
DOgMA:
A TOOL FOR THE

DOCUMENTATION & MAINTENANCE
OF SOFTWARE SYSTEMS

Johannes Sametinger

TECHNICAL REPORT

JUNE 1991

Institut für Wirtschaftsinformatik

Johannes Kepler University Linz

Austria

Abstract

It is very often necessary to correct faults in software systems, make them usable in
changed environments, or improve their quality (e.g., performance). This activity is
called software maintenance and is usually done by people other than those who devel-
oped a software system. Software maintenance requires detailed documentation and the
possibility to attain an overview of the system structure, the interaction of the various
components, and the effects of changes.

This report describes the results of a research project in the area of documentation and
maintenance whose main focus was to combine state-of-the-art methodologies in a new
tool (DOgMA) to improve the support of documentation and maintenance activities.
Additional goals were to identify major problems in the field, to determine possible im-
provements, to investigate how these improvements are supported by tools, to summa-
rize deficiencies of existing tools, and to ameliorate these deficiencies in the design of a
new tool.

After a short discussion of the role of documentation and maintenance in the software
life cycle, a detailed compilation and definition of terms used is given. Subsequently an
outline of the state of the art is described and evaluated. Based on these perceptions,
requirements on a documentation and maintenance tool were developed along with
concepts for their solution. The resulting tool, DOgMA, serves as a contribution to the
improvement of the documentation and maintenance process. A comparison with
similar tools and an examination to what extent the goals have been achieved concludes
the report.

- I -

Table of Contents

1. Introduction ..1
1.1 The Role of Documentation and Maintenance in the Software Life Cycle........1
1.2 Scope ...4
1.3 Survey..6

2. Terminology ..7

3. State of the Art..14
3.1 Existing Problems...14

3.1.1 Poor Code ..14
3.1.2 High Complexity...14
3.1.3 Inadequate Documentation..15
3.1.4 Team Coordination ...15
3.1.5 Multiple Maintenance..16
3.1.6 Static Description of Dynamic Behavior ..16
3.1.7 Linear Presentation of Complex Structures..16
3.1.8 Object Code as Black Box ..17

3.2 Possible Improvements ...17
3.2.1 Preventing Maintenance ..17

3.2.1.1 Structured Programming..18
3.2.1.2 Prototyping ...18
3.2.1.3 Fourth Generation Languages..18
3.2.1.4 Spare Parts Maintenance..19

3.2.2 Improving Maintenance...19
3.2.2.1 Hypertext ..19
3.2.2.2 Comfortable Browsing...21
3.2.2.3 Literate Programming..21
3.2.2.4 Configuration Management..22
3.2.2.5 Change Management ...23
3.2.2.6 Software Reengineering...24
3.2.2.7 Visualization..25
3.2.2.8 Self-Identifying Software ...26

3.3 Evaluation of the State of the Art..26

Table of Contents

- II -

4. DOgMA: A New Tool for Documentation & Maintenance31
4.1 Goals..31
4.2 Concepts ..33

4.2.1 The Structure of Source Code...34
4.2.2 The Structure of Documentation ...39
4.2.3 Integration of Source Code and Documentation40
4.2.4 Automatic Creation of the Information Web..41
4.2.5 Browsing Features ..42
4.2.6 Increasing the Readability..42
4.2.7 Hardcopy Documentation ...44
4.2.8 Processing Subsystems..45

4.3 User Interface...46
4.3.1 The Application Window ..47
4.3.2 The Hypertext Window...48
4.3.3 Browsing Features ..50
4.3.4 The File Menu...52
4.3.5 The Edit Menu..54
4.3.6 The Project Menu ...56
4.3.7 The Text Menu ...58
4.3.8 The Identifier Menu ..60
4.3.9 The Goodies Menu ...62
4.3.10The File Window ..63

4.4 Sample Scenarios..65
4.4.1 Answering Questions ..65
4.4.2 Sample Documentation ...66
4.4.3 Reading Documentation..68
4.4.4 Writing Documentation...68
4.4.5 Modifying Documentation...69

4.5 Parameterization...70
4.5.1 Directory Paths ...70
4.5.2 Size of History ..71
4.5.3 Width of the Selection Lists ..71
4.5.4 Text Templates ...71

4.6 Implementation Aspects..73
4.6.1 Overall Structure of the System...73
4.6.2 Interface between the Hypertext Browser and the Parser74
4.6.3 Static Analysis of C++ Programs...75
4.6.4 Impact of Using an Application Framework ..76
4.6.5 The Implementation of Hypertext..78
4.6.6 Problems with the Text Structure of ET++..79
4.6.7 External Storage of Source Code ..80
4.6.8 External Storage of Documentation...81
4.6.9 Current Restrictions and Possible Improvements82

4.7 Measurements and Statistics ...82

Table of Contents

- III -

5. Comparison with Similar Tools..84
5.1 Classification of Tools ..84
5.2 Browsers ..87

5.2.1 The Smalltalk-80 Browser...87
5.2.2 The Smalltalk/V Browser ..88
5.2.3 ET++ Browsers ..89
5.2.4 Omega Browsers...91
5.2.5 Browsing Features of DOgMA..92
5.2.6 Comparison of Browsing Features...93

5.3 Hypertext Systems..94
5.3.1 Dynamic Design..95
5.3.2 DIF— Documents Integration Facility..95
5.3.3 Guide..96
5.3.4 She— A Simple Hypertext Editor ..97
5.3.5 Hypertext Features of DOgMA...98
5.3.6 Comparison of Hypertext Features ..98

5.4 Literate Programming Systems ...100
5.4.1 The WEB System..100
5.4.2 HSD— Hierarchical Structured Document...103
5.4.3 An Environment for Literate Smalltalk Programming104
5.4.4 An Interactive Environment for Literate Programming104
5.4.5 Literate Programming Features of DOgMA.......................................105
5.4.6 Comparison of Literate Programming Features..................................107

5.5 Summary of the Comparison...109

6. Conclusion and Prospects ...110

7. References ...115

8. Figures...122

- 1 -

1. Introduction

1.1 The Role of Documentation and Maintenance in
the Software Life Cycle

In the early days of computing, good programmers strived to produce programs that
were concise, tricky and efficient. This goal was justified by sluggishness and limited
storage of computers at that time. Needless to say, it was hardly possible for someone
else to read and maintain these programs.

Requirements on software increased as computers became faster and were equipped
with more storage. Thus software research work concentrated mainly on the areas of
software design and development to deal with the increasing requirements. The task of
maintaining all the software was considered a minor problem. But after only a few
decades we have come to realize that half the software personnel is engaged in software
maintenance rather than software development.

Requirements
Analysis

Specification

Design

Coding

Testing

Operations and
Maintenance

15%

7%
5%3%3%

67%

Fig. 1.1 Relative costs in the phases of the software life cycle [Art88]

Software maintenance generally means any work on an existing software system. It
cannot be avoided, it is intrinsic to software, and it proves to be the most difficult as
well as the most expensive part of the software life cycle.

2 1.1 The Role of Documentation and Maintenance in the Software Life Cycle

Many statistics emphasize the important role of maintenance in the software life cycle.
Figure 1.1 shows the relative costs in the traditional software life cycle ([Mar83],
[Art88]), where the biggest part is taken by operations and maintenance.

Typically, the development phase requires 1 or 2 years, whereas the maintenance phase
spans over 5 to 10 years [Fai85]. Additionally, the costs of software maintenance have
increased steadily in the past (see Fig. 1.2).

35-40%

40-60%

70-80%

1970s 1980s 1990s

Fig. 1.2 Percentage of software budget spent for maintenance [Pre87]

The message in the statistics is clear, yet maintenance is (negatively) viewed as being
[Hal87]:

• difficult
• unfair (due to the lack of needed information)
• a dead-end job (no progress that can be seen)
• a task that is not at the cutting edge of technology

It is no surprise that 90 percent of computer science students would like to be involved
in development, while only 10 percent have an interest in maintenance [Per86]. Some of
the problems of maintenance are ([Cou85], [Cha86a]):

• poor documentation
• bad system structure
• high complexity
• use of old languages (e.g., Cobol)
• unavailability of the developers (in case questions arise)
• time pressure (imposed by users)

There is no hope that the portion of old code will ever decrease. The following consid-
erations emphasize this fact [Sch87]:

• Functions are added rather than replaced.
• Every new function must be tied into the existing system.
• The organizations’ goal is compatibility, not perfection.

Nevertheless, several facts emphasize that software maintenance is attracting more at-
tention from the research community:

• Up to now six Conferences on Software Maintenance have been held (1983 in
Monterey, CA, 1985 in Washington, D.C., 1897 in Austin, TX, 1988 in Phoenix,
AZ, 1989 in Miami, FL, and 1990 in San Diego, CA, 1991 to be held in Italy).

1. Introduction 3

• The Software Maintenance Association (SMA) was organized as a special interest
group in the field of software maintenance. Since 1983 it publishes a monthly main-
tenance newsletter, the Software Maintenance News, which is usually based on real
experience.

• The Annual Meeting and Conference of the Software Maintenance Association is
held each year in a different city in North America. It is a gathering of professionals
in the field of software maintenance.

• A new Journal of Software Maintenance: Research and Practice has been published
since September 1989. The main function of this journal is to publish original work
and high quality surveys in the field of software maintenance.

• The Journal of Software Testing, Verification and Reliability began publication in
April 1991.

• Special sections on software maintenance are being published in journals, for exam-
ple, IEEE Transactions on Software Engineering in March 1987, IEEE Software in
January 1990.

• A column on Literate Programming was first published in the journal Communica-
tions of the ACM in July 1987. The idea of literate programming plays a major role
in the documentation and maintenance of software systems. The column has ap-
peared several times since then.

• There are also many conferences which deal with special topics in the field of soft-
ware maintenance, e.g., International Conference on Software Testing, International
Testing Methods Conference, International Conference on Software Maintenance &
Reengineering.

• Many workshops and seminars are offered all over the world on software mainte-
nance, configuration management, software testing, software quality management,
software project management, software reengineering, reverse engineering, etc.

• An increasing number of papers in the software maintenance area have been appear-
ing in various journals and books.

Development is optional; maintenance is mandatory. Even people whose priority is
software development must be interested in reducing maintenance because this implies
more resources available for development. Maintenance hardly produces any profit, but
it is essential to preserving profits.

1.2 Scope
Some of the major problems with software maintenance are (see [Cha86a]):

• inadequacy of documentation
• poor structure of source code

4 1.2 Scope

• high complexity of software systems

This leads to a situation where maintenance programmers spend half of their time on
understanding programs (see Fig. 1.3, see also [Gib89]).

Study Request

Study
Documentation

Study Code

Implement

Test

Update
Documentation

6%

18%

23%
19%

29%

6%

Fig. 1.3 Maintenance personnel activities [Par83]

Insufficient information about a given program can lead the maintenance programmers
to erroneous assumptions about the program. In such a case, any modification of the
program is very likely to introduce new errors. Therefore tools are needed that provide
the proper information about a software system in an appropriate and convenient way.

This report contains the results of a research project of which the main focus was:
• to identify the main problems in the field of documentation and maintenance
• to determine possible improvements
• to investigate how these improvements are supported by tools
• to summarize the deficiencies of existing tools
• to develop a new methodology and a corresponding tool in order to dimin-

ish these deficiencies

The presented tool is aimed at providing improvements in the support of documentation
and maintenance. It supports understanding both source code and documentation and
mastering the complexity of large systems. The name DOgMA is an abbreviation for
DOcumentation & MAintenance, whereby the ‘g’ was chosen because of its similarity
with ‘&’.

Several kinds of documentation are differentiated (see Chapter 2). We will mainly con-
centrate on system documentation, which plays the major role in software maintenance.
Creating, studying and updating this documentation are supported.

The software systems being considered are systems written in an algorithmic language
with either a conventional or an object-oriented implementation. Poor structures of
source code can be found in both conventional and object-oriented software systems.
Complexity tends even to be higher in object-oriented systems. Emphasis is laid on

1. Introduction 5

mastering complexity, so the presented tool especially supports the maintenance of ob-
ject-oriented software systems, too. Understanding of software is one of the keys to
making correct modifications.

DOgMA, a software tool for the documentation and maintenance of software systems,
has the following characteristics:

• DOgMA was especially designed to support documentation and maintenance. How-
ever, its use is in no way limited to that process. It can be used as a software devel-
opment tool as well.

• Special emphasis was laid on the process of program comprehension as this is the
most time-consuming task in software maintenance.

• In DOgMA the concepts of browsing, hypertext and literate programming are amal-
gamated. This combination offers a new perspective in the field of maintenance.

• Global text styles can be defined for keywords, identifiers, comments, etc. This re-
sults in a considerable increase of readability in source code and documentation.

• The possibility to highlight any identifiers makes it easy to locate the occurrences of
class, method or variable names both in the source code and the documentation.

• Automatic renaming of identifiers in a certain scope is provided for both the source
code and the documentation.

• The possibility to get useful information about identifiers at any location, e.g.,
declaration, location of the declaration, inheritance path and even verbal
descriptions (if available), provides a major improvement in the understanding of
software systems.

• DOgMA can be used for the processing of any software systems, even if they were
created with another tool.

• DOgMA uses textual external representations of source code and documentation.
This enables programmers to process documents created with DOgMA with other
tools as well.

• DOgMA was implemented on a SUN workstation under UNIX with a modern and
comfortable user interface providing windows, menus, etc. The programming lan-
guages C++ and Modula-2 are supported.

• The implementation was made in an object-oriented manner using the programming
language C++ and the application framework ET++.

• In the design a strict separation in a language-dependent and a language-in-
dependent part was pursued. This allows the adaptation of DOgMA to other pro-
gramming languages more easily.

6 1.2 Scope

The aim in developing DOgMA was to demonstrate possible improvements in the field
of software documentation and maintenance. This development did not result in a fin-
ished product, but rather emphasis was laid on the creation of a new methodology.

1.3 Survey
The report is subdivided into five parts.

Chapter 2 contains the definitions of terms used in the field of software maintenance
and therefore also used in this report.

Chapter 3 gives an overview of the state of the art, describes major problems as well as
promising improvements and tools support in the field of software maintenance, and
evaluates the current situation.

Chapter 4 is dedicated to the new tool DOgMA, which supports the documentation and
maintenance of software systems. The underlying concepts, the user interface, its use
(sample scenarios), and some implementation details are presented.

Chapter 5 classifies software documentation and maintenance tools, describes tools
similar to DOgMA, and compares them to our tool.

Chapter 6 draws conclusions and presents prospects for the future.

- 7 -

2. Terminology

This chapter explains terms from the field of documentation and maintenance of soft-
ware systems that are used in this report.

Software maintenance consists of different activities than its counterpart on the
hardware platform. The general meaning of maintenance is to keep something
functioning according to original specifications. Software maintenance, on the other
hand, is generally regarded as any work done on existing software systems (see also
[Par86c]).

Strictly speaking, the term software maintenance is even a misnomer. As E.W. Dijkstra
noted in a privately published newsletter in 1983: “A program is not subject to wear
and tear and requires no maintenance.” In [Par86a] we find: “Maintenance means to
keep an item in working order after it has already been started and is working correctly,
that is, as per the original design.” Software is different, because it does not deteriorate
and it often does not work correctly from the very start. Besides, maintenance activities
like testing, debugging, enhancing a system and changing it due to environmental
changes are not real maintenance in the hardware sense.

In [Web83] we find the following definition:

Maintenance

1) a maintaining or being maintained; upkeep, support, defense, etc.
2) means of support or sustenance; livelihood; as, her job provided a mere mainte-

nance.
3) in common law, support or assistance that a person is legally bound to give to an-

other or other.
4) in criminal law, the act of interfering unlawfully in a suit between others by helping

either party, as by giving money, etc., to carry it on.

Yet the term software maintenance has been in use over decades. Its proper meaning in
this context can be found in a more specific definition in [ANS83]:

Software Maintenance

Modification of a software product after delivery to correct faults, to improve per-
formance or other attributes, or to adapt the product to a changed environment.

8 2. Terminology

Thus by software maintenance we mean the activity of modifying a software product
after its delivery. Modifications may include error corrections, enhancements, improve-
ments, etc. A more detailed definition can be found in [Par86a]:

Software maintenance is the work done on a software system after it becomes op-
erational. It includes: understanding and documenting existing systems; extending
existing functions; adding new functions; finding and correcting bugs; answering
questions for users and operations staff; training new systems staff; rewriting, re-
structuring, converting and purging software; managing the software of an opera-
tional system; and many other activities that go into running a successful software
system.

Based on this knowledge, we can say that software development incorporates modifica-
tions made on a new system, whereas software maintenance means modifications made
on an old system. More generally we can even say that maintenance is any work done
on old software system. In this sense maintenance is nothing else but continued soft-
ware development (sometimes also called “dynamic development”). The line drawn
between development and maintenance at the time of delivery is somewhat arbitrary.
However, there are subtle differences between development and maintenance, or be-
tween initial development and continued development.

The fact that the software has been delivered already burdens the act of modifying it be-
cause (see [Art88], [Cha86b], [Lef87]):

• Changing the software must not change the way users work.
• Each change requires the consideration of its overall impact.
• Requirements for corrections and enhancements may change (depending on

the users).
• Corrections must be made in time to satisfy the users.
• Improvements in the design might become necessary.
• The development team is often replaced with a maintenance team.
• Changes must be compatible with the existing architecture and design.

McClure identifies four main functions that are involved in software maintenance
[Clu81]:

• understanding the existing software
• identifying the modification objective and the modification approach
• implementing the modification
• revalidating the modified software

Maintenance is usually divided into three categories:
• corrective maintenance
• adaptive maintenance
• perfective maintenance

This classification was first published in [Swa76] and is defined in [ANS83] as follows:

2. Terminology 9

Corrective Maintenance

maintenance performed specifically to overcome existing faults

Adaptive Maintenance

maintenance performed to make a software product usable in a changed environ-
ment

Perfective Maintenance

maintenance performed to improve performance, maintainability, or other software
attributes

Swanson’s three categories have become classical, but other classifications have been
proposed, too. For example, Reutter introduced seven categories [Reu81]:

• emergency repairs (to immediately repair errors on user request)
• corrective coding (to repair errors in order to meet the specification)
• upgrades (to adapt to changes in the processing environment)
• changes in conditions (to adapt to changes in business conditions)
• growth (to adapt to changes in data requirements)
• enhancements (to make additions in response to user requests)
• support (to plan for future features, to measure performance, etc.)

Emergency repairs and corrective coding can be assigned to corrective maintenance,
upgrades and changes in conditions correspond to adaptive maintenance, and enhance-
ments belong to perfective maintenance. Growth can be assigned to both adaptive and
perfective maintenance, whereas the new category of supportive maintenance is consid-
ered by Swanson to be part of all three of his categories (see [Mar83]).

Lin and Gustafson differentiate six categories: corrective, adaptive, retrenchment, re-
trieving, prettyprinting, and documentation activities [Lin88].

Other categories have been added to Swanson’s classification as well, but they never
really succeeded like his three classical categories. For example in [Bri87] we find:

Prevented Maintenance

Prevented maintenance is maintenance that you don’t have to do because the
system was designed not to need it.

According to [Bri87], prevented maintenance can be achieved by a flexible design,
quality assurance, extensive testing, and system change forecasts by asking people who
have knowledge of future requirements (e.g., the users). It is not possible to eliminate
maintenance, but actions can be done during development to reduce it.

The only kind of software the author is aware of that does not need any maintenance is
video games. It is not necessary to make any modifications on these games because
they are simply replaced with new games. But in this case maintenance is not prevented
through careful engineering, but rather ignored by throwing away the old systems after
delivery.

10 2. Terminology

In [Pre87] we find the term

Preventive Maintenance

Rather than waiting until maintenance requests are received, the software is partly
or completely redesigned, recoded and retested.

This approach was pioneered by Miller [Mil79], who used the term structured retrofit.
At a first glance preventive maintenance seems quite costly, but one should consider the
following facts [Pre87]:

• Redesigning software using modern concepts will greatly facilitate future
maintenance (and thus reduce software life cycle costs).

• Development costs are cut back because a running prototype already exists.
• Due to user experience, new requirements can be taken into consideration.

In [Osb87] preventive maintenance is referred to as cleaning up code.

Another category can be found in [Par87a]:

Miscellaneous Maintenance

The corrective, adaptive and perfective maintenance implies changes to a software
system. What if a programmer studied a program, but did not make any changes?
Such work can be termed as miscellaneous maintenance activities.

Hall introduces the term functional maintenance (also called change maintenance)
[Hal87]:

Functional Maintenance

Functional maintenance changes the function of the software by adding or deleting
features.

Another important term in connection with maintenance is maintainability. In [ANS83]
it is defined as follows:

Maintainability

1) The ease with which software can be maintained.
2) The ease with which maintenance of a functional unit can be performed in accor-

dance with prescribed requirements.
3) Ability of an item under stated conditions of use to be retained in, or restored to,

within a given period of time, a specified state in which it can perform its required
functions when maintenance is performed under stated conditions and while using
prescribed procedures and resources.

Maintainability can also be expressed in terms of reliability, modifiability, testability,
understandability, portability, etc.

At least as important as a good design is good documentation to ease software mainte-
nance or even to make feasible. Documentation is so important for software
maintenance because systems are getting more and more complex, so that it becomes

2. Terminology 11

impossible to understand a system within a reasonable amount of time with only the
source code available. In [ANS83] the following definitions are given:

Documentation

1) A collection of documents on a given subject.
2) The management of documents which may include the actions of identifying, ac-

quiring, processing, storing, and disseminating them.
3) The process of generating a document.
4) Any written or pictorial information describing, defining, specifying, reporting or

certifying activities, requirements, procedures, or results.

Software Documentation

Technical data or information, including computer listings and printouts, in human-
readable form, that describe or specify the design or details, explain the capabilities,
or provide operating instructions for using the software to obtain desired results
from a software system.

We need to distinguish between user documentation and system documentation. For
software maintenance we primarily need system documentation, so whenever we use
the term documentation in the following chapters, we actually mean system documenta-
tion. In [ANS83] these terms are defined as follows:

System Documentation

Documentation conveying the requirements, design philosophy, design details, ca-
pabilities, limitations, and other characteristics of a system. Contrast with user doc-
umentation.

User Documentation

Documentation conveying to the end user of a system, instructions for using the
system to obtain desired results; for example, a user’s manual. Contrast with system
documentation.

Unfortunately, system documentation very often falls into at least one of the following
categories [Liu78]: no documentation, insufficient documentation, or misleading docu-
mentation.

