
Exploratory Software Development with Class Libraries

Johannes Sametinger, Alois Stritzinger

Christian Doppler Labor für Software Engineering
Institut für Wirtschaftsinformatik
Johannes Kepler Universität Linz

A-4040 Linz, Austria

Abstract. Software development based on the classical software life-cycle proves inadequate for
many ambitious projects. Exploratory software development is an alternative way of building soft-
ware systems by eliminating deficiencies of the conventional software life cycle. Instead of exactly
defining the various phases of the life cycle, exploratory software development takes small
development steps, whereby a single step results in an extension or an improvement of the existing
system.

The object-oriented programming paradigm has resulted in increased reuse of existing software
components. Therefore, class libraries will become very important in the near future. Exploratory
software development is very well suited to this situation and thus provides a major step forward in
economically developing software systems.

In this paper we depict deficiencies of the classical software life cycle, present the exploratory
software development strategy, and especially illustrate exploratory software development in com-
bination with the reuse of class libraries.

1 Classical Software Life Cycle

Software is usually developed according to the classical software life-cycle. Various models
for this life cycle do exist, but basically they are very similar (see [Boehm79, Pomberger
86]). According to the software life cycle the software development process is divided in
well-defined phases. In general, each phase has to be finished before the next one can be
started (see Fig. 1). This enforces a linear process, which implies that executable programs
are available very late. Therefore, any misunderstandings between customers and developers
remain hidden for a long time. Besides, any technical problems (e.g., an inefficient file
system) cannot be perceived before the test phase. Usually modifications becoming neces-
sary are very costly because they are so late.

The classical software life cycle presupposes static requirements and does not deal with
incomplete and inconsistent specifications. For given and static specifications, software de-
velopers have to deliver a tailor-made design and a corresponding implementation. The bet-
ter the implemented program fulfills the given requirements, the better was the work of the

Operations and
Maintenance

Test

Implemen-
tation

Design

Specification

Requirements

Fig. 1: Classical Software Life cycle

software developers. This approach is in contradiction to reality, because past experience has
shown that programs need to be continuously modified and extended. This results in thou-
sands of programmers being engaged with adapting existing software systems to new or
changed requirements. Statistics even say that nowadays more time is spent on software
maintenance than on software development (see e.g., [Gibson89]). This unsatisfactory
situation is partly propagated by the classical software life cycle.

2 Exploratory Software Development

Recently the term prototyping has become a buzzword (see [Bischofberger91, Budde84]).
The emphasis of prototyping is on the evaluation rather than on long-term use. Software
prototypes very often implement the user interface of an application program in order to give
potential users an early possibility to evaluate the usefulness and the proper design (of the
user interface) of the product. This communication vehicle between developers and cus-
tomers helps to avoid misunderstandings and usually improves the user interface consider-
ably. However, software prototypes are not restricted to user interface aspects; they can be
extended to the finished product step by step.

The term prototyping stems from industry, where prototypes are first models of a certain
product. Such prototypes (e.g., cars) are used to investigate certain aspects of a product
before it goes into production. As software is simply copied rather than produced in quantity,
the term software prototype is somewhat misleading. Besides, this approach can be used not
only at the beginning of software development but throughout the whole life cycle. For that
reason we prefer the term exploratory software development. To begin with, exploratory
software development means the production of software to meet the known requirements.
Testing the product leads to more requirements and results in modifications and tests to
fulfill them. This process is repeated until the developed software system performs satisfac-
tory (see [Sandberg87]). Exploratory software development is a strategy that is best suited
when an inherent goal of the project is to identify elusive requirements (specification), to

Test
Implemen-

tation
DesignSpecification

Test
Implemen-

tation
DesignSpecification

Test
Implemen-

tation
DesignSpecificationProblem

Software
System

Fig. 2: Exploratory Software Development

establish a suitable system architecture (design), or to explore possible implementation
techniques.

Exploratory software development involves repeatedly applying small steps. Each step
results (ideally) in an improvement of the current program version until both the developer
and the customer are satisfied with the result. Typically one step lasts several hours or even
less (see Fig. 2).

