maintaining Computer Programs,
Software—Practice and Experience, Vol. 9, No.4, pp. 255-266, April
1979.

[Knu84] Knuth D. E.: Literate Programming, The Computer Journal, Vol. 27 No. 2,
pp. 97-111, 1984.

[Sam90] Sametinger J.: A Tool for the Maintenance of C++ Programs,
Proceedings of the Conference on Software Maintenance, San Diego, 1990.

[Sam91] Sametinger J.: DOgMA: A Tool for the Documentation and Maintenance of
Software Systems, Technical Report, University of Linz, Department of
Software Engineering, June 1991, available via anonymous ftp from
ftp.swe.uni-linz.ac.at.

[Sam92] Sametinger, J., Pomberger G.: A Hypertext System for Literate C++
Programming. Journal of Object-Oriented Programming, Vol. 4, No. 8,
pp. 24-29, January 1992.

[Sam94] Sametinger J.: Object-oriented Documentation, ACM Journal of Computer
Documentation, Vol. 18, No. 1, pp. 3-14, January 1994.

[Shn86] Shneiderman B., et al.: Display Strategies for Program Browsing: Concepts
and Experiment, IEEE Software, Vol. 2, No. 5, pp. 7-15, May 1986.

[Str91] Stroustrup B.: The C++ Programming Language (Second Edition),
Addison-Wesley, 1991.

[Wei88] Weinand A., Gamma E., Marty R.: ET++—An Object Oriented Application
Framework in C++, OOPSLA ‘88, ACM Sigplan Notices, Vol. 23, No.
11, pp. 46-57, 1988.

[Wei89] Weinand A., Gamma E., Marty R.: Design and Implementation of ET++, a
Seamless Object-Oriented Application Framework, Structured Program-
ming, Vol. 10, No.2, 1989.

[Wu90] Wu C.T.: A Better Browser for Object-Oriented Programming, Journal of
Object-Oriented Programming, Vol. 3, No.9, November/December 1990.