Martin distinguishes four kinds of documentation [Mar83]:
• user documentation (instructions on how to use a program)
• operations documentation (used to direct the execution of programs)
• program documentation (used to understand the program, i.e., system doc-

umentation)
• data documentation (description of the data components, i.e., part of the

system documentation)

Another category can be found in [Mar83] and [Gla81]:

12 2. Terminology

Historic Documentation

The historic documentation contains information on how a software system has
evolved during the development and maintenance phases.

This information can be of great help during maintenance in order to understand design
decisions.

System documentation can be further divided into internal and external documentation
[Mar83]:

Internal/External Documentation

Internal documentation is embedded in the source code (comments and compiler
generated information, e.g., a cross reference listing), whereas external documenta-
tion is separate from the source code.

Pomberger differentiates among user, system and project documentation. The latter is a
form of historic documentation [Pom86]:

Project Documentation

The project documentation contains information for project management and for
project control (e.g., a project plan, an organization plan, the definition of project
standards).

Other terms that are frequently used in connection with software maintenance are re-
verse engineering, software reengineering and restructuring. These terms are not de-
fined in [ANS83], but in [Chi90] we can find the following definitions:

Reverse Engineering

Reverse engineering is the process of analyzing a subject system to identify the sys-
tem’s components and their relationships, and to create representations of the
system in another form or at a higher level of abstraction (in contrast to forward
engineering, which is the traditional process of moving from high-level abstractions
and logical, implementation-independent designs to a physical implementation of
the system).

Software Reengineering

Software reengineering is the examination and alteration of a subject system to re-
constitute it in a new form and the subsequent implementation of the new form. It
encompasses the decomposition of the original source code (reverse engineering)
followed by a re-implementation to form a new source code (forward engineering).

Restructuring

Restructuring is the transformation from one representation form to another at the
same relative abstraction level. The subject system’s external behavior is left un-
changed in both functionality and semantics.

In the following chapters we use the term identifier very often. Therefore we give its
definition derived from [ANS83], too:

2. Terminology 13

Identifier

1) A symbol used to name, indicate, or locate. Identifiers may be associated with such
things as data structures, data items, program locations, modules or classes.

2) A character or group of characters used to identify or name an item of data and
possibly to indicate certain properties of that data.

The term software tool is defined in [ANS83] as follows:

Software Tool

A computer program used to help develop, test, analyze, or maintain another com-
puter program or its documentation; for example, automated design tool, compiler,
test tool, maintenance tool.

The software tool DOgMA can be assigned to the categories development tool, docu-
mentation tool and maintenance tool.

- 14 -

3. State of the Art

This chapter represents an investigation of the state of the art in the field of software
documentation and maintenance. Section 3.1 describes major problems and Section 3.2
suggests possible improvements. Finally, in Section 3.3 the current situation is evalu-
ated by comparing the problems with the existing improvements, thus establishing
where more research work is needed.

3.1 Existing Problems
Making an attempt to improve documentation and maintenance raises the question
“What is wrong with it?” This section describes problem areas in this field. There is no
claim to completeness, but rather it is intended to provide the reader with a feeling
about the difficulties in the documentation and maintenance area.

3.1.1 Poor Code

Existing code is often very complex, unstructured, inconsistently indented, and difficult
to understand. It does not follow any standards and contains cryptic names and mis-
leading comments. (In fact, there is often no corresponding documentation available.
This holds especially for old code, e.g., the billions of lines of old Cobol code.) This is
one of the main reasons why maintenance programmers spend so much time on under-
standing existing systems.

Changing these systems usually makes things even worse because changes hardly ever
improve the structure of a software system.

3.1.2 High Complexity

Software systems have become increasingly large and complex. Requirements on soft-
ware systems have steadily increased, even though the level of abstraction increased
with the evolution of high-level programming languages. So we now face more and
more systems whose very complexity inhibits understanding.

The promising paradigm of object-oriented programming makes software more reliable,
reusable and extensible. One can reuse existing code by creating subclasses. Thus the
behavior of existing classes can easily be changed by adding and overriding states and
methods. One has to understand the structure of the classes, the inheritance mechanism,

3. State of the Art 15

the behavior of the classes, the interaction among the objects, etc. in order to
understand object-oriented systems. This is increasingly necessary even for developers
who reuse existing classes that they did not design, e.g., from application frameworks.
Typically, object-oriented applications include the definition of hundreds of classes and
methods.

The behavior of object-oriented systems is more dynamic and complex than that of
module-oriented systems, which makes the comprehension of these systems more diffi-
cult.

3.1.3 Inadequate Documentation

Very often the only information a maintenance programmer can trust is the source
code. It is the only accurate, complete and up-to-date representation of the program.
However, source code listings are hardly suited to representing design decisions, the
global system structure, or the interactions among different system components. System
documentation is necessary to enable the maintenance crew to understand a system. It
should remain valid as long as the software system is being maintained in order to make
the maintenance process feasible.

Nevertheless, system documentation is often inadequate (not meeting the needs of the
maintenance personnel) and out of date, and therefore unreliable and misleading. There
are several reasons for this situation:

• It is often easier to find a solution than to depict the idea behind it.

• Programmers hate to write documentation, even though they appreciate reading it in
order to understand a program.

• The separation of documentation text and source code promotes inconsistency. The
corresponding documentation is left unchanged especially when changes (e.g., bug
fixes) are made to the source code.

• The production of system documentation has lower priority because users do not
need it and therefore it does not have to be delivered.

Good (system) documentation should be concise, complete, current, correct and consis-
tent in style [Gla81].

Another important aspect is the representation of documentation which is usually writ-
ten as text. But text is often not the proper medium, especially when dynamic aspects
have to be described (see also Chapter 3.1.8).

3.1.4 Team Coordination

The following questions may arise when a software product is maintained by a team
(see [Bab86], [Tic88]):

16 3.1 Existing Problems

• This worked yesterday. What happened?
• Who is responsible for this modification?
• Why did my change to this module disappear?
• Why does the listing not match the code image?
• What happened to the fix I put in yesterday?

Both developing and maintaining programmers struggle to understand what state of
progress a program represents. Valuable time is spent trying to find versions of a pro-
gram, and to detect differences between multiple copies of a program. The following
problems are typical [Bab86]:

• The shared data problem
If programmers modify a single copy of a program, then modifications of one pro-
grammer can interfere with the modifications of others.

• The simultaneous update problem
If two programmers simultaneously update the same program, then possibly the up-
dates of one of them will be overwritten. This causes the reintroduction of bugs that
had already been fixed.

3.1.5 Multiple Maintenance

The multiple maintenance problem (called double maintenance in [Bab86]) arises if
multiple copies of the same software exist. Typical questions run as follows:

• Was that bug fixed in this copy, too?
• How many copies exist and where are they?

Bugs that are found in a single copy need to be fixed in all existing copies.

3.1.6 Static Description of Dynamic Behavior

Programs are presented to humans not only linearly but also statically. This is true in
spite of the fact that software systems behave highly dynamically. And it is exactly this
dynamic behavior that is crucial for program comprehension. But deducing this infor-
mation from the pure, static source code of a system is too cumbersome for an effective
software maintenance process. Documentation can help in this respect, but it, too, is
presented in a static form.

3.1.7 Linear Presentation of Complex Structures

Software systems contain complex structures, e.g., data structures and class structures,
with lots of interrelations like inheritance in object-oriented systems. In spite of this fact
the source code is usually stored in flat text files and processed with ordinary text edi-
tors. Programmers are obliged to laboriously get complex structures and interrelations
out of the various places in the source code files in order to understand a software sys-
tem, i.e., to get familiar with it.

3. State of the Art 17

The human visual system is optimized for multidimensional data, but software systems
are presented in one-dimensional textual form. This leaves much of the human brain
unused [Mye86].

3.1.8 Object Code as Black Box

When team coordination and/or multiple maintenance go wrong, it often takes hours of
dump reading to find out the reason for unexpected behavior of a software system. The
difficulty lies primarily in the fact that it is hardly possible to get any information about
an executable object code.

If, for example, something went wrong during the link process (perhaps linking wrong
or old versions of some units), it becomes extremely difficult to find out this fact be-
cause the resulting object code is something like a black box.

The following information is crucial:
• Which versions went into this object-code?
• When were they compiled and which compiler options were used?
• Which system libraries were linked and which link options were used?

Unfortunately, this information is hardly ever available unless the whole linking and/or
even compiling process is repeated. However, even this is not always possible because
usually multiple versions are delivered and any client with an arbitrary version might re-
port an error.

3.2 Possible Improvements
The previous sections have shown that software development and especially software
maintenance are difficult and large-scale tasks. This section presents an overview of ap-
proaches that have delivered or promise improvements in documentation and mainte-
nance of software systems. We differentiate between measures that help a priori in re-
ducing the maintenance effort (Section 3.2.1) and measures that help mastering and im-
proving the maintenance process (Section 3.2.2). We will also try to give an overview
of tool support. Again, there is no claim to completeness, but rather the attempt is
made to show various directions of improvement.

3.2.1 Preventing Maintenance

The pipe dream of any software engineer is maintenance that does not have to be done
because the system was designed not to need it (see Chapter 2). Although it is impossi-
ble to totally eliminate the maintenance process, there are measures that can be taken in
the earlier phases of the software life cycle in order to reduce the maintenance effort
later on. Examples are structured programming, prototyping, the use of fourth
generation languages, and spare parts maintenance, which are presented in the
following subsections. Tools that help in preventing or reducing maintenance are not

18 3.2 Possible Improvements

regarded as maintenance tools because they are used especially in early life cycle
phases. Therefore we refrain from looking at such tools in this subsection.

3.2.1.1 Structured Programming

The discussion on structured programming started in 1965 with Dijkstra’s paper Pro-
gramming Considered as a Human Activity, which contained the notion of top-down
design, the emphasis on quality and correctness of programs, and arguments against
goto statements [Dij65]. Dijkstra observed that computers were becoming faster and
more powerful, whereas the capacity of human brains remained limited.

A matter of course are the characteristic terms of structured programming like top-
down design, modular programming, and structured coding. But it took years until
these techniques became widely accepted. And it was also a major step forward for
software maintenance because structured programs are easier to understand and thus
more reliable and maintainable. Maintaining today’s complex software systems would
be unimaginable if, for example, their program code would modify its own instructions,
which was not unusual in the ‘unstructured’ sixties.

Historical papers on the subject of structured programming by renowned computer sci-
entists like Dijkstra, Knuth and Wirth are collected in [You79].

3.2.1.2 Prototyping

Prototyping allows users to get experience during the development phase, to show the
impact of the requirements, and to reduce the development risks (see [Hol84]). Early
hands-on experience on a working prototype influences the maintenance phase as well.
User enhancements account for almost half of all maintenance work (see [Mar83]).
They can be reduced considerably when users have the possibility to explore a software
system’s functionality and user interface before it is developed. In this sense, prototyp-
ing is a means for preventing maintenance (see Chapter 2).

Prototyping is useful not only for specifying the requirements to a system, but also to
support the implementation by exploring the structure of the system (e.g., modulariza-
tion, class hierarchy). This leads to better implementations, which is beneficial in the
maintenance phase. Another prototyping approach is repeatedly applying a redesign,
reimplementation and reevaluation process, thus developing a prototype to the final
product (see also [Bud84], [Pom91]). Again, maintenance benefits from a better imple-
mentation.

3.2.1.3 Fourth Generation Languages

Machine languages were the first generation of computer languages. The second gen-
eration consisted of assembler languages. High-level algorithmic languages like Fortran
and Cobol introduced the third generation. Even modern programming languages like
object-oriented ones are still considered to belong to the third generation.

3. State of the Art 19

The idea of fourth generation languages was to raise the abstraction level and to give
more power to the user. While languages from the first to the third generation are to be
used by (professional) programmers, fourth generation languages are intended to be
used by nonprogrammers as well. In these languages it usually suffices to specify what
is to be done and the system knows how to do it (e.g., by means of report generators or
query languages). This offers end users the opportunity to develop and maintain sys-
tems of their own.

The positive effects of using fourth generation languages on software maintenance are
[Mar83]:

• Programs can be both created and changed faster and more easily.
• It becomes easier to understand another person’s applications.
• End users can make their (simple) changes and enhancements themselves.

However, the maintenance process will not disappear; it will even suffer as a result of
high complexity and insufficient documentation. (Fourth generation languages are
hardly self-documenting as their vendors suggest, [Tin85].) Besides, the fact that en-
dusers are not trained in producing maintainable software (ignoring documentation
standards, system structures, etc.)— probably they do not even have any motivation to
do that— burdens the process of modifying this software subsequently [Par85].

3.2.1.4 Spare Parts Maintenance

In hardware maintenance the removal of defective parts and their replacement with
spare parts is routine. This could be applied to software maintenance, too. When
requests for corrective maintenance are received, the erroneous parts could be replaced
by spare parts [Pre87]. The spare part strategy seems unconventional for software, but,
considering all costs during the software life cycle, it might be an advantageous
alternative. However, there is little experience in this strategy. Besides, separate
programming teams tend to make the same or similar mistakes when using the same
specification [Pre87].

3.2.2 Improving Maintenance

In the following subsections we present examples of possible improvements in the pro-
cess of software maintenance. Each section concludes with a discussion of tool support
as this is a crucial point in the acceptance and even in the application of the presented
remedial measures.

3.2.2.1 Hypertext

Usually text files on a computer are flat; i.e., they are organized in a linear way. This
linear organization is not adequate in many applications. For example, the documenta-
tion of a software system should be interleaved with the source code and there are a lot
of possible paths to read the available information, depending on the interests of the
reader.

20 3.2 Possible Improvements

Hypertext enables nonsequential writing and reading. It consists of a set of nodes where
each node contains some amount of information (some text, a picture, or even a video
sequence). These nodes are connected by links and form a directed graph.

Navigating through a hypertext system means following these links. As each node can
have several outgoing links, there are many possible sequences in which to inspect the
nodes of such a network. This makes the user feel that she/he can move freely through
the available information (see [Fid88], [Smi88], [Nie90]).

Vannevar Bush was the first to describe the ideas of hypertext [Bus45]. Although at
that time there were no adequate computers available, Bush had a vision of organizing
information similar to the human mind, which operates by association. He introduced
(although never implemented) memex, a machine for browsing and making links and
notes, an on-line text and retrieval system.

About 20 years later Bush’s ideas influenced the work of Douglas Engelbart, who then
developed NLS (oN Line System). NLS was an experimental tool for storing specifica-
tions, plans, designs, programs and documentation and doing planning, designing, de-
bugging, etc. [Eng63]. More and more hypertext systems have emerged with the evolu-
tion of cheaper and more powerful computers (see [Con87], [Shn89]).

The fact that special issues and sections about hypertext have been published in the
BYTE journal (October 1988) and the Communications of the ACM (July 1988 and
March 1990) emphasize the interest of the research community in this field. Books are
available on this subject, too (e.g., [Bar88], [Shn89]). Even special conferences are held
on the subject of hypertext.

Nonsequential writing is extremely useful for software documentation. Hypertext tools
are the new generation of documentation tools (for both user and system documenta-
tion). The concepts of hypertext can also be applied to source code and— even more
important— it can be used for the integration of source code and documentation.

Some familiar hypertext systems are Neptune, NLS/Augment, NoteCards, Document
Examiner, HyperCard, Guide and Xanadu. In [Shn89] an overview of existing hyper-
text systems is given along with short descriptions. Conklin provides an extensive list of
hypertext systems and their features in a clearly arranged table [Con87].

Possible applications of hypertext systems include
• dictionaries
• encyclopedias
• product catalogs
• technical documentation
• help systems
• software engineering tools

3. State of the Art 21

Dynamic Design is an example of a software engineering tool developed for the C pro-
gramming language using the Neptune hypertext system (see [Big87]). A simple hyper-
text editor for the processing of source code can be found in [Mös90].

Hypertext technology seems to be a suitable approach for organizing both documenta-
tion and source code, thus giving users better access to needed information.

3.2.2.2 Comfortable Browsing

A browser presents a hierarchical index to information, where the index is an aid for the
user to quickly obtain needed information. Typically browsers are used for the inspec-
tion of file systems (the index providing directories and files) or program systems (the
index providing the names of modules/classes and procedures/methods).

Comfortable browsing is an important aid in the program comprehension process. For
program understanding it is especially important to obtain needed information as fast as
possible.

Actually, browsing systems can be regarded as limited hypertext systems because they
allow nonsequential reading of information. For example, in a program browser classes
and methods (or modules and procedures) represent the nodes. They are linked with
certain relations among them, e.g., the methods or subclasses of a class. Usually in
browsers the nodes are displayed in one or more lists, where they can be selected for in-
spection. Depending on a selection, the contents of some other lists may change, which
helps to master the complexity. However, a hypertext system does not necessarily use
lists to permit following the links.

Examples of comfortable browsing tools are the various Smalltalk browsers (see
[Dig89], [Lal90]).

3.2.2.3 Literate Programming

Programs are written to be executed by computers rather than to be read by humans.
Ideally, it should be the other way round. When writing programs, we should not try to
instruct the computer what to do, but rather we should try to tell humans what we want
the computer to do [Knu84].

The idea of literate programming is to make programs as readable as ordinary literature.
The primary goal is not to get an executable program but to get a description of a prob-
lem and its solution (including assumptions, alternative solutions, design decisions,
etc.). The idea has been demonstrated on relatively small as well as on large programs
(e.g., [Knu86a], [Knu86b]).

After the idea of literate programming was published by Knuth in 1984 [Knu84], Pro-
gramming Pearls columns about literate programming were presented in the Communi-
cations of the ACM in 1986 ([Ben86a], [Ben86b] and [Ben87]). The response to these
columns was so strong that a column dedicated to literate programming was introduced

22 3.2 Possible Improvements

([Gil87], [Wal87], [Col88], [Lind89], [Ram89], [Wyk90]). The journal Structured
Programming has laid emphasis on this theme as well ([Lin89a], [Lin89b], [Tun89],
[Bro90a], [Bro90b]). An annotated bibliography of literate programming is given in
[Smi91].

With the idea of literate programming Knuth also developed the WEB system to
support the new paradigm. The original WEB system supports Pascal as programming
language [Knu84]. Other implementations have been made for the programming
languages C ([Lev87], [Thi86]), Modula-2 [Sew87], Lisp [Ram88] and Fortran
[Ave90]. In order to make WEB available to a much larger audience, the tool SPIDER
was developed [Ram89] to construct instances of the WEB tools TANGLE and
WEAVE from a language description. WEBs for the languages C, AWK, SSL, and
Ada have been generated with SPIDER.

The HSD system developed by Tung is also in some way based on the original WEB
system. However, documents are not organized linearly but rather composed of a hier-
archically ordered collection of sections [Tun89]. Object-oriented programming lan-
guages are supported as well, so a literate programming environment is available for
Smalltalk [Ree89].

Programming with documentation rather than with pure source code is a major step to-
wards better program comprehensibility and thus maintainability.

3.2.2.4 Configuration Management

Usually large software products are not a single system but a set of similar configura-
tions. Configuration management is the discipline of controlling these configurations
and their evolution. It also helps to coordinate programmers working on the same soft-
ware product. This is accomplished by [Tic88]:

• identifying components and configurations of a software product
• tracking changes (which component, what reason, what time, by whom)
• automatically putting together configurations
• simultaneously managing updates of components

The use of configuration management techniques is not limited to source code. These
techniques can be applied to documentation as well. Similar to source code, multiple
versions of specifications, design documents, test reports, etc. exist in large projects.
The maintenance of large software systems is hardly possible without configuration
management .

For small programming teams, manual configuration control procedures might be suffi-
cient. But tool support is indispensable for large teams. The Unix operating system has
become a commercially popular environment for software development. It offers con-
figuration management tools like the Source Code Control System (SCCS, see
[Roc75]) and the Revision Control System (RCS, see [Tic82], [Tic85]). Both SCCS
and RCS have similar capabilities. They manage the files of a software system and can

3. State of the Art 23

produce any version of any module on demand. They also prevent simultaneous up-
dates by different programmers.

One common problem in maintaining consistency is to keep source code and object
code equivalent. This is not an easy task when an interface has been changed in a large
software system. One possibility to guarantee this equivalence is to rebuild all object
codes from scratch. However, in large projects this is not always a suitable solution.
Unix offers the tool Make (see [Fel79]), which is used to build an executable image
from the source code, ensuring in the process that all recent changes are reflected and
minimizing the time to achieve this goal (by recompiling only the necessary modules).

Another example of a software configuration management system is the Domain Soft-
ware Engineering Environment (DSEE) available on Apollo workstations (see
[Leb84]).

3.2.2.5 Change Management

The methodology for controlling changes in the process of maintaining a system is
called change management. Change management means documenting, communicating,
tracking, maintaining and reporting changes in a software system [Art88]. It is useful
for the programmers, the managers and the users to report the project status, to
schedule changes, to trace changes, etc.

For every change the following questions should be answered by the change manage-
ment system [Art88]:

• What is to be changed?
• Why is it to be changed?
• Who wants it to be changed?
• How important is it to make the change?
• How will it be changed?
• When will it be changed?
• Where will it be changed?
• Who will make the change?

A change management system allows inquiries in order to facilitate project manage-
ment. Changes can be scheduled according to their importance (priority); change re-
quests can be rejected due to budget or personnel constraints or because of technical
reasons; change requests cannot get lost because they are documented (some kind of
historic and project documentation); changes can be tracked and monitored and thus
give an essential support for all maintenance activities.

Change management facilities are often integrated in configuration management tools
(see [Zve89]).

24 3.2 Possible Improvements

3.2.2.6 Software Reengineering

Like many terms in software engineering, the origin of the term reverse engineering lies
in the field of hardware. The practice of deducing design decisions from a finished
product is not unique to the analysis of hardware [Chi90].

Applied to software systems, reverse engineering helps to get a design-level under-
standing of a system and its structure in order to aid the process of maintaining this
system. This is useful when only the source code of a system is available.

The following objectives are to be accomplished by reverse engineering [Chi90]:
• coping with complexity (e.g., by extracting relevant information)
• generating alternate views (e.g., graphic representations)
• recovering lost information (especially about the design process)
• detecting side effects
• synthesizing higher abstractions (generating alternate views at higher ab-

straction levels)
• facilitating reuse (existing software becoming a candidate for reuse only

when there is more information available than just the source code)

Reverse engineering is the opposite of the well-known (or better known) process of
moving from the design to the implementation of a system (also called forward engi-
neering to distinguish it from reverse engineering). Subareas of reverse engineering are
redocumentation, restructuring and design recovery. Software reengineering uses both
the reverse and forward engineering technologies to achieve a new, better maintainable
software product, which may already be modified with respect to new requirements.