When using exploratory software development, programmers have to work with utmost
discipline. For example, extending the functionality of a system before its existing parts have
reached a (preliminary) satisfactory condition is inexpedient. Additionally, programmers
should be aware of writing all the code in a “quick and dirty” fashion, though sometimes it
might be useful to temporarily use “quick and dirty” solutions.

The usefulness of exploratory software development emerges from the lack of alternatives in
many situations. Both customers and developers not yet knowing exactly what they really
want is a typical development situation. Programmers also might not know how to (best)
solve certain (implementation) problems. In these cases it is appropriate to work with exper-
imental versions of the software system. By experimenting both customers and developers
can gain new insights into their problem domains and thus come closer to better solutions.

Another important justification for using exploratory software development is the increase in
complexity of today’s software systems. High complexity makes it impossible for human
reasoning to deal with all the problems in a linear way, as the classical software life cycle
proposes.

Software can best be developed in an exploratory way whenever one or more of the follow-
ing conditions hold:

• The specification is very vague. Customers are unable to clearly specify their wishes and
needs.

• Critical design decisions cannot be made based on theoretical considerations.

• Software developers do not have enough experience with the implementation of similar
systems (and the system to be developed is sufficiently complex).

• Programmers do not have (enough) experience in using the programming language or
library. (It is impossible to gain familiarity with a class library without experimenting.)

• The system to be developed is too complex and too ambitious to be built linearly.

In our opinion, about half of all projects satisfy one or more of the conditions mentioned
above and thus are candidates for exploratory development. The main advantages of ex-
ploratory software development are:

• Experimental program versions are excellent vehicles for communication among devel-
opers and customers.

• The exploratory approach reduces risks because typically problems are perceived earlier
than in the classical software life cycle.

• Stepwise developed programs are better structured and better suited for modifications
and extensions because programmers are forced to permanently modify and extend the
current version of the software system to be developed. This encourages and trains pro-
grammers to write better modifiable code.

• As modifying the system is part of the work being permanently done, it is easier to take
new ideas into consideration. The statement: “The next time I would try a wholly differ-
ent approach!” is more seldom among exploratory programmers.

• Programmers are strongly motivated by working on an executable program rather than
writing specifications and design papers for a long time without having an executable
program.

Unfortunately, there are also some disadvantages:

• Exploratory development in large teams is possible only when the software system can
be clearly separated into various parts.

• It is difficult to estimate the duration and the costs of a certain project. New estimation
methods have to be found for this purpose.

• Programmers have to be well trained and to work with discipline. This is extremely nec-
essary in exploratory software development because otherwise the resulting programs are
not easily modified ore extended.

• Documentation gets lost in the shuffle.

• Version control and backtracking need to be supported (by tools).

In commercial software projects these disadvantages may be too hard. In order to get esti-
mates of the cost and the duration of a project, we suggest making a rudimentary specifica-
tion and an initial design according to the classical software life cycle and applying the
exploratory approach in the next steps only. This makes it possible to divide a project into
small and easily surveyed parts that can be processed by small programming teams.

3 Reusable Class Libraries and Application Frameworks

Conventional libraries, toolboxes, drawing routines, etc. offer fixed functionality at a higher
abstraction level than bare programming languages. In the design of the software system the
designers have to consider the interfaces of the given components carefully and have to use
the provided functions in an appropriate manner. Usually it is not a major problem to build a
system upon such libraries when their functions and components are not strongly interre-
lated. This holds for simple user interface components, data containers, and mathematical
and graphical operations.

When working with application frameworks, which define the core structure of the overall
application, the designers cannot develop an architecture top-down. In this case the architec-
ture is already predefined to a certain degree by the set of related framework classes which
anticipate very early design decisions. The job of the designers is to append the application-
specific functionality at appropriate places in the framework. The more powerful and exten-
sive the framework is, the more design decisions are already anticipated in the provided
classes.

Commercial applications usually do not use domain-specific interaction techniques or
sophisticated algorithms. For such applications classical design methods become superflu-
ous. Although complex software systems could never be designed by means of applying
classical techniques and methods such as stepwise refinement or the Jackson System Devel-
opment Method (see [Cameron89]) alone, application frameworks make these aids less
useful. This does not imply that classical techniques will become obsolete as a consequence
of frameworks, but their use will be restricted to certain domain-specific components.