The usual meaning of restructuring is transforming a program from an unstructured
form (sometimes called spaghetti code) to a structured form (without gotos). In this
sense, restructuring enhances the readability and comprehensibility of code by improv-
ing its structure. In a broader meaning, restructuring is a recasting technique for reshap-
ing data models, design plans, and requirements structures (see [Chi90], [Hod85]).

Restructuring seems to be especially useful with Cobol code because billions of lines of
old, unstructured and undocumented Cobol code exist. But we should never forget that
(automatic) restructuring only treats symptoms and does not solve real problems. Bad
code will remain bad code, although it may become structured bad code. Restructuring
is not a substitute for good design and good documentation. But, nevertheless, it can
reduce the maintenance burden significantly [Gam86].

Restructurers exist mainly for Cobol because so many existing software systems were
written in Cobol without any structured programming techniques. But other languages
are supported as well (e.g., Fortran, C). Examples are Superstructure, Cobol ISF, De-
coder and Retrofit (see [Zve89]).

3. State of the Art 25

More sophisticated tools support the conversion of source code to design code or a
specification language, e.g., Reverse Engineering, CASE Station, Promod [Zve89]. An
example of a reformatter is given in [Bla89].

Case studies have shown that reengineering can decrease the complexity and increase
the maintainability of software systems [Sne90].

3.2.2.7 Visualization

Graphic aids have long been known to support program comprehension (e.g., flow-
charts). A more visual style would improve both the creation and the understanding of
programs.

• Visual programming
Visual programming allows users to specify a program in a pictorial fashion. This
includes flowcharts as well as graphic programming languages.

• Program visualization
Program visualization, on the other hand, uses graphics to provide information
about the state of a program (e.g., the values of the variables). This is especially
useful during the debugging process, but can also be used for teaching purposes.

• Program animation
Program animation means the dynamic visualization of program states. Static de-
scriptions are inadequate and insufficient for the process of understanding a com-
plex and highly dynamic software system. Program and algorithm animation seems
to be the right step forward to support program explanation and comprehension.
The idea is that the user can specify objects she/he is interested in, which are then
continuously displayed on the screen. Thus the dynamic behavior of a software
system becomes a major contribution to the process of understanding this system.
The user needs the possibility to view the execution of a program at any desired
level of abstraction in order to fully understand what’s going on in the system.

• Programming by example
Programming by example is another new technology which is intended to make pro-
gramming easier, especially for non-professionals. It means specifying everything
about a program by providing and working on examples. Usually this is also done
visually.

In [Mye86] precise definitions of the terms visual programming, program visualization,
and programming by example are given, as well as a good overview of existing tools.
Examples of tools supporting visual programming are PIGS, Pict and Prograph, which
use Nassi-Shneiderman diagrams, flowcharts (with color icons) and a data flow lan-
guage, respectively.

Tools for program visualization illustrate certain aspects of a software system that was
conventionally implemented. Animation tools are program visualization tools with dy-

26 3.2 Possible Improvements

namic display of the program. Examples of program visualization tools are Pegasys and
VIFOR [Raj90]. Balsa and Animation Kit are animation tools. Programming by
example is offered by Graphical Thinglab, SmallStar, Rehearsal World, and others.

Research work on visual programming environments is collected in the tutorials
[Gli90a] and [Gli90b]. They also contain papers about the tools mentioned above.

3.2.2.8 Self-Identifying Software

The idea of self-identifying software is to identify each change of a software component
and to provide this identification for every component in an executable program. This
reduces the time needed for determining (the versions of) the parts which a software
system being diagnosed consists of (see [Gre88]).

Self-identifying software would require appropriate tool support but unfortunately such
tools are hardly available.

3.3 Evaluation of the State of the Art
The previous sections presented exemplary problems and possible improvements in the
field of software maintenance. In this section we will investigate how these improve-
ments serve to alleviate the problems.

• Poor code
Poor structure of source code can be avoided when applying structured program-
ming techniques. Top-down design, modular programming and structured coding
lead to considerably better understandable and thus better maintainable source code.
If the source code exists already, then restructuring can enhance its readability by
improving its structure.

• High complexity
Coping with complex systems is made easier by literate programming because this
paradigm is aimed at telling humans the essentials about a software system (e.g.,
design decisions). The idea of hypertext also contributes to the mastering of com-
plex systems by supporting fast access to available information (both in the source
code and in the documentation). Fourth generation languages raise the abstraction
level, which is an important step in decreasing the complexity of software systems.
Change management and configuration management help to master the evolution
of complex systems by supporting the management of different versions and
configurations and by keeping track of the change history. Reengineering can help
to track relevant information. Visual programming as well as programming by
example are further efforts to raise the abstraction level of programming, whereas
program visualization is used to graphically present various aspects of a software
system. The more complex a system is, the more useful these graphic
representations are. The same holds for prototyping. Working with a prototype is

3. State of the Art 27

better suited for understanding the specification of a (complex) system than reading
numerous pages of written text. Self-identifying software becomes important when
the number of components (modules, classes) and their versions increases.

• Inadequate documentation
The quality of the documentation can become considerably better when applying the
idea of literate programming. Reengineering tools can generate different views of a
software system (e.g., diagrams). With fourth generation languages the need for
documentation may decrease due to the higher abstraction level. Working
prototypes can replace large amounts of written documentation in the specification
phase. The behavior of a prototype is considerably better documentation than any
written text. The same holds for any visualization of any aspects of a software
system.

• Team coordination, multiple maintenance
Both configuration management and change management emerged because of the
problems encountered in team coordination and multiple maintenance. They were
proposed for handling the questions mentioned in Sections 3.1.4 and 3.1.5.

• Static description of dynamic behavior
The importance of dynamic aspects is increasing (e.g., in object-oriented software
systems). Program visualization and especially program animation offer the oppor-
tunity to present this crucial aspect in an adequate manner. In this sense prototypes
also play a major role because they consider the dynamic aspects of specifications.

• Linear Presentation of dynamic behavior
With hypertext the complex structure of a software system can be presented to the
user in an adequate manner. The power of nonsequential reading offers the flexibil-
ity to meet individual needs in studying complex information webs.

• Object code as black box
Self-identifying software can shed more light on object code by providing important
information about all its constituent parts. Reengineering techniques (e.g., disassem-
bling) can also help to get information about object code.

Figure 3.1 summarizes our evaluation of the state of the art. It is interesting to note that
spare parts maintenance does not address any of the enumerated problems. The reason
for this is that the idea behind spare parts maintenance is simply to develop multiple
parts of a software system in order to speed up corrective maintenance in these parts.

28 3.3 Evaluation of the State of the Art

The number of crosses in a column in Fig. 3.1 does not indicate how well a specific
problem is under control. High complexity, for example, is still a problem in software
projects. One of the reasons for this is that literate programming, hypertext, fourth gen-
eration languages, change management, configuration management, software reengi-
neering, visualization, prototyping and self-identifying techniques are hardly ever used
together.

It seems that all mentioned problems are faced by useful improvements. Yet
maintenance remains a problem. The main reason for maintenance still being a major
problem is the lack of supporting tools. We do not, for example, benefit from hypertext
and/or literate programming if we do not have the appropriate tools. Below we give a
short evaluation of the tool support.

• Comfortable browsing tools are available for modern programming languages
(especially object-oriented ones) like Smalltalk, but almost none are available for
old languages like Cobol or Fortran.

• Hypertext tools have been conceived for an amazingly broad range of applications,
but mostly not for software development and/or maintenance. The use of hypertext

Po
or

 C
od

e

H
ig

h
C

om
pl

ex
ity

In
ad

eq
ua

te

D
oc

um
en

ta
tio

n

T
ea

m

C
oo

rd
in

at
io

n

M
ul

tip
le

M

ai
nt

en
an

ce

St
at

ic

D
es

cr
ip

tio
n

L
in

ea
r

Pr
es

en
ta

tio
n

O
bj

ec
t C

od
e

as
 B

la
ck

 B
ox

Structured
Programming

8 8

Prototyping 8 8 8

4th Generation
Languages

8 8

Spare Parts
Maintenance

Comfortable
Browsing

8 8

Hypertext 8 8

Literate
Programming

8 8

Configuration
Management

8 8 8

Change
Management

8 8 8

Software
Reengineering

8 8 8 8

Visualization 8 8 8

Self-Identifying
Software

8 8

Fig. 3.1 Evaluation of the state of the art

3. State of the Art 29

tools designed for this application area is hindered by the difficulty in integrating
them with other software tools.

• Many literate programming tools have been developed, but even though tools are
available and the paradigm is widely accepted as being useful, these tools are hardly
used except by their creators (see also [Wyk90]). Besides the fact that still nobody
likes to write documentation, the main reason for this situation is that nearly all of
these tools lack a modern user interface. They are simply to cumbersome too work
with.

• Configuration management tools often only focus on various aspects. One of the
reasons that there is hardly any universal tool is the fact that research work is far
from being completed in these area.

• The same holds for change management.

• Tool support for software reengineering is mainly focused on subareas thereof, e.g.,
redocumentation.

• Visual programming tools and program visualization tools are areas of active re-
search. Interesting systems have been developed already. Both static and dynamic
code visualization are not unusual (e.g., flowcharts, highlighting the part of the
source code being currently executed), whereas data visualization is less supported,
even though it is at least equally important. Visual programming tools exist mainly
for programming with flowcharts or Nassi-Shneiderman diagrams, or for specifying
the user interface of a software system.

• Inconceivably, the idea of self-identifying software seems not to be worth being
supported by tools.

Summarizing, we can say that the tools lack completeness, compatibility and uniformity
(see [Mar83]):

• No system has a complete set of tools.
• Tools are language-dependent and machine-dependent.
• Tools on the same machine and for the same language are often incompati-

ble.

Unix, with its extensive tool support, can be regarded as a programming environment
(see [Ker76]). However, the toolset provided is not complete either, and, of course,
many of the tools are language-dependent. Even compatibility, one of Unix’s strengths,
is not always ensured.

The main problem with the tool support is that even if various tools are compatible and
can be used together, their combined use is in most cases less powerful than a single
tool that combines the concepts of these tools. For example, if a hypertext tool, a
literate programming tool and a debugging tool can be used together, then the user
does not benefit from any hypertext or literate programming features when working
with the debugger. However, it would be advantageous to have comfortable access to

30 3.3 Evaluation of the State of the Art

the documentation or any other important information during the debugging process
also.

Another drawback of most of the tools is their clumsy user interface which does not
match modern and widely accepted techniques like menus, windows and wysiwyg
(what you see is what you get).

[Tah90] gives an annotated CASE bibliography containing over 120 items. The fact
that only two items were classified under the keyword maintenance, one under docu-
mentation and two under reverse engineering, further emphasizes that these terms play
a minor role in software engineering.

Trying to build a software tool that incorporates all conceivable features for the mainte-
nance process would certainly not be satisfactory. This only leads to colossal software
systems that are hardly maintainable themselves, and even difficult to develop with jus-
tifiable effort.

The study of existing tools and the above considerations led the author to pick up new
and promising ideas, amalgamating them to build a new tool that is a step forward in
the improvement of the all too neglected and yet immensely important task of
documenting and maintaining software systems.

- 31 -

4. DOgMA: A New Tool for
Documentation & Maintenance

This chapter describes DOgMA, the author’s contribution to the improvement of docu-
mentation & maintenance. Although DOgMA is basically a software development envi-
ronment, it was designed with the intent to particularly support documentation and
maintenance. Section 4.1 describes the goals behind the design of DOgMA. Section 4.2
contains the underlying concepts. The user interface is introduced in Section 4.3. Sam-
ple scenarios are given in Section 4.4. Section 4.5 introduces parameterization possibili-
ties. Section 4.6 gives some implementation aspects. Finally, Section 4.7 presents some
statistics and measurements.

4.1 Goals
In the previous chapter we saw that too often existing tools deal only with certain
subareas, do not combine various concepts, lack compatibility, and suffer from clumsy
user interfaces. These observations led to the definition of the following goals for the
development of a new maintenance tool.

• Concentration on the essentials
Rather than trying to support all activities of the software maintenance process, the
main goal should be to reach a considerable reduction in software maintenance costs
with justifiable effort.

• Synthesis of new concepts
The synthesis of useful new concepts like literate programming and hypertext is ex-
pected to emerge as a much better aid than the combined use of tools for each con-
cept (e.g., the separate use of hypertext tools and literate programming tools).

• Compatibility
An isolated tool does not help very much unless it supports all activities of the soft-
ware life cycle process. Therefore an easy integration in an existing environment is
essential.

32 4.1 Goals

• Modern user interface
Even though modern graphic user interfaces are widely accepted and used, the ma-
jority of existing tools does not support such simple things as menus or (multiple)
windows. Ease of use is a crucial point for the acceptance of tools; their use must
not require the reading of extensive user manuals. This holds especially for unpopu-
lar activities like documentation and maintenance.

• Modern implementation techniques
Providing our new tool with a modern user interface additionally offers a good op-
portunity to use modern design and implementation techniques like object-oriented
programming and application frameworks. These techniques are said to reduce de-
sign and implementation effort considerably, especially for applications with graphic
user interfaces.

One of the major problems with software maintenance is program comprehension. It is
the most time-consuming task (see Section 1.1). And one of the most important things
to improve program comprehension is system documentation. Thus the improvement of
both program comprehension and documentation promises a major reduction in
software maintenance costs. We define the following subgoals for the achievement of
such an improvement :

• Motivation to write documentation
One of the problems with documentation is that programmers do not want to docu-
ment. Better tool support for its creation and especially the integration with the
source code should provide better motivation.

• Documentation access
Documentation does not help much if it is not accessible. The user has to be told
whether documentation exists for a given part of the source code and where it is.

• Documentation consistency
Documentation is seldom up-to-date and therefore gives incorrect or misleading in-
formation. This is certainly worse than no documentation at all. A tool cannot really
check consistency of a documentation text, but it should help the programmer to
check it.

• Documentation completeness
The amount of documentation will vary from project to project. However, a mainte-
nance tool should be able to tell the user which parts of the systems are documented
and where (see documentation access), and which are not.

Good documentation is the best way to improve program comprehension. But there are
other possibilities for improvement as well.

4. DOgMA: A New Tool for Documentation & Maintenance 33

• Information access
As important as the access to documentation is the (fast) access to the source code
itself. Understanding a piece of code hinges on the answers to many questions, e.g.:
Where is this variable defined/set/used? An effective maintenance tool must help the
user to answer questions like these in an easy and fast manner.

• Preventing side effects
Side effects of a maintenance change are very often triggered by just ‘making a little
change’. The reason for this is incomplete understanding of the system to be main-
tained and can again be prevented by an easy and fast access to relevant information
(see above).

• Dealing with high complexity
Being better able to deal with complex software systems is another important goal
because new paradigms like object-oriented programming tend to result in even
more complex system structures.

Maintenance is work done on existing source code and the corresponding documenta-
tion. But as maintenance is considered as continued development (see Chapter 2), the
development of new software has to be supported as well because all these
development activities are carried out during maintenance also. Therefore a
maintenance tool must support the maintenance of already existing systems as well as
the creation of new ones.

• Maintenance support
The tool must be able to support the user in the understanding of existing source
code, even if there is no documentation available and the code was created with an-
other programming system.

• Development support
The tool must be usable in the maintenance as well as in the development phase; i.e.,
it must also assist in the development of software systems.

In the conclusion in Chapter 7 we will examine to what extent these goals have been
achieved.

4.2 Concepts
We already mentioned that program comprehension is one of the major problems with
software maintenance and that system documentation is a crucial point for that task.
Hypertext technology shows the greatest promise to improve the understanding of
software systems and the idea of literate programming is expected to advance the
quality of both source code and documentation. Combining hypertext and literate
programming is supposed to strengthen the integration of source code and
documentation. The resulting permanent availability of the documentation has many

34 4.2 Concepts

advantages. The consistency and the completeness of documentation can be checked
more easily. The motivation to put down ideas and design decisions and to keep them
up-to-date will increase, which results in better information for the maintenance staff.

In the following we will demonstrate in more detail how the used concepts are applied
to our tool. This is also partially described in [Sam90] and [Sam92].

4.2.1 The Structure of Source Code

The overall structure of a software system plays an important role for maintenance peo-
ple getting well acquainted with it. Questions like the following arise:

• Which components does the system consist of?
• What are the interrelations among these components?
• How are the interfaces defined for the various components?
• What is the control flow and the data flow within and among these compo-

nents?

Generally speaking, a software system can be regarded as an information web which
consists of nodes and links. Modern design and implementation paradigms are module-
oriented and object-oriented programming. The architecture of module-oriented
software systems differs essentially from object-oriented systems. We therefore have to
investigate how they correspond with the general information web model and what the
differences are between object-oriented and module-oriented systems.

The Information Web of Object-Oriented Software Systems

Object-oriented software systems consist of a set of classes. A class describes the im-
plementation of a set of objects. A class (subclass) can inherit the properties of another
class (superclass). If a class is the subclass of only one superclass, we speak of single
inheritance. If a class has more than one superclass, we speak of multiple inheritance
(for details, see [Mey87]).

Objects (i.e., instances of classes) communicate via sending and receiving messages
which trigger the performance of a specific operation. The operation performed is de-
scribed in a method. The behavior of subclasses can be changed by overriding methods
of the superclass.

The information web of an object-oriented system consists of classes and methods with
the following interrelations:

• A class can be the subclass or superclass of another class.
• A class has a set of methods.
• A method belongs to a class.
• A method can be overridden in a subclass.

Figure 4.1 shows the relations of a class to two superclasses, three subclasses and three
methods.

4. DOgMA: A New Tool for Documentation & Maintenance 35

superclasses

subclasses

m
e
t
h
o
d
s

class c

class a class b

class d class e class f

method x

method y

method z

Fig. 4.1 Relations of classes in an object-oriented system

Still other relations exist based on identifiers used in a software system:
• An identifier is defined in a class or method.
• The use of an identifier is related to a specific definition of this identifier

and to other uses of the same identifier.
• A comment possibly contains a short description of an identifier, e.g., the

description of a class, a method, or an instance variable. (Instance variables
are variables defined in a class.) Such a comment is related to all
occurrences of an identifier.

The Information Web of Module-Oriented Software Systems

Module-oriented systems consist of modules and procedures rather than of classes and
methods. Usually a module (or package) consists of a definition module and an imple-
mentation module (or package specification and package implementation). The
definition module specifies what a module does and the implementation specifies how
this is done.

A module can use another module by importing its definition. Hence in a module-ori-
ented software system we can define the following relations:

• A module consists of a definition and an implementation.
• A module imports other modules.
• A procedure belongs to a module.

 We can define relations based on identifiers, as we did for object-oriented systems:
• An identifier is defined in a module or procedure.
• The use of an identifier is related to a specific definition of this identifier

and to other uses of the same identifier.
• A comment possibly contains a short description of an identifier, e.g., the

description of a module, a procedure, or any other data.

The Information Web of Systems Written in C++

Any software system is implemented in a certain programming language. The question
arises whether the language has an essential influence on the structure and
representation of the system’s information web. We use C++ as an example of an
object-oriented programming language and will take a closer look at software systems
written in that language. C++ was chosen because on the one hand it is expected to
gain widespread use in industry and on the other hand tool support did not keep up

36 4.2 Concepts

with the evolution of this language and cannot be compared with, for example, tool
support for Smalltalk.

The programming language C++ is not a pure object-oriented language but rather an
object-oriented extension of C [Str86]. A C++ program system consists of a set of files
that contain class definitions, method implementations and global declarations. The
global declarations can be used in more than one class and their corresponding
methods.

There is no restriction on what has to be written in a single file. A file can contain more
than one class definition and a class definition together with its method implementations
can be spread over several files. We use the common extensions ‘.h’ for files containing
class definitions and ‘.c’ for files containing the implementation of a class, i.e., the im-
plementation of their methods; they are called the h-files and c-files, respectively.

In order to use a specific class, its h-file has to be included. (This is done with a special
preprocessor statement.) Besides the inheritance relation shown above, there exists an-
other relation among the files of a program system written in C++, the include relation.
This means that usually one has to inspect different files in order to find out the whole
story about a C++ class.

Thus the following relations can be defined in a C++ software system:
• A class definition is contained in a file.
• A class inherits from another class.
• A method is contained in a file.
• A method belongs to a specific class.
• A method is overridden in a subclass.
• A file is included by other files.

An identifier may not only be defined in a class or method, but also global in a file,
which allows its use in more than one class. The parallel structure of files and classes
complicates the information web of C++ systems, which even further impedes the pro-
cess of getting familiar with such a system.

Programming languages have an important impact on the structure of a software
system. Therefore a tool for software maintenance should be capable of presenting
various system structures to the user. It must be conceived in a language-independent
manner. In order to demonstrate a tool’s qualification for language-independency, at
least two different languages have to be supported. It is reasonable to choose both an
object-oriented and a module-oriented language for this purpose, as this greatly
influences the overall structure of a software system. We decided on C++ as a
representative of object-oriented programming languages and Modula-2 as an example
of a module-oriented language. Modula-2 [Wir85] was chosen as representative of a
module-oriented programming language because it contains all essential concepts of
this paradigm without being needlessly complex.

4. DOgMA: A New Tool for Documentation & Maintenance 37

In the following sections examples will be shown in C++ notation. However, the con-
cepts presented can be applied to both module-oriented and the object-oriented
software systems.

Collapsing Text

The information web described so far depends on the syntax of the programming lan-
guage that is used, i.e., on the concepts of the language. However, this is not sufficient
for program comprehension because entities like methods or procedures are not subdi-
vided further. We need a possibility to structure larger text pieces beyond the program-
ming language’s syntax in order to represent logical contexts. This can be achieved by
grouping text parts and giving them a name. A software tool can replace these text
parts by their name, thus hiding the details by either collapsing or expanding these texts.
This improves the lucidity of larger text pieces significantly. For example, a method that
creates a menu bar can logically be divided into groups for each menu entry.

PullDownBar *HyperTextDocument::CreateMenuBar()
{
 ObjList *list= new ObjList;
 File Menu
 Edit Menu
 Project Menu
 Text Menu
 Identifier Menu
 Goodies Menu
 return new PullDownBar(this, list);
}

Fig. 4.2 Collapsed text parts

Figure 4.2 shows a C++ method that creates seven menus for a menu bar. The source
code for creating the menus is hidden.

During development by stepwise refinement, the different steps of the design process
can be realized with such collapsed text parts. Information about design decisions is
usually lost, but is of crucial interest for maintenance programmers. Text parts can be
collapsed in both object-oriented and module-oriented software systems.

Information about Identifiers

One of the most annoying problems in trying to understand a software system is the fact
that needed information is spread over the whole system. It is a tedious task to find it
when needed. For example, a method or procedure consists of many identifiers of
which the meaning is of crucial interest for comprehension. A maintenance tool must
provide this information in an easy and comfortable way. This information should con-
tain:

• the declaration of the identifier
• the location of the declaration (which file, method, module, etc.)

38 4.2 Concepts

• additional information, depending on the programming language
(e.g., the inheritance path in object-oriented systems)

• a verbal description of the identifier

Actually, a verbal description of an identifier would be the most useful information. The
question arises how such a verbal description can be provided. The simplest and most
obvious way to accomplish this is to place such descriptions into comments at the defi-
nition (point of declaration) of an identifier. Figure 4.3 shows declarations in C++ with
subsequent comments containing short verbal descriptions of the declared identifiers.

int curPos; //index to next character to read
int readLen; /*current length (to be used for reading only)*/
char eot; //symbol to be returned on end of text
char *title; //title of text
bool alreadyProcessed; /*this text has been read (and processed) already*/

Fig. 4.3 Verbal descriptions of identifiers in comments

This procedure is beneficial in many cases as writing such comments at the point of
declaration is not an unusual programming practice. Besides, working with a tool that
provides such a feature might be a motivation to consistently describe each declared
identifier verbally.

The Structure of Files

In many programming languages a compilation unit (a file) contains several nodes of
the software system’s information web. A module in Modula-2 contains several
procedures and a C++ file usually contains several classes and/or methods. With
common text editors it is a tedious task to find out the contents of a file, e.g., which
classes and methods are defined in a certain file. The file structure is an essential part of
the whole system structure. It is needed, for example, to determine the scope of global
identifiers.

The compilation unit (file) is a node of the information web, too (see above). We can
easily provide the file structure by showing an outline of it. In the outline any nodes of
the system’s information web (e.g., class definitions, methods) are simply replaced with
their names. Thus, whenever a node of the information web appears in the text of any
other node, it is substituted by the name of this node.

Figure 4.4 shows the outline of a C++ source code file that includes three other files
and contains several class definitions (but no global declarations).

4. DOgMA: A New Tool for Documentation & Maintenance 39

#ifndef HyperMark_First
#define HyperMark_First

#include "ET++.h"
#include "Mark.h"
#include "StyleDialog.h"

class HyperMark
class IdentDefMark
class IdentUseMark
class KeywordMark
class CommentMark

#endif HyperMark_First

Fig. 4.4 Outline of a file

4.2.2 The Structure of Documentation

A software system consists not only of its source code; the corresponding documenta-
tion is an integral part of it, too. Unlike the source code, the documentation does not
obey formal structural rules. However, a well defined structure is equally important for
the documentation in order to ease the familiarization process. We therefore define
such a structure in this section.

Documentation consists of a set of documentation chapters (parallel to the code struc-
ture). Chapters are organized very similar to classes; i.e., there exists a hierarchical
structure among them. A chapter itself consists of a title, documentation text (plain
ASCII text) and program text (actually a link to the source code; see Section 4.2.3).

The documentation chapters form a tree:
• A chapter has several subchapters and at most one superchapter.
• There exists an order among sibling chapters (i.e., the subchapters of the

superchapter).

Figure 4.5 shows the relations of chapter c, which has a superchapter and three sub-
chapters and is related to a previous and a next sibling chapter.

superchapter

prev. next

subchapters

chapter a

chapter b

chapter e chapter f chapter g

chapter c chapter d

Fig. 4.5 Relations among chapters

Like the source code, the documentation has to be stored in files which can contain one
or more chapters. Storing each chapter in a separate file would lead to an unnecessarily
large number of files.

40 4.2 Concepts

4.2.3 Integration of Source Code and Documentation

For software maintenance it is crucial that any information about a software system be
easily accessible. This holds not only for information inherent to the source code but
also for the documentation which contains information that cannot be represented
within the source code (e.g., design decisions, description of the overall system struc-
ture). We therefore define in this section how the integration of source code and docu-
mentation can be accomplished.

The text of a chapter contains pure documentation text and program text (a link to the
source code). Existing tools for the integration of source code and documentation (i.e.,
literate programming tools) allow an arbitrary mixture thereof. However, they do not
explicitly consider the use of single source code identifiers within the documentation
text. But this is crucial for many reasons because these identifiers have a special mean-
ing, and a maintenance tool should provide the same information about them as it does
within the source code (see above).

We therefore have two different possibilities to use program text in the documentation:
1) single identifiers
2) any text part, i.e., any number of lines of code in succession within the

source code

Single identifiers can be used anywhere within the documentation text (see Fig. 4.6).

With these constants we add two entries in the menu identMenu in the method CreateMenuBar of
the class HyperTextDocument.

Fig. 4.6 Code identifiers in the documentation text

For better readability, source code identifiers in the figures are shown boldfaced. One
or more code lines are clearly separated from the documentation text as shown in Fig.
4.7.

These menu entries for copying and pasting an identifier are enabled only when the source code has
been parsed (i.e., alreadyParsed is set to TRUE) and when the current mark (cm) or the last mark
copied is an identifier, respectively. The method CopiesIdent yields this information.

if (cm && cm->CopiesIdent())
identMenu->EnableItem(cIdentCopy);

if (GetClipMark() && GetClipMark()->CopiesIdent())
identMenu->EnableItem(cIdentPaste);

Finally, whenever one of our menu entries is selected by the user, we gain control in the method
DoMenuCommand.

Fig. 4.7 Source code within documentation text

There should not be any restriction concerning the combination of source code and
documentation. A documentation chapter might contain the description of a single
class, method, module, or procedure. It might also contain the description of facts that
are spread over several source code units.

4. DOgMA: A New Tool for Documentation & Maintenance 41

As it does make sense to include only source code parts that logically belong together,
we define that the whole text of a source code unit (e.g., classes or methods) or col-
lapsed text parts can be integrated in the documentation. This is only a minor restriction
because the user is free to collapse any parts of the source code which do not overlap
(see Section 4.2.1).

Figure 4.8 schematically shows that a chapter contains a title, documentation text with
source code identifiers in between, and plain source code.

chapter c
Title of the chapter

Documentation text, documentation text,
documentation text, documentation
text

Documentation text, documentation text,
 documentation text,
documentation text

Documentation text, documentation text,
documentation text, documentation text

Source code

Source code

ident x

ident y ident z

class a

…
… ident x…
…

class b

method x

…
… ident y…
…

method y

…
… ident z…
…

Fig. 4.8 Links from documentation text to the source code

4.2.4 Automatic Creation of the Information Web

The information web must be created automatically by the system with as few actions
as possible on the part of the user. The maintenance tool has to establish:

• the links within the source code (i.e., links among classes, methods, mod-
ules, procedures, and identifiers)

• the links within the documentation text (i.e., links among chapters)
• the links between source code and documentation text
• collapsed text parts
• remarks about identifiers
• file outlines

Actually, the links within the source code can be derived automatically, whereas links
between source code and documentation text have to be defined by the user. But once
these links are defined, they have to be kept beyond the session.

42 4.2 Concepts

4.2.5 Browsing Features

Effective browsing through the information web of a software system is extremely im-
portant in order to facilitate the familiarization process for program comprehension and
to allow efficient working on this software system. Thus comfortable and powerful
browsing features are an essential part of a maintenance tool. Browsing must be possi-
ble:

• within the source code
• within the documentation
• between source code and documentation
• based on identifiers (within the source code and within the documentation)

This can be accomplished by basing the browsing features on the relations among the
nodes in the information web. Thus browsing becomes possible:

• from a class to any of its superclasses, subclasses or methods
• from a method to its corresponding class or the same method in a

superclass
• from any source code part to the corresponding documentation chapter
• from an identifier (either in the source code or in the documentation) to the

definition of this identifier

In order to inspect several parts of a software system simultaneously, users must also
be able to create several copies of the browser.

The complex information web of large software systems can cause users to get lost in
it. This can be prevented by providing useful information about this web. The
information should contain:

• the name of the file currently inspected
• the name of the class, method, module or procedure currently inspected
• additional information like the inheritance path (in object-oriented systems)

Another useful way to prevent the user from getting lost is to let her/him go back the
way she/he came. Thus a powerful history function must tell the user at any time which
parts of the system have been inspected previously and enable her/him to go back to
any of these places.

4.2.6 Increasing the Readability

Increasing the readability of source code and documentation provides a major step in
the improvement of program comprehension. Better readability can be achieved by
simply using different styles both in the source code and in the documentation.

In the source code the definition of a global font, size and style (plain, bold, italics, out-
line, shadow) is useful for

4. DOgMA: A New Tool for Documentation & Maintenance 43

• keywords
• comments
• identifier definitions (this is especially useful for languages that allow the

declaration of identifiers anywhere within the source code, e.g., C++)

In the C++ class definition of Fig. 4.9 we can see the names of the instance variables
and the method names at a glance. Furthermore, we can immediately see that four
methods are commented out.

class HyperMark: public Mark { //abstract class
class HyperText *hText;

public:
HyperMark(int pos, int len, class HyperText *ht);
~HyperMark();
virtual void SetText(class HyperText *ht) { hText= ht; }
class HyperText *GetText() { return hText; }
virtual void SetString(char *str);
virtual char *GetString();

/* virtual void SetStyle(TextRunArray *styles);
virtual Style *MyStyle();
HyperMark *GetLastLink() { return lastLink; }
virtual bool HasSameDefinition(HyperMark *mp);

*/ virtual void UpdateUses();
…

};

Fig. 4.9 Global styles in C++ source code

These global styles are helpful in the source code parts of the documentation, too. Ad-
ditionally, the definition of global styles for chapter titles and source code identifiers
within the documentation text further enhances the readability (see Fig. 4.10).

The global styles need to be applicable not only on the screen but also on paper for
printing both pure source code and documentation, and they have to be freely chosen
by the user.

This simple global style mechanism can even be used to point out various aspects of a
software system. Different styles can also be used to distinguish among different kinds
of identifiers, e.g., local variables, global variables, and parameters. Applying arbitrary
styles to an identifier of a software system, i.e., the possibility of highlighting an identi-
fier, is of great help in making it detectable throughout the whole system.

Based on the possibility to highlight single identifiers, identifiers can be highlighted that
are defined in a certain part of the source code. This feature enables the user to recog-
nize, for example, the identifiers defined in a class definition (i.e., the instance variables
of a class) or the local variables of a method.

In order to distinguish among different highlighted identifiers (e.g., local and global
variables) different styles must be applicable for highlighting. Figure 4.11 shows a C++
method where instance variables of its class are boldfaced and local variables are shown

44 4.2 Concepts

in italics and a different font. Using different colors instead of or in addition to the
styles will even further increase the readability.

4.2 Copy/Paste of Identifiers

If the user wants to copy an identifier, we just remember the identifier (i.e., the current mark) in a
global variable by calling the method SetClipMark .

case cIdentCopy:
if (textView->GetCurrentMark())

project->SetClipMark(textView->GetCurrentMark());
break;

case cIdentPaste:
…

If the identifier is to be pasted, we send the text the message PasteMark and provide the mark of the
identifier as its first parameter. (We get this global variable again by calling GetClipMark).
Afterwards we call SetText. This guarantees that the styles are set correctly (especially for the one
identifier or text we just pasted). Finally the identifier is selected.

HyperMark *HyperText::PasteMark (HyperMark *m,int *from,int *to)
{

DoDelayChanges dc(this);
HyperMark *newMark;
newMark= m->PasteMark(this,from,to);
//marks are updated correctly in PasteMark already
SetChanged();
return newMark;

}

We just call the method PasteMark of the HyperMark we get as the first parameter.
…

Fig. 4.10 Global styles in the documentation

It is rather cumbersome to inspect a whole software system in order to find all occur-
rences of certain identifiers. Therefore the user has to be provided with the information
where highlighted identifiers can be found (e.g., in which classes, methods and files).

4.2.7 Hardcopy Documentation

Although the importance of printed documentation vanishes due to the powerful
interactive browsing features, it is still necessary to get a printed copy of both
documentation text and source code. Thus we need the facility to directly send a
document to the printer or to create a file where documentation text and source code
are intermixed as seen on the screen (see Fig. 4.10).

To get a complete documentation, the chapters have to be printed in preorder and auto-
matically numbered. Also, a table of contents has to be created automatically. It is not
necessary to provide printed hints about where an identifier used in the documentation
text is defined in the source code or where a piece of source code in the documentation
text is copied from. Usually this will be clear from the context. Besides, this information

4. DOgMA: A New Tool for Documentation & Maintenance 45

is easily provided interactively. Printing documentation is only considered a possibility
of saving it. The power of nonsequential reading makes printed documentation less im-
portant and less useful.

void IdentUseMark::DoObserve(ObjPtr,void *what)
{

//ident def has changed or we have to use another definition
if ((int)what==cMasterCopyChanged) {

if (!copy) return;
int defPos, defLen;
Lock();
identDef->GetTextPosition(defPos,defLen);
if (len!=defLen)

hText->Paste (copy, pos, pos+len);
else

hText->StyledText::Paste (copy, pos, pos+len);
len= defLen;
Unlock();

} else if ((int)what==cDefinitionChanged) {
identDef->RemoveDependent(this);
identDef= identDef->NewDefinition();
identDef->AddDependent(this);

} else if ((int)what==cHighlightIdent) {
if (identDef->highlight) hText->GetNodeItem()->IncCount();
else hText->GetNodeItem()->DecCount();
//styles are updated automatically when a text is displayed

}
}

Fig. 4.11 Highlighted identifiers in a C++ method

4.2.8 Processing Subsystems

Very often software systems are not developed from scratch, but rather already existing
code is reused. In fact, the ease of reusing existing source code is one of the major ad-
vantages of object-oriented programming (e.g., application frameworks). When work-
ing on such systems, programmers are not interested in the implementation of the
reused source code part, but in its definition only (in order to facilitate the reuse
process). Additionally, large software systems are often divided into (possibly
overlapping) subsystems with different people working on them. In order to work on a
subsystem, many definitions of the rest of the software system are necessary for
program comprehension. The implementation thereof is not important.

A maintenance tool has to support the processing of subsystems and to distinguish be-
tween source code of that subsystem under consideration and the other parts from
which only the definitions should be available. It has to be guaranteed that changes are
made to the affected subsystem only. For example, the definitions of an application
framework must not be changed when reusing it.

46 4.2 Concepts

We use a project description file both to enable users to work on subsystems and to
establish write protection for the rest of a software system. The project description file
contains the file names of the subsystem under consideration (in the notation of the pro-
gramming language used). Files that are not listed in the project description file cannot
be changed by the user.

//sample project description file
#include "HyperCmdNo.h"
#include "HyperMark.h"
#include "HyperMark.c"
#include "HyperProject.h"
#include "HyperProject.c"
#include "HyperText.h"
#include "HyperText.c"
#include "HyperTextDocument.h"
#include "HyperTextDocument.c"
#include "HyperTextView.h"
#include "HyperTextView.c"

#include "intro.d"
#include "hypertext.d"
#include "literate.d"
#include "implement.d"
#include "copyPaste.d"
#include "conclusion.d"

#include "makefile"

Fig. 4.12 Example of a project description file

Figure 4.12 shows an example of a project description file. Several source code files (h-
files and c-files) as well as documentation files (d-files) and a makefile are included. Our
maintenance tool has to load a software system based on this project description file,
i.e., all files that are included directly or indirectly are loaded but the user is only al-
lowed to change the contents of files that are listed explicitly.

4.3 User Interface
The user interface concept is based on modern application frameworks and the sup-
ported concepts thereof (see [Shn86], [Wei89]). Ease of use was one of the major
goals in its design. There exist three main parts that will be described in detail in the
following subsections: the application window, the hypertext window and the file
window. The hypertext window is the essential part of DOgMA, whereas the
application window is used as a control panel and the file window provides only an
additional feature for simple text file editing.

The supported programming language has only minor effects on the user interface. In
the following sections the user interface of the C++ version of DOgMA, which has

4. DOgMA: A New Tool for Documentation & Maintenance 47

been implemented already, is presented. A Modula-2 version is currently under
development.

4.3.1 The Application Window

The application window is part of every application that is implemented with the appli-
cation framework ET++ (see Section 4.6). It is a kind of a control panel for creating
and opening documents and for quitting the application.

Fig. 4.13 Application window

DOgMA’s application window provides the following six buttons (see Fig. 4.13):

• about
Selecting the about button pops up a little dialog box with some information about
DOgMA.

• new project
Selecting the new project button provides an empty project description file in a hy-
pertext window.

• open project
Selecting the open project button enables the user to open an existing project de-
scription file. The project is read in automatically and shown in a hypertext window.

• new file
With the new file button a new file can be created in a file window.

• open file
The open file button is used for editing arbitrary text files in a file window.

• quit
Selecting the quit button ends a session with DOgMA. If there are still single files or
projects open that have been changed, then the user is asked whether they should be
saved on disk.

4.3.2 The Hypertext Window

The hypertext window is used for working on a project and represents the proper main-
tenance tool. It provides a menu bar, two selection lists, an information box, and an edi-
tor window (see Fig. 4.14).

48 4.3 User Interface

Fig. 4.14 Hypertext window

The Menu Bar

The menu bar is used to perform various commands. It is clearly separated into seven
groups:

• The file menu offers commands for loading and storing files.
• The edit menu offers commands for simple text editing, e.g., cut, copy,

paste, and enhanced editing commands like inserting and deleting of nodes
in the information web.

• The project menu offers commands applicable to a whole project, like
saving and/or closing a project.

• The text menu offers common hypertext commands.
• The identifier menu offers hypertext commands based on identifiers.
• The goodies menu offers some special commands.

The menu entries are described in more detail below.

The Information Box

The information box is used to display relevant information about the node currently
under inspection. This prevents users from getting lost in complex software systems. In
the C++ version of DOgMA this information contains:

• the name of the code or documentation currently shown
• its file name (containing the directory path)

4. DOgMA: A New Tool for Documentation & Maintenance 49

• the inheritance path (i.e., all the superclasses) of the class or the method
currently shown

The Selection Lists

A classification of nodes is of great help in mastering the complexity of large systems.
Powerful classification mechanisms are provided by Smalltalk systems where users can
introduce arbitrary categories. We adopt a simple but still very useful version of this
mechanism by providing predefined categories. The nodes of the various categories are
shown in the upper selection list. The text bar over the list indicates the category of
nodes that are displayed in this list.

In order to understand a certain piece of code (the content of a node), many related
pieces (nodes) have to be inspected, too. This is due to the fact that global variables are
used, instance variables and methods are inherited from superclasses, etc. Therefore,
the lower selection list shows nodes that bear a certain relation to the one selected in
the upper list. The text bar over the lower list indicates the relation among the nodes of
this list and the node selected in the upper list.

To choose another category or another relation, these text bars can be used as popup
menus (see Fig. 4.15). The following categories can be chosen in the upper list:

• all classes of the system
• implemented classes, i.e., classes of which the implementation part is

loaded, too
• all chapters of the documentation
• top chapters of the documentation hierarchy
• all files of the system
• implementation files, i.e., files that contain method implementations
• documentation files, i.e., files that contain documentation chapters

The following relations can be selected for the lower list (see Fig. 4.15):
for classes:

• their superclasses
• their subclasses
• their method implementations

for chapters:
• their superchapters
• their subchapters
• their sibling chapters

for files:
• their included files
• their substitutions, i.e., the classes and method implementations they

contain

Selecting an entry in any of the two selection lists causes DOgMA to browse to the
corresponding node in the information web.

50 4.3 User Interface

Fig. 4.15 Popup menu for lower selection list

The Editor

The editor window displays the code part according to the selections made in the selec-
tion lists on the left side or in the information box (see below). It offers the usual text
editing capabilities, e.g., cut, copy, paste, automatic matching of parentheses (by simple
double clicking in the source code).

4.3.3 Browsing Features

Effective browsing is essential in the maintenance process. DOgMA supports this
activity in many ways:

• simple browsing features
by selecting an item in one of the selection lists

• enhanced browsing features
by selecting an item in the information box

• identifier-based browsing features
by using the interrelations among the identifiers in the software system

• history-based browsing features
by selecting one of the previously inspected items

• documentation-based browsing features
by using the interrelations between source code and documentation text

Both simple and enhanced browsing features are presented in this section. The other
features will be described in succeeding sections where the various menus are presented
(identifier-based browsing in Section 4.3.9, history-based browsing in Section 4.3.7,
and documentation-based browsing in Section 4.3.8).

Simple Browsing Features

One possibility to browse from one piece of code to another is to select an item from
the upper selection list. In this case the appropriate information is displayed. Choosing
among the available categories and selecting items shown in this list makes it possible
to reach all locations of a software system.

However, another and more useful way to reach other parts of the system is to follow
one of the relations associated with the displayed node. Thus selecting items shown in
the lower list enables the user to browse (in C++)

• from a class to its superclass or any of its subclasses or method implementa-
tions

• from a file to any of its included files or its substitutes

4. DOgMA: A New Tool for Documentation & Maintenance 51

• from a documentation chapter to any of its subchapters, sibling chapters, or
to its superchapter

Enhanced Browsing Features

When trying to understand a certain piece of code, information in related code pieces is
of crucial importance. In object-oriented software systems these related code pieces are
the superclasses and the overridden methods because they contain most of the informa-
tion that is needed to understand a subclass or an overridden method.

DOgMA provides easy access to this information by simply selecting one of the super-
classes in the inheritance path (shown in the information box). This enables the user to
inspect any of the superclasses of a class and get back again by simply selecting the first
item of the inheritance path again.

Fig. 4.16 Enhanced browsing

Additionally, if a method of a class is selected, then all the classes in the inheritance
path that implement the same method are highlighted. Thus the user can see at a glance
which classes implement a certain method. In Fig. 4.16 the class names IdentUseMark
and Object are highlighted (shown in boldface) because they implement the method
DoObserve.

Selecting a highlighted superclass immediately shows the appropriate method of the su-
perclass. If the method implementations of a class are not loaded— their files were not
specified in the project description file— , then the definition of the appropriate method
is selected in the class definition. For example, when an application framework is used,
then we might be interested only in the definition of the framework’s class definitions.
In this case the corresponding method implementations would not be loaded.

Figure 4.17 shows the definition of a method in one of the superclasses. This was ac-
complished by simply clicking at the superclass in the information box.