Another drawback of classical design methods stems from the fact that applications made
from frameworks are implemented in an object-oriented way. Object-oriented systems can-
not be designed adequately by means of classical methods. A considerable number of soft-
ware engineering scientists see the need for a new or modified design method to overcome
the current dilemma. A rapidly increasing flood of articles and books about object-oriented
design methods, e.g., [Booch86, Coad90, Rumbaugh91], mirrors the expectations of the
unhappy software industry.

4 Exploratory Development Approach with Class Libraries

Powerful and well-structured class libraries are a crucial advantage for exploratory software
development. The quality and extent of the library used are often more important than the
power of the programming language or the development tools.

The exploratory approach has proven its excellence particularly in the development of highly
interactive applications with graphical user interfaces. Below we will describe the various
tasks that are typical in exploratory software development with class libraries. In general
these tasks are seldom completed at once. Usually one does just a portion of a certain task;
the next step is taken at the next iteration of the cycle. Furthermore, one should keep in mind
that not everything can be done right the first time. But even when information is missing to

make a sound design decision, one should not hesitate too much. Experimentation and
exploration often lead to better solutions than intense analytical studies. The steps of the
exploratory development approach are as follows (see also [Stritzinger92]):

Step 1:

Start with the design of the user interface in a prototyping-oriented way. Concentrate on the
essentials first. Whenever some parts of the interface are unclear, try a rudimentary design.

Step 2:

Try to identify classes for the implementation of the user interface components. An exten-
sive class library should offer a lot of support in this respect. Typical classes include: Win-
dow, Menu, View, TextView, ListView, and control elements like Button and Scrollbar. If
you cannot find exactly what you are looking for, search for classes that already implement
part of the desired functionality. Inheriting is most often cheaper than implementing.

Step 3:

Try to identify classes that describe important objects in your problem domain. These classes
often correspond to object categories of the real world (employee, car, etc.). Although it is
not as likely as with user interface classes, there is still a chance to find classes in the library
from which you can inherit. If objects in your program have a close correspondence to real-
world objects, slight changes in the real world will just cause slight changes in the program.
All objects that describe application-specific data should be connected somehow. This
complex object web is usually called the model. Relationships among model objects can
either be established by application-specific compound objects (faculty, assemblyLine, etc.)
or by general-purpose collection objects (queue, tree, etc.). The whole model should be
accessible by a single (or a small number of) reference(s). If there are objects that share a lot
of commonalties but differ in some respects, the commonalties should be described
collectively (factored into a common superclass). In many cases abstract classes are rather
useful. Abstract classes (e.g., GraphicShape) are classes that do not have instances; they just
serve for factoring commonalties out of their subclasses. The more complex the problem is,
the more imaginary classes have to be invented. Finding appropriate imaginary classes is a
very difficult job that requires some experience. Fortunately, you can find such classes
incrementally.

Step 4:

Identify relevant object states for all classes. Object attributes that carry state information are
(usually) modeled as instance variables of the corresponding class. Redundancy among
instance variables should be avoided.

Step 5:

Think about the messages (operations) your objects should respond to. Each instance vari-
able has to be addressed; i.e., each variable must get a value and must be accessible some-
how. The semantics of each message should be clearly describable. Messages should be as
powerful as possible, but as flexible as necessary.

Step 6:

Implement a method for each message. Do not duplicate code from superclasses; send mes-
sages to invoke the overridden method instead. Extensive methods should be split into sev-
eral, possibly private methods.

The above steps are often performed in a non-sequential way. For instance, it may happen
that while implementing a method the need for an additional instance variable arises. Simul-
taneous development of various small life cycles is typical for the reuse of class libraries
and is also called a cluster model (see [Meyer88], [Pree91]).

It is always advisable to define classes somewhat more generally than actually necessary.
Modifying and extending existing code is typical in the exploratory approach. The more
general classes are, the less widespread is the impact of changes and extensions.