52 4.3 User Interface

Fig. 4.17 Method definition in a superclass

In C++ the files that contain the classes and methods under consideration are also of in-
terest because they can contain global declarations that are used in these classes and
methods. Therefore, DOgMA supports also to select the file path shown in the informa-
tion box. This facility offers an easy way to browse to the file where a specific code
part is contained. Using this possibility together with the features of the inheritance path
allows us to inspect all the files coherent to the superclasses and their method
implementations.

Please note the ‘write protected’ in the upper right corner of the information box in Fig.
4.17. This means that the displayed class Object does not belong to the part of the sys-
tem that is being worked on (i.e., it has not been specified in the project description
file). Therefore, the user cannot make any changes to it (see Section 4.2.10).

4.3.4 The File Menu

The file menu provides commands for loading and saving files, for closing the hypertext
window and for showing the application window (see Fig. 4.18).

4. DOgMA: A New Tool for Documentation & Maintenance 53

Fig. 4.18 The file menu

Please note that whenever a menu entry ends with three dots (…) then the command is
not executed immediately, but rather the user is asked for more information. For exam-
ple, if a file is to be loaded, then the user has to specify which file to load.

• Load File…
Loading a new file is useful when the user processes a subsystem only and then
wants to inspect a file which is not part of this subsystem (e.g., to inspect the im-
plementation of a class defined in another subsystem). With the Load File… com-
mand a new file can be added to the already loaded software system. The specified
file as well as all its directly and indirectly included files that have not yet been
loaded are added. Furthermore, the hypertext links are automatically established and
the list entries are updated accordingly.

• Save File/Save File As…
During long sessions with any tool the ability to occasionally save any changes that
were made is very important. The currently displayed file can be saved to disk,
either overwriting the existing file (Save File) or creating a new file (Save File
As…). If a class or a method is displayed in the editor window, then the file
containing the class or method is saved.

• Spawn
The Spawn command allows inspection of various parts of a software system simul-
taneously by creating a new copy of the hypertext window. An arbitrary number of
browsers can be created with this command.

• Close
Closing a hypertext window is accomplished by selecting the Close command. If
modifications have been made since the last save and there are no other hypertext
windows open for the same project, then the user is asked whether these changes
should be saved.

• Show Application Window
The application window is needed for opening files and projects and for quitting
DOgMA. If it is hidden on the screen by other windows, then it can be brought to
the front by choosing this command.

54 4.3 User Interface

4.3.5 The Edit Menu

The edit menu provides functionality for simple text editing, line positioning, searching,
replacing, inserting and deleting classes, methods, chapters and files (see Fig. 4.19).

Fig. 4.19 The edit menu

• Undo
This command can be used for undoing any previously executed command. The
ability to undo previous activities is one of the most useful and important commands
for any software tool because its absence often inhibits users from effectively work-
ing with it.

• Cut/Copy/Paste
These menu commands provide the usual cut/copy/paste functionality.

• Goto line… /Goto file line…
If the source code has been changed and stored back onto the corresponding files,
then a recompilation can be started. Compilers usually report errors with the line
number and an error message. As DOgMA cuts the content of source code files into
little pieces, it becomes difficult to position at certain line numbers. Therefore, the
command Goto file line… is available, which displays the proper class, method or
file and positions at the specified line number (within the currently displayed file).
The command Goto Line… is used to position at a certain line number within the
displayed text. Figure 4.20 shows the dialog for positioning at a certain line.

Fig. 4.20 Dialog for line positioning

4. DOgMA: A New Tool for Documentation & Maintenance 55

• Find/Change Text…
Finding and changing text is one of the most useful commands for software engi-
neers that have only a simple text editor available. In a modern environment for de-
velopment and maintenance, its use should be replaced by more comfortable com-
mands (e.g., changing the name of an identifier in a certain scope). Nevertheless,
there are cases where finding and changing arbitrary text strings is necessary (e.g.,
to find string constants). Figure 4.21 shows the dialog box for this command (see
also [Wei89]).

Fig. 4.21 Find/change text

• New Class…
DOgMA asks the user for the name of the new class, an optional superclass, the
name of the file where the class definition is to be stored, and the name of the file
where the constructor and the destructor methods are to be stored. A constructor
and a destructor method are automatically created because they are implemented in
almost every class.

• New Method…
DOgMA asks the user for the name of the new method, the corresponding class,
and the name of the file where the method is to be stored.

• New Chapter…
The user is asked for the name of the new chapter, an optional superchapter, and
the name of the file where this chapter is to be stored.

• New File…
DOgMA asks the user for the name of the new file and whether it is to be a defini-
tion, an implementation, or a documentation file. This information is needed be-
cause different text templates are provided for these files.

• Delete…
The delete command is used to remove files, classes, methods and/or chapters.

56 4.3 User Interface

Whenever a new node (class, method, chapter, file) is inserted, DOgMA provides a text
template which can be completed by the user. The text templates can arbitrarily be de-
fined by the user (see Section 4.5). The user enters the name of the new node and se-
lects the classes and the files from a list provided by DOgMA.

4.3.6 The Project Menu

Any commands that are applied to the whole project are included in the project menu
(see Fig. 4.22).

Fig. 4.22 The project menu

• Show Project File
The project description file is displayed when this command is chosen.

• Read Project
When a project is opened, then it is read in automatically. However, if a new project
description file is created or new entries are added to an existing one, then reading
the project has to be started explicitly.

• Parse Project
Reading a project causes the hypertext web to be generated based solely on classes,
methods, chapters and files. With the command Parse Project a full syntax analysis
is accomplished, extending the hypertext web based on identifiers. Parsing a project
is separated from reading a project because a full syntax analysis is needed only
when the user wants to get as much information about a software system as possi-
ble. If a user is familiar with a system already and only wants to make changes, then
she/he does not need this information and a simple reading of the project will
suffice.

• Save Project
DOgMA provides comfortable working with classes and methods rather than with
files only. Whenever changes have been made in a software system, DOgMA re-
members which files were affected. Applying the command Save Project causes
DOgMA to ask the user whether each changed file is to be saved to disk.

4. DOgMA: A New Tool for Documentation & Maintenance 57

• Close Project
As with Save Project the user is asked whether changed files should be saved. Addi-
tionally, the project is closed; i.e., all the hypertext windows of this project disap-
pear. Unless there are any other projects or files open, only the application window
will remain on the screen, allowing the user to quit DOgMA or to open other pro-
jects and/or files.

• Define Styles
In order to enhance the readability of the source code (see Section 4.2.6), the user
can define global styles for various syntactic constructs, e.g., comments, keywords
(see Fig. 4.23).
Global styles can be defined:

• for keywords, comments, substitutions, identifier definitions, and identifier
uses in the program text

• for chapter titles, unresolved code links (see below) and code identifiers in
the documentation text

• in three different styles for the highlighting of identifiers in both the
program and the documentation text

For source code within the documentation, the same global styles are used as in the
plain source code. Code identifiers are those identifiers that are used directly within
the documentation text. The definition of a global style for these identifiers allows
an immediate recognition of them. Unresolved code links are described in Section
4.4.5.

Fig. 4.23 Global text styles

Each global style is defined by its font (e.g., Gacha, Bookman), its size (e.g., 10
point, 12 point), and its style (e.g., plain, bold, underline).

• History…
A powerful history function is necessary to prevent users from getting lost in a
complex software system. DOgMA remembers the browsing path taken by the user
and thus enables her/him to undo any browsing activities and get back to where

58 4.3 User Interface

she/he came from. A history dialog appears on the screen containing the names of
the previously inspected items. Selecting any one of these items causes DOgMA to
branch to the appropriate part of the system.

Fig. 4.24 History dialog

Figure 4.24 shows the history dialog with various methods (in C++ notation) which
allows the user to select an arbitrary item of her/his browsing history.

4.3.7 The Text Menu

The text menu provides commands that are applied to text parts (see Fig. 4.25).

Fig. 4.25 The text menu

• Branch
The outline of a file contains substitutions of classes and methods (see Section
4.2.1). With the Branch command we can branch to the corresponding class or
method. Besides, with this command we can branch from an include statement to
the included file. This branching can also be done by displaying the included files or
the substitutions in the lower selection list and selecting the appropriate item.

• Branch Back
With the Branch Back command the user can branch to the previously inspected
text part (see also the History command). It can be applied repeatedly, thus
traversing the browsing history in reverse order.

4. DOgMA: A New Tool for Documentation & Maintenance 59

• Copy Text/Paste Text
With the Copy Text and the Paste Text commands source code parts can be inte-
grated in the documentation. Either a whole text (class, method, etc.) or a collapsed
text can be used. The text in the source code is simply copied and pasted into the
documentation text. All hypertext links are established automatically.

• Collapse Text
In order to define collapsed text parts, it suffices to select the corresponding text
and select the menu entry Collapse Text. DOgMA automatically establishes the
hypertext information and guarantees that the collapsed text part is saved to disk
correctly so that it is possible to use it in another session again.

• Highlight Locals/Lowlight Locals
In order to highlight the identifiers defined in the currently shown text, the
command Highlight Locals is used (see Section 4.2.6). This enables the user to
highlight the instance variables and method names of a class definition, the
parameters and local variables of a method, or the global variables of a file. Figure
4.26 shows both global and local identifiers highlighted. In the two lists at the left
side and also in the inheritance path, we see the number of occurrences in the
classes and the methods. This information is provided for files also (i.e., if files are
displayed in the selection lists). For classes two numbers are listed. The first one
specifies the number of occurrences in the class definition and the second one speci-
fies the number of occurrences in the corresponding method implementations. The
highlighting can be undone with the Lowlight Locals command.

Fig. 4.26 Highlighted identifiers

60 4.3 User Interface

• Show Documentation
It is important to know whether documentation exists for a certain part of the
source code and where it is. With DOgMA the documentation text of any source
code part can easily be found by applying the Show Documentation command. If a
collapsed text is selected, then the documentation of this text is shown; otherwise
the documentation of the displayed class, method or file is shown (see Section
4.2.3). If there is no documentation available, then the menu entry Show
Documentation is dimmed and cannot be selected.

• Show Code
If documentation text is displayed, then the menu entry Show Documentation is re-
placed with Show Code. With this command it is possible to branch from any source
code part in the documentation to the corresponding place in the source code itself.
To branch back, we either apply the command Branch Back or the Show Documen-
tation command that is now available.

4.3.8 The Identifier Menu

The identifier menu consists of menu entries that are applied to single (source code)
identifiers (see Fig. 4.27). These commands are available only when the software sys-
tem has been parsed (see menu entry Parse Project). If the software system has not
been parsed, then the whole menu is dimmed.

Fig. 4.27 The identifier menu

• Show Definition
Finding the definition of an identifier is frequently required when trying to under-
stand a piece of code. Therefore DOgMA offers the possibility to select an identifier
and jump to its definition immediately, no matter where this definition is in the sys-
tem.

• Show Next Use/Show Previous Use
In order to inspect all occurrences of an identifier, the commands Show Next Use
and Show Previous Use can be used to browse to the next or previous use of an
identifier. The definition of the identifier can be used as starting point.

4. DOgMA: A New Tool for Documentation & Maintenance 61

• Copy Identifier/Paste Identifier
Similar to the Copy Text and Paste Text commands, these commands are used to in-
tegrate source code identifiers within the documentation. Identifiers can be copied
both within the source code and in the documentation (if an identifier had been
copied already from the source code). Pasting an identifier in the documentation
establishes the hypertext links and guarantees that the identifier is highlighted and
updated correctly (see menu entry Change Identifier).

• Highlight Identifier/Lowlight Identifier
These commands have the same effect as their counterparts in the text menu
(Highlight Locals and Lowlight Locals). However, highlighting can be applied to a
single identifier with these commands (see Section 4.2.6).

• Rename Identifier…
When working with a simple text editor, changing the name of an identifier is usu-
ally done with the Find/Change Text… command (see above). However, this has
many disadvantages. The user can never be sure that all occurrences have been con-
sidered because the use of an identifier can be spread over several files. On the other
hand, there may exist different identifiers with the same name but in a different
scope. It is very difficult to consider this fact when using a command that operates
on text strings only. With the menu entry Rename Identifier… a selected identifier
can be renamed in the whole software system (both in the source code and the doc-
umentation). This is simply done by entering the new name and pressing the OK
button (see Fig. 4.28). With this command it is guaranteed that all occurrences of
the identifier are renamed and that identifiers with the same name but a different
scope are left unchanged.

Fig. 4.28 Renaming an identifier

This command can be activated only if the identifier to be changed is defined in the
inspected subsystem. This prevents the change of identifiers in reused source code.
Besides, changing an identifier which is not part of the subsystem under considera-
tion would lead to an incomplete change when only the implementation part of this
subsystem is loaded.

• Show Info…
If a short description exists for an identifier (a short comment after its declaration),
then this description together with some other information (e.g., point of

62 4.3 User Interface

declaration) can be shown wherever this identifier is used (see Section 4.2.1). This
is an essential aid in supporting program comprehension.
We assume that a comment after the definition of an identifier contains a description
of this identifier. Assuming this style for existing programs might— at worst— lead
to the display of a comment that was not intended to describe an identifier. But on
the other hand, the system can provide the user with information that is very useful
for program comprehension and can do so with little effort on the part of the user
(i.e., by writing a short comment for all or many identifier definitions).

Fig. 4.29 Information about an identifier

In Fig. 4.29 information was requested about the identifier pos. DOgMA tells us
that pos is an integer variable which is defined in the class Mark. Furthermore, the
inheritance of this class, the file where it is stored and a verbal description are given.
Note that DOgMA does not ‘know’ that pos is an integer variable, but rather
displays the contents of the line where pos is defined. In most cases the source code
line of an identifier’s definition provides the information the user is interested in.

The browsing capabilities provided for the source code are supplied for the documenta-
tion, too. So it is also possible to jump from an identifier in the documentation (either a
single identifier within the documentation text or an identifier within a source code
part) to its definition in the source code.

4.3.9 The Goodies Menu

The goodies menu contains some additional useful commands (see Fig. 4.30).

Fig. 4.30 The goodies menu

4. DOgMA: A New Tool for Documentation & Maintenance 63

• Use Highlight 1/Use Highlight 2/Use Highlight 3
In order to distinguish among various identifiers, we can use different styles (see
Define Styles…). The highlight commands use either the first, second or third high-
light style, depending on which of the three Use Highlight commands is active.

• Show Comments/Hide Long Comments/Hide All Comments
It is sometimes useful to collapse comments when they are used very extensively.
DOgMA provides the possibility to either hide all comments or long comments only
(see Fig. 4.31). A comment is considered long if it spreads over more than one line,
i.e., if it contains at least one newline character. Only the content of the comments is
hidden; their delimiters (// and /**/ in C++) remain visible.

class HyperText: public StyledText {
/**/
protected: //
 class MarkList *marks;
 class HyperTextView *tv;
 class HyperProject *project;
 class HyperMark *currentMark; /**/
 class NodeItem *nodeItem;
 class TextCopyMark *textCopyMark; //
 class HyperMark *firstIdent; /**/
 bool showEscape; //
 bool textDirty; //
 int nrLines; //
private:
 int curPos; //
 char *title; //
 bool alreadyProcessed; /**/
public:
 /**/
 …
};

Fig. 4.31 Hidden comments

The commands in the goodies menu are used like switches. When one of the highlight
or comment entries is chosen, it is dimmed (to permit easy recognition of which one is
active). They remain active until another one is selected.

4.3.10 The File Window

Inspecting the contents of an arbitrary file is often necessary when maintaining a soft-
ware system. Therefore DOgMA also supports the editing of simple text files to
prevent the need for an additional text editor. This is accomplished with the file
window, which is a subset of the hypertext window containing only a menu bar (with
fewer menus) and an editor window (see Fig. 4.32).

64 4.3 User Interface

Fig. 4.32 File window

The Menu Bar

The menu bar of the file window contains only the file and edit menus (see Fig. 4.33),
whereby some entries are omitted. The functionality of the remaining entries is the same
as in the hypertext window and is described in previous sections.

Fig. 4.33 Menus of the file window

The Editor Window

The editor window displays the open file and offers the usual text editing capabilities
like in the hypertext window, e.g., cut, copy, paste.

DOgMA meets the requirements for a comfortable and easy-to-use interface. It is com-
prised of simple elements like menus, lists and dialog boxes. Users were able to use it
with only a short introduction and demonstration of the various features without the
need for any user documentation.

4. DOgMA: A New Tool for Documentation & Maintenance 65

4.4 Sample Scenarios
This section shows how various questions about a software system can be answered
with DOgMA, provides sample documentation, and demonstrates how documentation
can be read, written and modified.

4.4.1 Answering Questions

We already mentioned that various questions arise when a maintenance programmer is
trying to understand a software system. Providing answers to these questions in an ef-
ficient way significantly speeds up the comprehension process and thus helps reducing
maintenance costs.

The following subsections demonstrate with a few typical examples how DOgMA can
be used to find answers to various questions related to program understanding.

Where is this variable used?

Particularly when there is no documentation available and there are hardly any
comments in the source code, it is often difficult to guess the meaning of a variable.
Possibly even its name is not very expressive. Finding out where in the system this
variable is used is a first and important step in casting light on the subject.

With DOgMA this is an easy task because it suffices to select the identifier and
highlight it (see menu entry Highlight Identifier above). Then in the selection lists we
can see where and how often this identifier is used. Additionally, in the editor window
we easily recognize all occurrences of the identifier by a different font, style and/or size.

Where is this message sent? Which methods send a particular message?
Where is this procedure called? Which other procedures call a particular
procedure?

The same holds for methods and procedures as for variables. Sometimes it is useful and
necessary to find all callers of a particular method or procedure. Again, with DOgMA
this is easily done because highlighting the method/procedure name tells us where else
in the system this method/procedure is used (called).

Which classes implement a particular message?

Knowing the implementors of a particular message is crucial to the understanding of an
object-oriented software system. With DOgMA this question cannot be answered by
simply highlighting an identifier, but with the information box it is easy to find out
which of the superclasses implement a certain method of its subclasses (these classes
are shown in boldface, see Section 4.3.3). Besides, with the ability to display and
browse to subclasses, it is relatively easy to find out the implementors of a message.

66 4.4 Sample Scenarios

Admittedly, a graphic representation would ease to answer this question. However, this
is deferred to future versions.

Where are the parameters set in this method/procedure?

In inspecting a method or procedure, it is important to find out where input parameters
are used and where the output parameters are set. Again, by simply highlighting the pa-
rameters, we find all their occurrences. DOgMA does not distinguish between the use
and modification of a variable. However, seeing all occurrences will certainly provide
sufficient information.

4.4.2 Sample Documentation

Unfortunately, many software systems are either undocumented at all or their documen-
tation is incomplete and/or inconsistent. In this case we recommend maintenance pro-
grammers to document at least their changes made on this system. DOgMA is both
suited for subsequent documentation an existing system and for documentation of
changes made in a system.

Let’s assume that we introduce a new feature in the software system we are working on
and that we want to describe the implementation of this feature in a new chapter. Intro-
ducing the new feature usually necessitates the insertion of code at several places in the
existing code.

We might start writing the documentation text and the source code in parallel. But this
is possible only when we know exactly what to do. Alternatively, we can first insert and
test the source code (supposing it is not too extensive) and write down the documenta-
tion text afterwards, integrating it with the source code. This procedure— though de-
spised by theorists— has proven very useful in practice. Figure 4.34 shows the content
of a chapter that actually describes part of the addition of the menu entries Copy and
Paste Identifiers of DOgMA itself.

Any global text styles that the user has defined for the source code are used in the doc-
umentation text, too. This is the reason why we can see identifier definitions in
boldface. Similarly, the style for identifiers used within documentation text can be
defined. In the example above these identifiers are also boldfaced.

4. DOgMA: A New Tool for Documentation & Maintenance 67

4.2 Copy/Paste of Identifiers

If the user wants to copy an identifier, we just remember the identifier (i.e., the current mark) in a
global variable by calling the method SetClipMark .

case cIdentCopy:
…

case cIdentPaste:
…
break;

…
Afterwards we call SetText. This guarantees that the styles are set correctly (especially for the one
identifier or text we just pasted). Finally, the identifier is selected.

HyperMark *HyperText::PasteMark (HyperMark *m,int *from,int *to)
{

DoDelayChanges dc(this);
HyperMark *newMark;
newMark= m->PasteMark(this,from,to);
//marks are already updated correctly in PasteMark
SetChanged();
return newMark;

}

We just call the method PasteMark of the HyperMark that we get as the first parameter. PasteMark
is a virtual method of the class HyperMark which is overridden in the marks for identifiers (i.e., in
IdentDefMark and IdentUseMark). In HyperMark we have to do nothing:

virtual HyperMark *PasteMark (class HyperText *, int *, int *)
{ return 0; }

If the use of an identifier has to paste itself, it delegates this task to its definition:

HyperMark *IdentUseMark::PasteMark (…)
{

return identDef?identDef->PasteMark(ht,from,to):0;
}

The definition finally does the pasting:

HyperMark *IdentDefMark::PasteMark (…)
{

...
}

Two cases have to be distinguished: In a documentation text we generate a DocuIdentMark and in a
source text we generate a regular identifier use, i.e., an IdentUseMark. In the documentation we must
not forget to insert our special character (cHyperTextChar) so we can recognize these identifiers
when writing the documentation text to a file.

Fig. 4.34 Sample documentation

68 4.4 Sample Scenarios

4.4.3 Reading Documentation

There are two possible ways to browse through a system for reading the documenta-
tion. One can either inspect the source code and look at the documentation, where
available. Or one can read the documentation and look at the source code when the
documentation does not provide enough information. (DOgMA facilitates comfortable
work with documentation, but it cannot guarantee complete and high quality documen-
tation. This remains the responsibility of the user.)

Similarly to navigating through classes, methods and files, the DOgMA allows easy ac-
cess of chapters based on their interrelations. When reading a documentation chapter,
one can easily inspect related chapters, i.e., subchapters, the superchapter, and sibling
chapters.

There are several possibilities to branch to the source code because all source code
parts used in documentation text offer the same hypertext features as their counterparts
in the source code:

• One can select an identifier and jump to its definition. (The definition is always in
the source code.)

• One can jump to the location from which a block of source code is taken/copied.

• Highlighting of identifiers is done in the documentation, too, so it is easy not only to
find out where an identifier is used in the source code, but also to find its uses in the
documentation text.

Whenever documentation text is available to the source code, the menu entry Show
Documentation is enabled. This is the case when a piece of source (i.e., a class,
method, file, or part thereof) has been used somewhere in the documentation. Issuing
the menu command is sufficient to branch to the documentation.

4.4.4 Writing Documentation

Documentation should be written at the time of coding. Unfortunately, this is seldom
done, either because of time constraints or because of the fact that code changes, which
necessitates a time consuming change of the documentation, too. Therefore our tool
supports both cases: writing documentation for already existing source code and
writing documentation together with writing the source code.

The source code for fulfilling a task is usually spread over several locations— even sev-
eral files. This is especially true for object-oriented systems, where many methods are
overridden in subclasses.

To write documentation for already existing source code, we create a new chapter,
write down text and simply include identifiers and text parts from the source code. This
is done by simply activating the (menu) commands for copying and pasting identifiers
and texts.

4. DOgMA: A New Tool for Documentation & Maintenance 69

Below we will briefly demonstrate the task of creating the sample documentation pre-
sented in Section 4.4.2. Let’s assume that we create source code and documentation in
parallel. It is convenient to open two hypertext windows and to use one for the source
code and the second for the documentation text.

As the first step we create a new chapter (with the menu command Insert Chapter…)
and start typing the text of the first paragraph (see Fig. 4.34). To integrate the source
code identifier SetClipMark, we simply select this identifier somewhere in the source
code, select the menu entry Copy Identifier (in the hypertext window with the source
code), and paste the identifier by choosing Paste Identifier (in the hypertext window
with the documentation text).

In the next step we want to write source code. We simply insert the code at the proper
place in the source code window and define a collapsed text part (menu entry Collapse
Text…). We select this text part and choose the menu entry Copy Text and paste this
text into the documentation by choosing Paste Text.

If additions are made to the source code at multiple locations in order to perform a sin-
gle task (as is often necessary in object-oriented systems), then we recommend re-
placing all these additions with the same title. For example, we used the title
‘Copy/Paste of Identifiers’ for all source code pieces that were needed to accomplish
this task. The same title can be used in different classes, methods and files.

These steps of writing documentation and source code text and copying and pasting
identifiers and texts is repeated until the chapter is finished.

4.4.5 Modifying Documentation

The most obvious way to make changes in the documentation is by simply typing in
documentation text and using the cut, copy and paste commands for both simple text
and source code.

However, there are several possibilities to indirectly modify the documentation:

• An identifier has been changed in the source code:
The system automatically changes this identifier at all occurrences both in the docu-
mentation text and in the source code.

• Any other changes have been made in the source code:
As there exist links between source code and documentation text, these changes are
made automatically in the documentation, too.

• An identifier or a text part of the source code that is used in the documentation has
been removed, let’s say, with another text editor:
In the documentation we can see the name and the location of the identifier or the
text part instead of the actual source code (see Fig. 4.35).

70 4.4 Sample Scenarios

By using a different font for unresolved links to the source code (bold and italic in Fig.
4.44), the user immediately recognizes them and can see how the link was originally de-
fined. In Fig. 4.44 we see that the text part “Copy/Paste Identifiers” in the method
DoMenuCommand of the class HypertextDocument and the identifier SetText in the
definition of the class Hypertext are not defined any longer.

4.2 Copy/Paste of Identifiers

If the user wants to copy an identifier, we just remember the identifier (i.e., the current mark) in a
global variable by calling the method SetClipMark .

@”HypertextDocument::DoMenuCommand;Copy/Paste Identifiers”

If the identifier is to be pasted, we send the text the message PasteMark and provide the mark of the
identifier as the first parameter. We get this global variable again by calling GetClipMark)
Afterwards we call @”class HypertextView;SetText”. This guarantees that the styles are
set correctly (especially for the one identifier or text we just pasted). Finally, the identifier is selected.

…

Fig. 4.35 Unresolved links to the source code

4.5 Parameterization
The usefulness of a software tool and its acceptance by users is highly influenced by the
tool’s ability to meet individual needs. Therefore, DOgMA offers several parameteriza-
tion possibilities which are described in the following sections.

In the UNIX operating system, environment variables can be used for parameterization.
With the setenv command, values can be assigned to these variables. For example,
setenv SIZE 20 assigns the value 20 to the environment variable SIZE.

4.5.1 Directory Paths

Large software systems consisting of subsystems are usually spread over several file di-
rectories. In order to enable an automatic reading of large systems the various directory
paths are communicated to DOgMA by setting the variables INCLUDE1, INCLUDE2,
etc. (see Fig. 4.36). With this mechanism different versions of a subsystem or even of
the whole system can simply be loaded by setting the INCLUDE variables accordingly.

setenv INCLUDE1 $ET_DIR/src
setenv INCLUDE2 /usr/include
setenv INCLUDE3 Documentation
setenv INCLUDE4 $ET_DIR/src/SUNWINDOW

Fig. 4.36 Directory paths

If a file is included in a software system, then DOgMA looks for this file in the current
directory. If it cannot be found there, then it looks in the path specified for
INCLUDE1, etc.

4. DOgMA: A New Tool for Documentation & Maintenance 71

4.5.2 Size of History

The browsing history is more important for novice programmers than for professionals.
Therefore the number of browsing steps DOgMA remembers can be set by the user so
as not to needlessly waste storage. This is done by setting the variable
HISTORY_SIZE (see Fig. 4.37).

setenv HISTORY_SIZE 50

Fig. 4.37 Size of the history

4.5.3 Width of the Selection Lists

Depending on project conventions, the length of file, class and method names may vary.
To avoid long names being truncated in the selection lists or space being wasted when
the names are much shorter, the width of the selection lists can also be specified by the
user.

setenv LIST_WIDTH 180

Fig. 4.38 Width of the selection lists

The horizontal size is specified in pixels by setting the variable LIST_WIDTH (see Fig.
4.38). The standard size that we have used for our screen dumps (see Fig. 4.14) is 180
pixels.

4.5.4 Text Templates

Almost every programmer prefers a different indentation philosophy, and style conven-
tions vary from project to project. When the user adds a new class or method, DOgMA
provides a textual template which can be completed. In order to meet individual needs,
these templates can be customized. This is done by setting the following variables:

• DEF_FILE: the text of a definition file (file containing class definitions
only)

• IMPL_FILE: the text of an implementation file (file containing method im-
plementations)

• DOCU_FILE: the text of a documentation file (file containing documenta-
tion chapters)

• CLASS: the text of a class definition without a superclass (root class)
• SUBCLASS: the text of a subclass definition
• CONSTRUCTOR: the text of a constructor method
• DESTRUCTOR: the text of a destructor method
• METHOD: the text of any other method
• CHAPTER: the text of a documentation chapter

DOgMA replaces any %s in these texts with the actual name of the file, chapter, class
or method. Figure 4.39 contains an example of the definition of the templates. For
better readability the variable names are shown in boldface.

72 4.5 Parameterization

setenv DEF_FILE '#ifndef %s_First\
#define %s_First\
#include "xxx.h"\
\
#endif %s_First'
setenv IMPL_FILE '//$%s$\
#include "%s.h"\
\
MetaImpl (%s,(I_O(xxx)));\
'
setenv DOCU_FILE 'empty documentation file'
setenv CLASS 'class %s: {\
protected:\
public:\
 MetaDef(%s);\
 %s();\
 ~%s();\
};'
setenv SUBCLASS 'class %s: public %s {\
protected:\
public:\
 MetaDef(%s);\
 %s();\
 ~%s();\
};'
setenv CONSTRUCTOR 'void %s::%s()\
{\
}'
setenv DESCRUCTOR 'void %s::~%s()\
{\
}'
setenv METHOD 'void %s::%s()\
{\
}'
setenv CHAPTER '%s\
{\
}'

Fig. 4.39 Text templates

Note that the backslash is used to continue a text in the next line. Thus parameteriza-
tion templates for other programming languages can easily be defined as well.

4. DOgMA: A New Tool for Documentation & Maintenance 73

4.6 Implementation Aspects
DOgMA was implemented in an object-oriented manner with C++ under UNIX on a
SUN workstation using the application framework ET++ ([Wei88], [Wei89]). Space
limitations prohibit a detailed description of the implementation; instead we concentrate
on the most important aspects.

Section 4.6.1 provides an overview of the overall structure of DOgMA’s implementa-
tion. In Section 4.6.2 the interface between the language-dependent and the language-
independent part is given. This interface is essential for supporting any other program-
ming languages with DOgMA. Section 4.6.3 describes the language-dependent part of
the C++ version of DOgMA by outlining the most important aspects in the static
analysis of C++ programs. This section is also intended to give the reader an impression
of the effort needed for adapting DOgMA to a new programming language. The use of
an application framework greatly influences the implementation of a software system.
Thus the impact of using ET++ in developing DOgMA is described in Section 4.6.4.
Finally, current restrictions and possible improvements are sketched in Section 4.6.5.

4.6.1 Overall Structure of the System

The tool is clearly separated into two parts: a language-independent hypertext browser
(see [Con87]) and a language-dependent static analyzer (C++ and Modula-2) that col-
lects needed information about the inspected program.

Language-Independent Hypertext Browser

The language-independent hypertext browser controls the user interface and manages
the following information about a software system:

• text pieces (e.g., class descriptions, method implementations)
• any relations among these text pieces for browsing (e.g., inheritance, in-

clude relations, methods of a class)
• classification of text parts (e.g., keywords, comments, identifiers)
• relations among identifiers (the definition of an identifier and its uses)
• additional information (e.g., inheritance path, file location)

Based on this (language-independent) information, the tool manages easy browsing
through a software system.

Language-Dependent Source Code Parser

The language-dependent parser analyzes the source code, cuts it into small pieces of
text (classes and methods), and passes information to the hypertext browser, e.g.:

• the definition of an identifier
• the use of an identifier

74 4.6 Implementation Aspects

• any keyword
• any comment
• any inheritance relation
• the location of files (directory path)

Documentation Text Parser

Documentation text, like source code, is stored as text. Links to the source code are
marked with a special character and consist of the name of the source code part (e.g.,
‘class HyperText’, ‘HyperText::Cut’) followed by the name of the identifier or the text
part (e.g., ‘class HyperText;marks’, ‘HyperTextDocument::DoMenuCommand;Copy/
Paste of Identifiers‘).

The documentation text parser has to establish the links among the chapters and be-
tween documentation text and source code parts and identifiers.

4.6.2 Interface between the Hypertext Browser and the Parser

In order to be able to use DOgMA for other programming languages, the interface be-
tween the language-independent hypertext system and the language-dependent source
code parser is crucial. An important part of DOgMA’s class hierarchy is shown in Fig.
4.40, whereby classes of the application framework ET++ are drawn in grey boxes. The
only language-dependent class, CProject, is shown with a thick border.

Root

Object

EvtHandlerText

DocumentGapText

StyledText

HyperText

HyperProjectHypertext
Document

CProject

Fig. 4.40 Class hierarchy

The most important classes of DOgMA’s implementation are HyperText, HyperText-
Document and HyperProject. The class HyperText provides text editing capabilities
(inherited from the ET++ class GapText), various fonts and styles (inherited from the
ET++ class StyledText) and hypertext features (implemented in the class HyperText it-
self).

4. DOgMA: A New Tool for Documentation & Maintenance 75

The class HyperTextDocument provides the usual document processing capabilities like
loading and storing of files. The class HyperProject provides general information about
a loaded software system. Additionally, it provides two methods, ReadProject and
ParseProject. ReadProject is responsible for reading a software system and establishing
global links (classes, methods, etc.). ParseProject has to do static analysis of the loaded
system in order to get information about identifiers, comments, etc. This information is
passed to the hypertext browser by sending messages to objects of class HyperText.

The methods ReadProject and ParseProject are responsible for both reading and
parsing the source code and the documentation text. They are language-dependent;
therefore they are overridden in a separate subclass (CProject in Fig. 4.40) which
contains all language-dependent parts of the system. If DOgMA is to be adapted to
another programming language, then the main task is writing a new subclass of
HyperProject with the methods ReadProject and ParseProject.

4.6.3 Static Analysis of C++ Programs

C++ is an object-oriented superset of the programming language C [Str86]. We will
present some details about the static analysis of C++ programs because the structure
and the history of the language burden the development of tools for it.

The compilation of C++ usually consists of three parts: the C preprocessing (cpp), the
transformation to C (cfront), and finally the compilation of the C program (cc) (see Fig.
4.41).

Fig. 4.41 C++ compilation

The C Preprocessor (cpp) first reads the source code and processes the preprocessor
statements (lines beginning with a ‘#’). It includes other files, handles the definition of
identifiers and replaces these identifiers in the subsequent text with their defined strings
(with parameters), and skips parts of the text according to if-then-else-statements,
which requires the evaluation of constant expressions.

The C++ Front End (cfront) parses the output of the preprocessor and generates a C
program. To do this, a full syntactic and semantic analysis is necessary.

76 4.6 Implementation Aspects

Finally, the C Compiler (cc) reads the output of the C++ front end and generates object
code. In some implementations object code is generated directly; i.e., the transforma-
tion to C code is omitted.

In order to get the information needed for our hypertext browser, the syntactic and se-
mantic analysis of cfront has to be carried out. This analysis cannot be done with the
output of the preprocessor because the preprocessor generates a new intermediate
source file and it would be impossible to determine exactly the definition and use of
identifiers of the original source file. Therefore these two steps have to be integrated;
i.e., the functions of cpp and cfront have to be carried out simultaneously.

Our language-dependent parser has to recognize and perform any preprocessor state-
ments (include files, manage a symbol table of preprocessor-defined symbols, evaluate
constant expressions in if-then-else statements and possibly skip lines). Whenever an
identifier is read from the regular C++ code, we must check whether it is a preproces-
sor-defined identifier. In this case this identifier (and possibly an argument list) have to
be replaced with the appropriate string and passed on for further analysis. Otherwise
the hypertext browser has to be informed about an identifier definition or use. The same
holds for keywords and comments.

4.6.4 Impact of Using an Application Framework

Reusability of existing code is a major advantage of the object-oriented programming
paradigm. Thus predefined standard applications can easily be reused and extended
flexibly. These standard applications are called application frameworks.

4. DOgMA: A New Tool for Documentation & Maintenance 77

Supplied
Class

Supplied
Class

Supplied
Class

Modifications

Supplied
Class

Modifications
and

Extensions

Supplied
Class

Extensions

Modifications

Application
Framework

Fig. 4.42 An expanded application framework

The basic organization of an application designed with an application framework is
shown in Fig. 4.42 (see also [Sch86]).

The activity of developing a new application is reduced to modifying existing classes by
appending code to them (building subclasses) and to adding new classes.

DOgMA was implemented using the application framework ET++ ([Wei88], [Wei89]).
ET++ integrates user interface building blocks, basic data structures, and support for
object input/output. The main goals were to ease the development of highly interactive
applications and to provide them with consistent user interfaces. DOgMA is a highly in-
teractive application which benefits from ET++ in several ways. The following func-
tionality is provided by ET++ and did not have to be taken into consideration explicitly
when developing DOgMA:

• window resizing, window movements
• menu handling
• event handling
• basic text editing (cut, copy, paste)
• finding/changing text
• styled texts
• undoable commands

78 4.6 Implementation Aspects

• scrolling of window contents
• display of lists
• file handling

This resulted in a considerable reduction of source code to be written and hence also
development time. However, there were also some problems with using ET++:

• Due to the high complexity, it takes a significant amount of learning effort to use
ET++. (This holds for other application frameworks as well.)

• There was no documentation available, which made it necessary to study the class
implementations. (This is by no means desirable when using an application frame-
work.)

• Sometimes a certain behavior of a class was undesirable, but it was very difficult to
circumvent it because this was not intended by the designers of the framework. For
example, the class Document incorporates a mechanism for determining whether a
document has been changed. When the user closes a document, she/he is automati-
cally asked whether the changes should be saved. Usually this built-in behavior is
welcome because it relieves programmers of that task. However, DOgMA’s docu-
ment structure is more complex because it consists of several documents in the no-
tion of ET++. Therefore, the built-in behavior was undesired and had to be turned
off, which was rather cumbersome, as the class Document was not designed to sup-
port that.

However, the advantages outweighed the drawbacks by far. The benefits of using an
application framework even increase when developing more applications with it be-
cause the learning effort vanishes.

4.6.5 The Implementation of Hypertext

In DOgMA hypertext nodes exist for classes, methods, files and chapters. For this pur-
pose an abstract class NodeItem was introduced which was specialized for the various
node kinds (see Fig. 4.43).

NodeItem

MethodItemClassItem FileItemChapterItem

Fig. 4.43 Class hierarchy for hypertext nodes

The class NodeItem contains information that is peculiar for every hypertext node (e.g.,
a reference to the text of this node). The specialized classes contain references
representing the various links defined for them (e.g., references to subclasses,
superclasses).

The hypertext information for texts is stored in mark lists. Mark lists are lists of objects
that contain additional information about a text, e.g., style information or hypertext in-
formation (see Fig. 4.44). Each object in a mark list refers to a portion of text that

4. DOgMA: A New Tool for Documentation & Maintenance 79

starts at some position and extends for a certain length and contains additional
information about the text portion it refers to. For example, an object marking the use
of an identifier contains a reference to the object referring to the definition of this
identifier. This references are not restricted to a single text; e.g., the use of an identifier
can be in a different text than its definition.

void IdentUseMark::DoUpdate (ObjPtr, void *what)¶{¶ //ident def …

keyword keywordident use ident def ident use ident def

italicplainplainplain boldbold

comment

style
information

plain text

hypertext
information

Fig. 4.44 Hypertext and style information as mark lists

When the user wants to highlight an identifier, the definition object of this identifier
sends a message to all uses which enforce the style information to be updated corre-
spondingly. Additionally, a counter in the corresponding node object is incremented.
This counter is displayed in the selection lists and represents the occurrences of an iden-
tifier.

The positions stored in each mark object have to be updated whenever the user makes
any changes in a text (deleting or inserting characters). However, this can be done fast
enough so that the editing process is not distinctly slowed down.

4.6.6 Problems with the Text Structure of ET++

Source code must not exist in multiple editions when the user copies it into the docu-
mentation, but rather references have to be established to use the same text in several
contexts (see Fig. 4.45). This avoids consistency problems and guarantees that any
changes are immediately reflected anywhere a text is used.

Source
code Documentation

Fig. 4.45 Integration of source code and documentation

However, this is not possible with the text structure provided by ET++ classes, which
model a text as an array of characters.

We decided to use the existing text classes for the first version of DOgMA instead of
reimplementing them. In the sense of experimental prototyping, this approach was
thought to provide useful information about the drawbacks of the existing classes. This

80 4.6 Implementation Aspects

information can serve as a base for the design of a new implementation. The following
drawbacks were encountered:

• Collapsing or expanding text parts causes the following steps to be executed:
Cutting the text to be removed, pasting the textual counterpart and updating the
style and hypertext information (removing the marks of the old text, inserting the
marks of the new text and updating the positions of the other marks).
With a new text implementation this procedure should be replaced by simply updat-
ing some references.

• Integrating source code and documentation requires duplicating text parts of the
source code together with its mark information. To prevent consistency problems,
we do not allow the user to edit source code within the documentation in the
current version of DOgMA.
This is the major drawback of the existing text classes because it even imposes re-
strictions on the user. In a new implementation it must be possible to make multiple
references to a text without copying neither the plain text nor any marks.

The current version of DOgMA has proven very useful for both its users and its author
in spite of the restriction that currently source code cannot be edited within documenta-
tion text. On the one hand, the author had the possibility to gather information and
experience for the reimplementation of the text classes (which also requires a good
knowledge of the existing classes). On the other hand, DOgMA was earlier available
for users than it would have been without reusing the existing classes.

4.6.7 External Storage of Source Code

For compatibility reasons the source code has to be stored in its original form; i.e., no
hypertext information is filed with it. This is necessary to use other tools like compilers
and debuggers of which the functionality is not provided by our maintenance tool. Be-
sides, a maintenance tool must be capable of processing existing source code which has
been created with another programming tool. This becomes possible when using textual
representation of the source code.

4. DOgMA: A New Tool for Documentation & Maintenance 81

PullDownBar *HyperTextDocument::CreateMenuBar()
{
 ObjList *list= new ObjList;
 //@(:"Sun Menu"
 sunMenu= new PullDownMenu(new ImageItem(SunImage, Point(23)));
 sunMenu->AppendItems("About DOgMA", cABOUT, 0);
 list->Add(new PullDownItem(sunMenu));
 //@)
 //@(:"File Menu"
 fileMenu= new PullDownMenu("File");
 fileMenu->AppendItems

 ("Load File ...", cLoadFile,
 "-",
 "Save File", cSAVE,
 "Save File as ...", cSAVEAS,
 "-",
 "Spawn", cSPAWN,
 "Close", cCLOSE,
 "-",
 "Show Application Window", cSHOWAPPLWIN,
 0);

 list->Add(new PullDownItem(fileMenu));
 //@)
 …
 return new PullDownBar(this, list);
}

Fig. 4.46 External storage of collapsed text parts in C++

Storing the source code in its original textual form is possible because all the hypertext
information is inherent to it. With a simple static analysis of the source code, the nodes
(classes, methods, modules, procedures) and their links can be reestablished.

There is only one exception: collapsed text parts are not supported in programming lan-
guages. Therefore, we simply use comments to identify collapsed text parts and to
name them. Figure 4.46 gives an example of a C++ source code with comments for the
identification of collapsed text parts (see also Fig. 4.2).

The special character @ identifies comments for collapsed text parts. If the @ is fol-
lowed by an opening parenthesis, a colon, and a string, then the succeeding text should
be replaceable by this string. The end of the replaceable text is identified by a comment
containing the special character @ and a closing parenthesis.

4.6.8 External Storage of Documentation

Saving the documentation in textual form also has many advantages due to
compatibility reasons. First, the documentation can be processed with other tools as
well, and second, already existing documentation text can easily be used with our
maintenance tool.

82 4.6 Implementation Aspects

chapter “Copy/Paste of Identifiers”:”Implementation”
{
If the user wants to copy an identifier, we just remember the
identifier (i.e., the current mark) in a global variable by calling
the method @"class HyperProject;SetClipMark".

@"HyperTextDocument::DoMenuCommand&Copy/Paste Identifiers"

If the identifier is to be pasted, we send the text the message
@"class HyperText;PasteMark" and provide the mark of the identifier
as its first parameter. (We get this global variable again by calling
@"class HyperProject;GetClipMark".)
Afterwards we call @"class HyperTextView;SetText". This guarantees
that the styles are set correctly (especially for the one identifier
or text we just pasted). Finally the identifier is selected.