5 Conclusion and Outlook

In summary, we claim that an exploratory, object-oriented development approach together
with application frameworks is the most productive way to develop highly interactive appli-
cations with high quality standards. The problems in designing complex systems are rather a
symptom of an insufficient strategy than a lack of methods. Innovative and sophisticated
software systems can never be developed in a linear process of applying recipes. Similar to
other high-tech products, knowledge, skills, experience and motivation play a crucial role in
the successful realization of ideas.

In our opinion, one of the strongest drawbacks of object-oriented software development is
the huge complexity of many widespread class libraries and application frameworks. This
complexity, together with the manifold structuring options of object-oriented programming,
make extremely high demands on programmers – even with an exploratory approach. Many
programmers in the field are unable to take advantage of these powerful techniques. There-
fore software engineering experts are called upon to develop tools that permit less experi-
enced programmers to utilize the advantages of object-oriented programming with class
libraries by helping to master the complexity and by supporting the comprehension process
(see [Sametinger90] for an example).

A first step in the right direction is so-called interface builders. By means of interface
builders construction of complex user interfaces can be done in a simple, interactive way by
directly manipulating interface components. 4th generation systems form another possibility
for a quick development of applications at a high level of abstraction. The drawback of 4th
generation systems is often the connection between user interface and database, which usu-
ally have to be programmed with a rather conventional programming language. The devel-
opers are confronted with a huge gap in the abstraction level whenever the built-in func-
tionality is not sufficient. Furthermore, only a minority of contemporary 4th generation sys-
tems are based on the object-oriented paradigm.

The goal of a thoroughly seamless development process at a very high abstraction level
could be reached by a kind of tool (or tool set) which could be called application builder or

5th generation system . Such a system should support interactive, graphical construction of
user interfaces and (external and internal) data models. In addition, a 5th generation system
should offer the opportunity to combine predefined, reusable and user-defined building
blocks in a comfortable, yet flexible and preferably visual way.

Unfortunately, such 5th generation systems are not available yet. But there is a good chance
that mechanisms and tools will be developed which can fulfill the goal of a thoroughly
seamless development process at a high abstraction level. Then object-oriented programming
with extensive libraries will become a widespread technology available to almost everybody.

6 References

1. Bischofberger W., Kolb D., Pomberger G., Pree W., Schlemm H.: Prototyping-Oriented
Software Development - Concepts and Tools, Structured Programming, Vol. 12, No. 1,
New York, 1991

2. Boehm B., W.: Software Engineering, in Classics in Software Engineering, Yourdon
N.E. Editor, pp. 325-361, Yourdon Press, 1979.

3. Booch G.: Object-Oriented Development, IEEE Transactions on Software Engineering,
Vol. SE-12, No. 2, February 1986.

4. Budde R., et al (Editors): Approaches to Prototyping, Springer-Verlag, 1984.

5. Cameron J.: JSP & JSD: The Jackson Approach to Software Development, IEEE
Computer Society Press, 1989.

6. Coad P., Yourdon E.; Object-Oriented Analysis, Yourdon Press Computing Series,
Prentice Hall, 1990.

7. Gibson V.R., Senn J.A.: System Structure and Software Maintenance Performance,
Communications of the ACM, Vol. 32, No. 3, pp. 347-358, 1989.

8. Meyer B.: Object-Oriented Software Construction, Prentice Hall, 1988.

9. Pomberger G.: Software Engineering and Modula-2, Prentice Hall, 1986.

10. Pree W.: Object-Oriented Software Development Based on Clusters: Concepts,
Consequences and Examples, TOOLs Pacific (Technology of Object-Oriented
Languages and Systems), pp. 111-117, 1991.

11. Rumbaugh J., et al: Object-Oriented Modeling and Design, Prentice Hall, 1991.

12. Sametinger J.: A Tool for the Maintenance of C++ Programs, Proceedings of the
Conference on Software Maintenance, San Diego, CA, pp. 54-59, 1990.

13. Sandberg D.W.: Smalltalk and Exploratory Programming, ACM Sigplan Notices, Vol.
22, No. 10, 1987.

14. Stritzinger A.: Reusable Software Components and Application Frameworks—
Concepts, Design Principles and Implications, to be published in VWGÖ, Vienna, 1992.