@"HyperText::PasteMark"

We just call the method @"HyperText::PasteMark;PasteMark" of the
@"class HyperMark;HyperMark" we get as the first parameter.
...
}

Fig. 4.47 External storage of documentation

In order to reestablish the information web, links to the source code are marked with a
special character and consist of the name of the source code part (e.g., ‘class Hyper-
Text’, ‘HyperText::Cut’) followed by the name of the identifier or the text part (e.g.,
‘class HyperText;marks’, ‘HyperTextDocument::DoMenuCommand;Copy/ Paste of
Identifiers‘).

Figure 4.47 shows how the documentation chapter of Fig. 4.10 is stored in a text file.
The keyword “chapter” is used to easily identify chapters when reading the documenta-
tion. It is followed by its name (in quotes) and an (optional) name of its superchapter.
The special character @ is used to identify links to the source code. To simplify the
process of recognizing documentation chapters, their content is externally enclosed by
braces.

4.6.9 Current Restrictions and Possible Improvements

DOgMA has been implemented, but certain details have not yet been completed and are
scheduled for inclusion in future improvements, e.g.:

• Incremental static analysis is not supported, i.e., when changes are made to
a software system hypertext information cannot be updated
correspondingly.

• All information about a software system is kept in main memory. The use of
a database is being considered.

• Multiple inheritance is not supported.

4. DOgMA: A New Tool for Documentation & Maintenance 83

• Graphic information representation (graph and tree browsers) is still miss-
ing, but should be easy to implement.

• Text processing features have to be improved.
• Documentation support is not yet complete (e.g., automatic numbering of

chapters, generating a table of contents, printing).
• Search-and-replace operations function on the currently displayed text only.

They must be applied to the whole software system.
• An initial setting of the global text styles should also be parameterizable. So

far the initial values are set by DOgMA.
• DOgMA should explicitly call the user’s attention to inconsistencies in the

documentation (unresolved code links).
• Inclusion of graphics in the documentation is still missing.
• The source code cannot be edited within the documentation.
• It should be possible to interactively specify the width of the selection lists.

The main goal in developing DOgMA was to demonstrate possible improvements in the
field of documentation and maintenance rather than to create a perfect tool.
Nevertheless, DOgMA has still proved a useful support, especially in the
comprehension process, in spite of the shortcomings mentioned above.

4.7 Measurements and Statistics
The part of the application framework ET++ used for DOgMA consists of about 150
classes. To implement DOgMA about 50 classes have been added with about 500
method implementations for the language-independent part. The definition of the parts
of ET++ that were used (the definition files only) encompasses about 10.000 lines of
code, DOgMA accounts for about additional 9.000 lines (class definitions and method
implementations). The language-dependent part for the C++ parser is implemented in C
and accounts for about 28,000 lines of code. An existing parser and preprocessor were
adapted for that purpose.

Figure 4.48 presents some measurements that were made processing a subsystem of
DOgMA itself. This subsystem consists of the whole source code of DOgMA without
the language-dependent parser, which is implemented in pure C, and the definition files
of the application framework ET++ which were used in implementing DOgMA. This
was the typical configuration used by the author when working on DOgMA with
DOgMA. The measurements were made on a Sun SPARC station 1+ with 8 MB RAM.

It has to be mentioned that it takes a while to load and parse the software system (40
seconds for loading and an additional 110 seconds for parsing). This is not that bad
when considering the fact that compiling takes about 3 minutes. However, loading and
parsing has to be done only once and the benefits of these 2.5 minutes of waiting can be
seen in the other measurements. It hardly ever takes longer than a second to get any in-
formation about the loaded software system. And this is what counts, because the user

84 4.7 Measurements and Statistics

needs information fast and in an easy manner in order to promote continuity in her/his
trains of thought.

Total number of files 140

Total number of classes 200

Total number of method implementations 500

Total number of lines of code 19,000

Size of object code 1.8 MB

Time needed for loading the system 40 sec

Time needed for parsing the system 110 sec

Main memory needed (virtual) 11.5 MB

Real main memory used 2.5 MB

Getting information about an identifier 0.5 sec

Highlighting an identifier 0.5 sec

Highlighting instance variables of a class 1 sec

Changing the name of an identifier 2 sec

Branching to the definition of an identifier 1 sec

Branching to the documentation of a class 1 sec

Fig. 4.48 Measurements and statistics

- 85 -

5. Comparison with Similar Tools

In this chapter we introduce tools similar to DOgMA. In order to determine tools that
are similar to DOgMA, a classification of tools is presented in Section 5.1. The cate-
gories considered for comparison are browsers, hypertext systems, and literate pro-
gramming systems, which are presented in the Sections 5.2, 5.3, and 5.4, respectively.
The browsing, hypertext and literate programming features of DOgMA are also sum-
marized and compared with the other tools in the corresponding subsections. Finally,
Section 5.5 provides a summarizing comparison of all these features of the presented
tools.

5.1 Classification of Tools
A software tool is a computer program used for developing, testing, analyzing or main-
taining another computer program or its documentation (see Chapter 2). Typical cate-
gories of software tools are [Mar83]:

• system design tools
• analysis tools
• programming tools
• testing and debugging tools
• documentation tools
• maintenance tools

As software maintenance is considered as continued development (see Chapter 2), all
tools used for development are also useful and necessary for maintenance. However,
the term maintenance tools is used in this context for tools that are primarily useful in
the process of software maintenance.

Documentation tools include both tools for preparing documentation (used mainly dur-
ing development) and tools for automatic generation of documentation (applied to
existing systems). The situation is similar with testing and debugging tools. They are
needed during initial development as well as (even more) during the maintenance phase.

There are numerous ways to classify the types of tools. Usually they are classified by
function because functional areas are easy to identify. The delineation of the various
categories of software tools is sometimes as arbitrary as is the strict separation of
development and maintenance. Nevertheless, the assignment of tools to certain
categories is helpful for obtaining a general view of them.

86 5.1 Classification of Tools

The following (functional) classification divides software maintenance tools into 11 cat-
egories and was made by the Federal Software Management Support Center at the U.S.
General Services Administration ([Rom86], [Par87b]):

1) test coverage monitors
2) translators
3) reformatters
4) data standardization tools
5) cross reference analyzers
6) documentation tools
7) source comparators
8) file comparators
9) data manipulation tools

10) restructurers
11) code analyzers

In order to make maintenance tools accessible for a larger audience, the Federal Soft-
ware Management Support Center has developed a programmer’s workbench which
consists of 10 tools to assist maintenance programmers. They fall into the categories
presented above. One tool covers two categories; therefore 11 categories are covered
by only 10 tools (see also [Abi88]).

A more exhaustive classification with 23 categories and assignment of commercially
available tools to these categories can be found in [Zve89]. Unfortunately, the descrip-
tion of the tools is very poor and somewhat unsystematic.

As the above classifications do not cover all maintenance activities and do not consider
new technologies, we will introduce one of our own. Our classification will be based on
the activities presented in Section 3.2.2.

1) Browsing Tools
A browser presents a hierarchical index to information, where the index is an aid
for the user to quickly obtain needed information (see Chapter 3.2.2). Browsing
tools help maintenance programmers primarily to get familiar with a software sys-
tem.

2) Hypertext Tools
Hypertext tools support nonsequential reading and writing. This approach is ex-
tremely useful for software documentation. Hypertext tools are the new generation
of documentation tools (for both user and system documentation). The concepts of
hypertext can also be applied to source code and— even more important— it can be
used for the integration of source code and documentation.

3) Literate Programming Tools
Literate programming tools can be regarded as documentation tools, but a separate
category is justified because of the importance of the concept of literate program-

5. Comparison with Similar Tools 87

ming and the fact that these tools support not only documentation but also the pro-
cess of designing and coding.

4) Visual Programming Tools
Visual programming tools use graphics in order to support the programming, de-
bugging and understanding of software systems. These are tools for visual pro-
gramming, program visualization, program animation, and programming by exam-
ple.

5) Documentation Tools
Documentation tools support the creation and maintenance of documentation. Re-
documentation is a subarea of reengineering [Chi90]. So documentation tools that
automatically produce documentation from the source code are reengineering tools
as well. But we count them among documentation tools in spite of this fact.

6) Debugging Tools
Debugging tools support the monitoring of program execution. They not only help
to find errors but are also very useful for understanding programs.

7) Testing Tools
Testing tools are considered a superset of test coverage monitors. In this category
we also include any other test tools like test driver tools, test planning tools, test
data generators, etc.

8) Reengineering Tools
Reengineering has emerged as an independent discipline aimed at the decom-
position and comprehension of existing source code. Restructuring is part of re-
engineering, therefore we replace the category restructurers by reengineering tools.
We also count reformatters in this category because reformatting can be regarded
as a simple kind of restructuring which enhances the readability of a program.

9) Configuration Management Tools
Configuration management is a major problem for managing and maintaining large
software products which do not consist of a single version of a system but encom-
pass a set of similar configurations.

10) Software Engineering Environments
The pipe dream of any software engineer is an integration of the tools mentioned
above to a compatible toolset and also the integration of the concepts found in
various tools to become part of a powerful software engineering environment.

11) Other Tools
All other tools (e.g., the ones mentioned by the Federal Software Management
Support Center but not taken into consideration by our classification so far) will be
collected in this category, i.e., translators, source and file comparators, data stan-
dardization and manipulation tools, and code analyzers.

88 5.1 Classification of Tools

DOgMA can be assigned to the first three categories: browsing tools, hypertext tools
and literate programming tools. Therefore, in the following sections we will systemati-
cally contrast browsing, hypertext and literate programming features of various tools.

A true comparison of software tools could be accomplished by using the tools in paral-
lel for some time, thus finding out the differences (see [Smn85]). However, such a com-
parison using multiple maintenance teams would cost too much. Besides, one test
would not be enough, and so far nobody knows which variables to control. Some minor
comparisons have been made that way to test structuring engines (i.e., restructuring
tools) for Cobol [Smn86], but the tests were not considered very conclusive: they did
not last long enough and the changes performed were too trivial.

5.2 Browsers
For comparison with DOgMA we chose the Smalltalk-80 and the Smalltalk/V
browsers, the Omega browser, and the browsers available with the application
framework ET++ (which was used to implement DOgMA). The Smalltalk browsers are
considered for comparison because their early development was a major contribution in
the evolution of browsing systems. Besides their functionality and comfortable user
interfaces can still be compared with newer browsers. Omega is a new system which
provides interesting and promising browsing capabilities. Finally, ET++ offers the
inspection of various dynamic aspects which are very important for program
comprehension but not considered by other browsing systems.

5.2.1 The Smalltalk-80 Browser

The Smalltalk-80 browser (see [Gol84], [Lal90]) presents categories to organize
classes within the system and to organize methods within a class (see Fig. 5.1).

The browser contains five panes and a switch between instance and class. The panes
depend on each other; i.e., making a selection in a pane specifies the information to be
displayed in another pane. The switch is used to distinguish between methods that are
sent to the instances of a class and methods that are sent to the class itself. (For details
concerning classes and their instances see [Gol85].)

The classes are organized according to categories which can be seen in the first pane
(class categories). Choosing an item in this pane causes the classes of the chosen cate-
gory to be displayed in the next pane. Selecting a class causes the display of its message
categories in the message categories pane. Choosing a message category causes the ap-
propriate messages to be displayed in the message pane.

In the text pane the source code of the appropriate classes and messages are displayed
depending on the selections made above. Selecting a category provides a template for
creating a new class or message.

5. Comparison with Similar Tools 89

class
categories

class names

text

message
selectors

message
categories

instance class

Fig. 5.1 Structure of the Smalltalk-80 system browser

There is much useful information about a class that can be retrieved with a Smalltalk-80
browser:

• a description of classes and methods (comments)
• a classification of classes and methods
• access to classes that implement a particular message
• access to methods that send or implement a particular message
• access to methods that reference a particular variable or literal

It is also possible to browse a subset of the system simply by spawning a new browser
which gives access only to a certain class category, a certain class, a certain method
category or even a certain method. With a class hierarchy browser the superclass and
the subclasses of a class can be inspected comfortably.

Rating

The Smalltalk-80 browser is a powerful tool in coping with the complex structure of
(object-oriented) Smalltalk systems. The classification of classes and methods and the
possibility to easily get the answers to various questions concerning the structure of a
software system are useful aids in program comprehension. Unfortunately, browsing is
limited by being based only on the relations among classes, methods and their cate-
gories. The documentation is also neglected, except the rudimentary facility of using
comments to describe classes and methods and to present them to the user on demand.

5.2.2 The Smalltalk/V Browser

The Smalltalk/V environment (see [Dig89]) provides a class hierarchy browser that
shows the interrelationships of the classes within the system (see Fig. 5.2).

The class hierarchy list appears in the upper left pane, where the classes of the system
are presented in a hierarchical order. The instance/class radio buttons are used to select
between the display of instance or class methods and variables. In the center pane the
variables of the selected class and its superclasses are displayed and the message pane
shows the methods of a class.

90 5.2 Browsers

class
names variable

names

text

message
names

class
instance

Fig. 5.2 Structure of the Smalltalk/V class hierarchy browser

If a variable is selected, then the list of methods is reduced to the methods which refer-
ence the selected variable. Like the Smalltalk-80 system, the Smalltalk/V system helps
the user by answering a lot of questions about the structure of the system, for example:

• Senders: Which methods send a specific message?
• Local senders: Which methods of the current class and its subclasses send a

specific message?
• Implementors: Which classes implement a specific message?
• Local implementors: Which classes of the current class and its subclasses

implement a specific message?
• Which methods change the value of a specific variable?
• Which methods use the value of a specific variable?
• Which methods change or use the value of a specific variable?

Rating

The Smalltalk/V browser is very similar to the Smalltalk-80 browser, i.e., powerful
browsing capabilities are degraded by neglected documentation. Again the Smalltalk/V
browser does not provide any hypertext capabilities but, nevertheless, supports com-
fortable browsing features enabling nonsequential reading of a software system.
Smalltalk/V does not offer class and method categories, but instead also bases its
browsing on variables. This helps in finding the occurrences of variables, which is very
useful in the maintenance process.

5.2.3 ET++ Browsers

The application framework ET++ is provided with browsers for programmers using the
framework. As C++ is the implementation language of ET++, the browsers support
C++, too. However, there is a major difference between ET++ browsers and other
browsers, because ET++ browsers are not tools that can be started to inspect any soft-
ware system, but rather they are available for a system that has been implemented with
ET++ and are available only when the application is running. Thus it is not possible to
inspect any software system written in C++. But the browsers have the advantage that
they partially represent the object structure of the running ET++ application, which is a
major advantage for understanding a system.

Four kinds of browsers are supported:

5. Comparison with Similar Tools 91

• Source browser
for browsing through the source code and getting important information about it

• Hierarchy browser
for graphically displaying the inheritance hierarchy and other important information

• Structure browser
for graphically displaying the object structure of the running application together
with useful information about the relationships of these objects

• Inspector
for inspecting the objects of the running application by displaying the values of their
instance variables

The source browser (see Fig. 5.3) provides a list of all classes (upper left pane). Select-
ing one of the classes causes this class to be displayed with all its superclasses and
methods in the center pane. The methods list can be reduced depending on whether the
methods are public, protected or private (see [Str86]). In the third pane methods can be
displayed that implement, override or inherit a specific message. The text pane does not
display classes and methods, but rather shows the contents of complete files, but it is
automatically positioned to the corresponding class or method chosen.

class
names

class and
method
names

text

method
names

Fig. 5.3 Structure of the ET++ source browser

The hierarchy browser is used to graphically display the inheritance, client and member
relationships of a system. Thus it is easy to find out where in the system a specific class
is used (client) and which other classes a specific class uses for its instance variables
(members). This information is displayed graphically using different colors.

The structure browser graphically represents all objects of a running application (i.e.,
the dynamic incarnations of classes) and shows different relationships among these ob-
jects, e.g., to which other objects a specific object points, by which objects a specific
object is referenced.

The inspector allows a detailed inspection of any object of the running application (see
Fig. 5.4). In the upper left pane a list of all classes with the corresponding number of
incarnated objects is displayed. If a class is selected, then all objects of this class are
displayed in the center pane. Selecting any object causes this object to be displayed in
the lower pane; i.e., all the instance variables of the corresponding class and its super-
class are shown together with their values. The upper right pane can be used to show
objects that reference a specific object.

92 5.2 Browsers

classes objects referencing
objects

object description

Fig. 5.4 Structure of the ET++ inspector

Rating

ET++ browsers are especially useful for maintenance programmers because they
graphically display information and they also present dynamic aspects of a software
system. This is an enormous help in program understanding. However, ET++ browsers
lack the possibility to inspect an arbitrary software system (written in C++). They are
available only for running applications that were implemented using the application
framework ET++. Similar to the Smalltalk browsers, there is no documentation or
hypertext support.

5.2.4 Omega Browsers

Omega is an object-oriented programming language which uses the concept of proto-
types instead of classes (see [Bla91]). The Omega system is highly interactive and pro-
vides a type browser and an object editor. Types (as used in Omega) and classes (as
used in Smalltalk and C++) are somewhat different, but for our purpose this difference
is not significant. In the following context a reader not familiar with prototypes can re-
gard types as classes.

The type browser shows the hierarchy of all types of an Omega software system. Se-
lecting one of them opens an object editor (see Fig. 5.5).

Depending on the selections made in the buttons of the upper row of the object editor,
a list of either variables or methods is displayed below (including all the inherited ones).
Both the methods and variables are shown with additional iconic information about lo-
cation, visibility and override status. Thus the user can see at a glance whether a
method is implemented only once (in the current inheritance path), overrides a method
or is itself overridden.

The text of methods is specified and displayed in a separate text window. Types and
variables are fully specified with the object editor (without typing any text).

variables methods

variable or
method list

type
list

method
text

icons

Fig. 5.5 Structure of Omega’s browsing facilities

5. Comparison with Similar Tools 93

Rating

Omega is a new programming language and system still under development. However,
its browsing capabilities are very promising. Much information that is important during
maintenance is provided by Omega in a most convenient way, e.g., the visibility of vari-
ables and methods and the fact whether and where methods are overridden in the
inheritance hierarchy. Documentation support as well as any hypertext features are not
considered so far.

5.2.5 Browsing Features of DOgMA

DOgMA’s general browsing facility is based on classes, methods and files. Its structure
can be seen in Fig. 5.6.

Similar to the other browsers presented above, DOgMA uses the interrelationships
among classes, methods and files for browsing. One of DOgMA’s strengths is its simple
but powerful browsing facility of the inheritance information. In the inheritance infor-
mation the user can immediately see how methods are overridden in the superclasses
and can very easily inspect inherited methods. Additionally, browsing is possible based
on the interrelations among identifiers and between documentation and source code
(for details see Section 5.3).

class and
file names

class, method,
and file names

text

inheritance and file information

Fig. 5.6 Structure of DOgMA’s browsing facility

Rating

DOgMA’s browsing facilities take documentation fully into consideration and provide
hypertext features which are integrated both in the source code and the documentation.
This is considered a major improvement in the browsing power. Besides, comments are
supported not only for classes and messages as, for example, in the Smalltalk-80 sys-
tem, but for any identifier of a software system.

5.2.6 Comparison of Browsing Features

The comparison is based on the following features: browsing based on classes, meth-
ods, variables, files and/or chapters; multiple windows; categories; hypertext and
graphic support.

• Browsing based on classes, methods, variables, files and/or chapters
Browsers are based on logical units like classes and methods. This means that they
provide lists with these items and thus offer easy and comfortable access to them.

94 5.2 Browsers

Typical browsers for object-oriented software systems are based on classes and
methods. Smalltalk/V displays variable names also. When the user selects one of
these variables, the message (method) list is reduced to those using the selected
variable. Omega offers a variable list as a comfortable way of specifying them, but
without any browsing functionality. In ET++ the inspector displays existing objects
of a running application where the variables of the object and thus the class can be
seen. File-based browsing is supported only by DOgMA. However, in Smalltalk and
Omega files do not have any significance. Besides, DOgMA is the only system that
integrates documentation with the source code and therefore also provides
browsing capabilities based on documentation chapters. The benefits of the vari-
ables found in Smalltalk/V are offered in DOgMA by means of the powerful hyper-
text concept (e.g., to find out which methods use a specific variable).

• Multiple windows
Multiple windows are essential for any browsing system because it is crucial to in-
spect several parts of a software system simultaneously. Needless to say, all the pre-
sented browsers support this feature.

• Categories
Categories are important for coping with complexity because they offer a possibility
to reduce the information being displayed. A full category concept can be found
only in the Smalltalk-80 system. ET++ and Omega provide a simplified classifica-
tion mechanism in the possibility to reduce the displayed information depending on
the visibility (public, private) and the location (shared, local: in Omega only).
DOgMA’s categories are restricted to implemented classes, implementation files
and documentation files (see Section 5.3).
The reason why DOgMA does not fully provide categories lies in the fact that the
programming language C++, which does not have any categories, is supported.
They would have to be introduced artificially (possibly similar to collapsed text
parts by using special comments) but would never be available for existing software
systems.

• Hypertext
The hypertext concept offers very powerful browsing capabilities in addition to the
mere display and selection possibility in ordinary lists. This concept is integrated
only in DOgMA.

• Graphic support
Graphics ease the understanding of the logical structure of a software system. ET++
graphically displays the inheritance hierarchy and the object structure. Omega pro-
vides a graphic representation of the inheritance. Graphic support in DOgMA is not
implemented so far, but planned for future versions.

Figure 5.7 summarizes our comparison of the browsing features. All presented brows-
ing systems are rather powerful. DOgMA is distinguished from these systems by its

5. Comparison with Similar Tools 95

support of hypertext features (which enhances browsing essentially) and by its incorpo-
rating the documentation.

Fig. 5.7 Comparison of browsing features

1) to some extent only

5.3 Hypertext Systems
The following hypertext systems will be compared with DOgMA: Dynamic Design,
DIF, Guide and She. Dynamic Design and DIF were chosen as representatives of soft-
ware engineering environments with inherent hypertext capabilities. Guide and She
serve as examples of simple hypertext editors. Guide is a commercially available general
purpose system, whereas She is not marketed and was especially designed for the ma-
nipulation of source code.

5.3.1 Dynamic Design

Dynamic Design, a CASE environment developed at Tektronix, is C-based and admin-
isters project components in what is called a Hypertext Abstract Machine (HAM, see
[Big87], [Big88]). The project components include all documents generated during the
software life cycle process.

Hypertext nodes hold project components (text, graphics, object code, etc.). Links can
either point to an entire node or to any part thereof, e.g., to an identifier in the source
code. Both links and nodes have attributes. A node identifies the project component it
contains and a link indicates the type of relation that is provided by the link. Links may,
for example, exist between specification and source code or between a module with a
variable and the module with the definition of this variable.

Smalltalk-
80

Small-
talk/V

ET++ Omega DOgMA

classes yes yes yes yes yes

methods yes yes yes yes yes

variables no yes no no no

files — — no — yes

chapters — — — — yes

multiple windows yes yes yes yes yes

categories yes no yes1) yes1) yes1)

hypertext no no no no yes

graphics no no yes yes no

96 5.3 Hypertext Systems

Using attributes and values for nodes and links extends the usefulness of hypertext
technology. Attributes identify and categorize nodes and links, which can be used to lo-
cate or filter information in query operations.

The concept of contexts entails the collection and partitioning of nodes and links into
sets. Contexts offer the grouping of common nodes and links into subgraphs, which
makes it possible to support version trees, configuration management, and local
workspaces for different programmers (which may or may not overlap).

Rating

Dynamic Design fully supports both hypertext technology with the concepts of contexts
and attributes, and the integration of source code and documentation. But despite this
integration, Dynamic Design cannot be regarded as a literate programming environment
because the interconnection of source code and documentation is too loose. The fact
that the linking process is not automated has also to be considered a drawback.

5.3.2 DIF— Documents Integration Facility

DIF is the acronym for Documents Integration Facility, a hypertext system to integrate
and manage documents of the software life cycle. The system was developed at the
University of Southern California (and presented in a multitude of papers, e.g., [Gar87],
[Gar88a], [Gar88b]). Segments of the documents are considered to be the nodes and
are stored in files, whereas the links between the nodes, i.e., the relationships between
the document segments, are stored in a relational database.

Through the integration with several software tools, an integrated software engineering
environment is made available. For example, DIF provides revision management facili-
ties by means of using RCS [Tic85] und presents a software system graphically by using
a system visualizer.

Additionally, DIF supports the definition of forms and basic templates, which ensure
that all projects have the same document structure. Thus the software engineer only has
to fill in the forms rather than also defining the structure. Operational links can be de-
fined between source code and object code; activating these links results in the execu-
tion of the code.

Rating

DIF also fully supports hypertext technology and integrates source code and documen-
tation. But again it cannot be regarded as a literate programming environment due to
the same reasons as mentioned for Dynamic Design, and it does not automate the
linking process.

5.3.3 Guide

Guide is a text editor from OWL International that allows the creation of hypertext-
type documents called guidelines on Apple Macintosh and IBM PC (see [Bro86],

5. Comparison with Similar Tools 97

[Her87]). A guideline is a mixture of text and graphics which can contain buttons.
Buttons provide links to hidden text and graphics. The following buttons are supported:

• Replacement buttons
Replacement buttons afford the ability to expand or collapse text and graphic
pieces, thus hiding a certain amount of information and revealing it on demand.

• Note buttons
Note buttons provide additional information about an item. Activating a note button
displays this information in a pop-up window.

• Reference buttons
Reference buttons point to another part of the same or another guideline document.
They allow nonlinear branching through a guideline.

A powerful history function offers backtracking and prevents the user from getting lost
in a complex information web. The various buttons in a guideline document can be rec-
ognized by means of different styles, which can arbitrarily be selected by the user.

Rating

Guide is a nice hypertext system, but unfortunately it can neither be applied to source
code nor can it be used for the integration of source code and documentation. Its use is
limited to pure documentation because hypertext information is stored with text, which
makes this text unusable for compilers. However, it has to be mentioned that the pri-
mary goal for developing Guide was to support nonsequential documentation texts,
e.g., help systems.

5.3.4 She— A Simple Hypertext Editor

She is the abbreviation for simple hypertext editor, which was developed by H.
Mössenböck at the Eidgenössische Technische Hochschule (ETH) in Zürich [Mös90].
The editor is intended for manipulating source code files, but it is language-independent
and can be used for any text files. She provides the following hypertext features:

• Folding
It is possible to replace certain pieces of text with other text pieces and exchange
them with a mouse click. This enables users to hide details of a program by replac-
ing any text (e.g., statement sequences, complicated expressions, extensive com-
ments) with a meaningful name. The user can expand or collapse the text pieces and
therefore inspect the program at various levels of detail. A simple but powerful ap-
plication of this feature is to keep the different steps of the design process when de-
veloping by stepwise refinement.

• Annotating
Annotating is similar to folding. The difference is that the associated text is not re-
placed by another text, but rather a small pop-up window is displayed showing this

98 5.3 Hypertext Systems

text. This feature can be used to explain complicated parts of a program without in-
flating the source code with comments.

• Linking
In the sense of hypertext, different locations in a program text can be linked to-
gether even if they are in different files. This makes it easy to browse through a
system, for example, from the use of an identifier to its definition or from the source
code to the corresponding documentation.

These features prove especially powerful because the She editor provides the possibility
to use global annotations and links. Instead of annotating and linking all identifiers by
hand, the system remembers the information in a global dictionary which makes it avail-
able for all occurrences of identifiers (even if they are entered afterwards). Unfortu-
nately, with this technique we cannot distinguish between identifiers with identical
names but different scopes.

Additionally, She provides different fonts and— although She is language-indepen-
dent— an extension has been made to automatically establish folding, annotating and
linking features in an Oberon program text, which is especially useful for the creator of
She, who primarily uses this language.

Rating

She can be regarded as a very useful improvement over an ordinary text editor. The
provided features— though simple— are a valuable addition which meets the needs of
maintenance programmers to a high extent. However, different scopes of identifiers are
not supported— which is especially important for large software systems— and
documentation aspects are not considered.

5.3.5 Hypertext Features of DOgMA

Essentially DOgMA supports nearly all the hypertext features available in the tools pre-
sented above. However, there are some minor differences:

• Links
We have to distinguish between links that are generated automatically and links that
can be inserted manually. All links within the source code are generated automati-
cally (e.g., from any identifier to its definition, from a class to its superclass). Links
between documentation and source code have to be inserted manually (from identi-
fiers in the documentation text to their definition in the source code, and from code
pieces in the documentation to the corresponding parts in the source code).

• Replacements
Similar to She and Guide, DOgMA allows pairwise replacement of text pieces, thus
making it possible to hide details.

5. Comparison with Similar Tools 99

• Notes
Notes cannot be inserted manually. However, for every identifier (e.g., class names,
method names, variable names) in the source code there exists an automatic annota-
tion providing information about declaration, inheritance and, if a comment is avail-
able, a verbal description of this identifier.

DOgMA also provides a powerful history mechanism. What is missing so far is the
support of attributes (as found in Dynamic Design) and the concept of contexts because
these features are incoherent with existing software systems.

Rating

In comparison with the other tools DOgMA’s hypertext features together with the fully
automated generation of the hypertext information provides much more support of the
maintenance process. This is mainly due the the fact that as much information as possi-
ble is made available, and also due to the high integration of source code and documen-
tation by taking up the idea of literate programming.

5.3.6 Comparison of Hypertext Features

The following hypertext features are considered for the comparison: links, replace-
ments, notes, attributes, contexts, automatic hypertext generation and history func-
tionality.

• Links
Links are the essential concept of hypertext and are present in all systems.

• Replacements
Replacements provide the possibility to replace text pieces with other text pieces
and to exchange them on demand. This is also an essential hypertext concept for
nonsequential reading because details can be hidden. Replacements, like links, are
provided by all systems.

• Notes
Assigning annotations to text pieces like replacements highly supports nonsequential
reading. Again, annoying details are hidden and can be shown on demand. Notes are
also provided by all systems. DOgMA automatically offers notes for any identifier in
the source code with additional information (e.g., point of declaration).

• Attributes
Attributes are very useful for information filtering. They are missing in Guide and
She. DOgMA does not explicitly support attributes, but provides some categories in
the selection lists, thus restricting the nodes being displayed in these lists. Only Dy-
namic Design provides lots of attributes applied to nodes and links. The reason for
this (current) restriction in DOgMA is the fact that a full implementation of

100 5.3 Hypertext Systems

attributes is not practicable without the use of a database. Using a database is being
considered, but has not been implemented so far. The same holds for contexts.

• Contexts
The collection and partitioning of nodes and links into sets is especially useful for
multiperson design and documentation of large-scale software systems. Again,
Guide, She and DOgMA do not support this concept.

• Automatic hypertext generation
Usually hypertext information (links, replacements and notes) has to be input by
hand. However, She provides a global dictionary and an extension for Oberon to
generate this information automatically. DOgMA also establishes this information
automatically.

• History
The browsing history is an important aid in preventing the user from getting lost in a
complex information web. Hypertext systems usually provide this information. Of
the systems chosen for our comparison, only the She editor does not remember the
browsing path.

Figure 5.8 summarizes our comparison of the hypertext features. Maintenance pro-
grammers have to work with already existing systems which (usually) were imple-
mented without any hypertext system. DOgMA is the only system that gives high sup-
port for dealing with such systems because all links based on source code are generated
automatically and thus help the maintenance crew to easily get a lot of important infor-
mation about the existing code. She also provides some help for already existing source
code, but, in this sense, is less powerful than DOgMA.

Fig. 5.8 Comparison of hypertext features

Dynamic
Design

DIF Guide She DOgMA

links yes yes yes yes yes

replacements yes yes yes yes yes

notes yes yes yes yes yes

attributes yes yes no no no

contexts yes — no no no

automatic
generation

no no no yes yes

history yes yes yes no yes

5. Comparison with Similar Tools 101

5.4 Literate Programming Systems
Literate programming systems support the integration of documentation text and
source code. The following systems were chosen for comparison: WEB, the original lit-
erate programming system by Knuth; HSD, a structured method for literate pro-
gramming; an environment for literate Smalltalk programming; and a proposal for an
interactive environment for literate programming.

The WEB system was chosen because it is the original system and most of the other lit-
erate programming systems available are based on it. This holds for HSD as well, but
HSD provides a major improvement in its hierarchical structuring of documents. The
environment for literate Smalltalk programming was chosen to serve as an example of a
system that supports an object-oriented programming language. Besides, it offers a ma-
tured user interface, which is missing in the other systems. Finally, a proposal for an in-
teractive literate programming environment is presented which is intended to offer a
major improvement to existing WEB-based systems.

5.4.1 The WEB System

The WEB system is the original literate programming system developed by the founder
of literate programming, D.E. Knuth [Knu84]. The name WEB expresses the fact that a
program consists of a web of ideas. WEB can be used to write literate Pascal programs.
The system is a combination of both the programming language Pascal and the docu-
ment formatting language TEX. When using WEB, one writes a literate program that
serves as input for two simple tools (see Fig. 5.9). With the tool WEAVE and the TEX
processor, a hardcopy documentation of the program can be generated. The TANGLE
processor produces a Pascal source file that can be compiled, linked, and executed.

WEB

PAS REL

ET X DVI
WEAVE

ET X

TANGLE
PASCAL

Fig. 5.9 The WEB system [Knu84]

Small examples of WEB programs can be found in [Knu84], [Ben86a], and [Ben86b].
Large programs are given in [Knu86a] and [Knu86b].

WEB programs are divided into sections that are numbered sequentially. Every section
contains an optional commentary, optional macro definitions, and optional program
text.

• Commentary
The commentary contains explanations of the macro definitions and/or the program
text that follows (e.g., a description of what the source code is supposed to do, pre-
conditions, postconditions).

102 5.4 Literate Programming Systems

• Macro Definitions
Macros are used to substitute some source code for an identifier (possibly with a
parameter). This allows, for example, the declaration of constants or the definition
of output-oriented commands like writing a string followed by a number. (This re-
quires two statements in Pascal.)

• Program Text
This part of a section contains the specification of the source code. The source code
can be specified directly (in the form of Pascal statements) or indirectly as a refer-
ence to code that appears in other sections. Furthermore, the possibility to concate-
nate the program text of different sections provides the ability to present the code
and text in any desired order.

Figure 5.10 shows a sample section containing commentary text, a macro definition,
and program text.

4. The Global variables M and N have already been mentioned; we had
better declared them. Other
global variables will be declared later.

define M_max= 5000 {maximum value of M}

<Global variables 4>+
M: integer; {size of the sample}
N: integer; {size of the population}

See also Sections 7, 9, and 13.
This code is used in Section 3.

Fig. 5.10 Example of a WEB section [Ben86a]

The ‘<‘- and the ‘>‘-sign followed by a ‘+ ‘ embrace the name of the code of the sec-
tion. The code can be used in other sections by specifying its name (see Fig. 5.11).

3. Here is an outline of the entire Pascal program:

program sample;
var <Global variables 4>
<The random number generation procedure 5>
begin <The main program 6>
end.

Fig. 5.11 Use of program text in another section [Ben86a]

The number following the name is generated automatically by the WEB system (the
number of the section where a code is defined). Please note that the code is used (in
Section 3) before its definition (in Section 4).

The program text of a section can be extended in later sections. This allows the intro-
duction of further global variables in other sections (at places where they are used) (see
Fig. 5.12).

5. Comparison with Similar Tools 103

<Global variables 4>++
size: integer; {the number of elements in set S}

Fig. 5.12 Extension of program text [Ben86a]

For every section the system generates hints that tell the user where the code of this
section is used and which sections refer to its code (see Fig. 5.10). Additionally, a table
of contents and two indexes for identifiers and section names of the WEB program are
generated automatically.

Although the generated documentation of the WEB system is appealing, it is cumber-
some to input a WEB program. Figure 5.13 shows the text that is necessary to generate
a WEB section.

Rating

In developing WEB, its author, D.E. Knuth, concentrated on the essentials of his idea
of literate programming. Unfortunately, this resulted in a poor user interface. WEB can-
not be used interactively, but rather works in batchmode. Users benefit from the printed
output only. Additionally, users have to know the programming language, the docu-
ment formatting language, and the syntax of WEB programs itself in order to write
WEB programs. Another disadvantage of WEB is that it supports one level of abstrac-
tion only. Programmers not familiar with a software system might want to read the sys-
tem’s description section by section. But this is unsuitable for an experienced mainte-
nance programmer who sometimes might want to inspect the source code alone.

ØThis program has no input, ...

Since there is no input, we declare ...

\[The program text below specifies the ‘‘expanded meaning’’ of
‘X2:Program to print \ldots numbers\X; notice that it involves the top-
level descriptions of three other sections. When those top-level
descriptions are replaced by their expanded meanings, a syntactically
correct \PASCAL\ program will be obtained.\]

Ø<Program to print...Ø>=
program print_primes(output);
const Ø!m=1000;
Ø<Other constants of the programØ>Ø;
var Ø<Variables of the programØ>Ø;
begin Ø<Print the first |m| prime numbersØ>;
end.

Fig. 5.13 WEB code for generating a section [Knu84]

5.4.2 HSD— Hierarchical Structured Document

HSD is a programming tool for the automatic generation of source code and documen-
tation from a document description which is hierarchically structured [Tun89]. Unlike

104 5.4 Literate Programming Systems

in the WEB system, documents in HSD are not organized linearly, but rather are com-
posed of a hierarchically ordered collection of sections. To express the structure, HSD
provides a graphic user interface and uses structured representations like trees. Thus a
literate program is a combination of graphic and textual objects.

An HSD section consists of comments, program code, names of subsections, and com-
mands to define and add program code to boxes. Boxes are used to group closely re-
lated declarations and/or statements. (In WEB each section defines one box in this
sense.)

HSD programs are specified in a graphic document description language (GDDL). In
GDDL each node consists of its name and the corresponding text. The HSD system
shows the structure of a software system by displaying the names of the nodes on the
screen. The associated text blocks are shown on demand. The documentation and the
source code are generated by traversing the specification. Like in WEB, the specifica-
tion can be decorated with typesetting commands.

Rating

HSD’s advantage compared to the WEB system lies in its possibility to hierarchically
structure documents and to graphically display and edit this structure. But HSD still
uses typesetting commands instead of interactively providing features for processing
text in wysiwyg manner.

5.4.3 An Environment for Literate Smalltalk Programming

A programming environment based on a variant of WEB was developed for Smalltalk
[Ree89]. The main goals of this development were the analysis, design, implementation,
and maintenance of object-oriented systems in the Smalltalk-80 language.

contents
part

margin
part

Fig. 5.14 Structure of the Galley editor

The data model consists of a directed graph (nodes and attributed relations) which can
be processed with the Galley editor (see Fig. 5.14). The margin part at the left contains
an iconic presentation of the document structure (e.g., text, figure, section, title page).
It can be used to edit the structure. The right part shows the contents, where various
editors (e.g., for text and graphics) are integrated.

Special nodes are used for class and method definitions. They provide a browsing facil-
ity for easy access to the Smalltalk program library. Besides, the Smalltalk compiler can
be activated, which makes this code ready for execution. Even several versions of the
same code may exist. In this case the version recompiled last is executed. Program
fragments are always compilable Smalltalk code, i.e., classes or methods.

5. Comparison with Similar Tools 105

An alphabetically ordered index of classes and methods with page numbers (rather than
section numbers like in the WEB system) is also provided automatically.

Rating

The Smalltalk environment provides the best user interface yet. Both the document
structure and its contents can be edited easily and interactively without the need for any
WEB or text formatting commands. The fact that only compilable code fragments can
be used in the documentation without the possibility to split them further must be con-
sidered as a drawback. With this restriction it is not possible, for example, to describe a
global variable (instance variable) together with the code parts where it is used. Fur-
thermore, in object-oriented systems it is often the case that the implementation of a
certain feature is spread over several source code units (see also the example in Section
5.4.2).

5.4.4 An Interactive Environment for Literate Programming

The WEB system and all the systems based on it work in some kind of a batch-mode.
Brown [Bro90a] proposes an interactive environment for literate programming. How-
ever, only a prototype is available so far. The main idea is to provide the advantages of
a printed WEB listing on the screen also (e.g., complete index, cross reference listing,
print preview). Additionally, the idea of hypertext is incorporated by regarding modules
as hypertext nodes and defining the following links:

• Module m uses module n.
• Both modules m and n contain the same index entry.
• Module m is extended by module n, e.g., by adding a global variable.
• Both modules m and n use the same variable.

Buttons are used to provide this hypertext functionality. For example, a button is of-
fered for every module that uses the module that is currently displayed on the screen.

Other planned features are the integration of a debugger, graphic representations of
various aspects of the system, and a personal preference database to parameterize the
user interface.

Rating

The proposed interactive environment eliminates the shortcomings of existing WEB
systems and additionally introduces hypertext features, which are an essential improve-
ment for maintenance programmers. However, DOgMA’s powerful hypertext capabili-
ties exceed them by far. Again the proposal is strongly based on WEB trying to bring
the advantages of printed WEB documents to the screen.

5.4.5 Literate Programming Features of DOgMA

The literate programming features of DOgMA are described in detail in Chapter 5. As
all available literate programming environments are based on the WEB system, we will

106 5.4 Literate Programming Systems

describe DOgMA’s literate programming features— which are not based on WEB— by
comparing them with the WEB system. The differences are as follows:

• Document structure
The document structure is one of the major differences between WEB and
DOgMA. In WEB the documentation and the source code are intermixed in a single
document, whereas in DOgMA they are strictly separated and presented simultane-
ously to the user (see Fig. 5.15).

WEB

SRC

SRC

DOC

DOC

WEAVE
DOgMA

TANGLE

Fig. 5.15 The document structures of WEB and DOgMA

The separation of source code and documentation text has some major advantages.
First, it is possible to inspect the source code alone. This is useful when the docu-
mentation is already known and the user is familiar with the structure of the system.
The documentation text of any source part can easily be inspected any time, though.
Second, it enables us to process existing software systems which have not been de-
veloped with a literate programming style. Using DOgMA in this case does not pro-
vide the advantages of literate programming immediately, but it is possible to grad-
ually create documentation. For example, the changes made during the maintenance
phase can be documented in the sense of literate programming. Using the WEB sys-
tem for existing source code would require making (bulky) changes in it.

• Batch-orientation
WEB users write a mixture of different languages (programming language, text for-
matting language, WEB specification language). DOgMA users create documenta-
tion interactively; they have to know only the programming language.

• Compile/Edit/Run
WEB-based literate programming systems are batch-oriented. They generate a
source listing which is processed by the compiler. Compilation errors are reported
with references to the source code listing. It remains the user’s task to find the cor-
responding location in the WEB document. To speed up the turnaround cycle,
WEB users tend to make modifications in the generated source code and transfer
these changes to the WEB document afterwards (even though the generated source
code is hardly readable). DOgMA users make this modification in the source code,
and these modifications are automatically reflected in the documentation.

5. Comparison with Similar Tools 107

• Documentation update
If any changes are made in the source code, then the corresponding changes have to
be made in the documentation, too. This holds for both DOgMA and WEB. How-
ever, if source code identifiers are changed in DOgMA, then the documentation is
updated automatically, even if the user is inspecting the source code alone.

• System development
WEB forces its users to develop a software system together with its documentation.
DOgMA does not force, but only supports this procedure. Additionally, parts of the
source code can be developed in advance; the documentation can be added after-
wards.

In DOgMA one has the possibility to read the documentation, i.e., documentation text
intermixed with program code. The same holds for WEB documents. Additionally, in
DOgMA one can view the source code alone and at any location one can easily branch
to the corresponding documentation. In DOgMA one can write documentation
(chapters) without source code and also source code without any documentation. This
seems to be incidental, but is very important in practice. Writing source code without
any documentation happens quite often due to pragmatical reasons. It is crucial for the
acceptance of a tool that this is possible and that the documentation can be added
subsequently in an easy and comfortable manner.

In DOgMA it is easy to (partially or completely) document existing program systems
because one can write documentation text and include any part of the source code. In
WEB this is hardly possible because one would have to make changes in the original
source code, move code blocks around and insert documentation text within the source
code.

Rating

Recapitulating, we can say that DOgMA provides a major improvement over WEB-
based systems by physically separating source code and documentation. This eases sub-
sequent documentation and the processing of existing source code. However, subse-
quent documentation is not promoted by DOgMA, but rather it is supported because of
its importance in practice. DOgMA is interactive, does not prolong the turnaround
cycle, and automatically makes consistent changes of source code identifiers in the
documentation.

5.4.6 Comparison of Literate Programming Features

The literate programming comparison is based on the following features: hierarchical
structure, delayed code, source view, automatic documentation update, subsequent
documentation, what you see is what you get, hypertext, integrated compiler, and
graphic support.

108 5.4 Literate Programming Systems

• Hierarchical structure
WEB documents are organized linearly; i.e., they are comprised of a sequence of
numbered sections. The hierarchical structures found in the other systems are better
for capturing the logical structure of a software system.

• Delayed code
One of the major advantages of literate programming systems is the ability to group
closely related declarations and/or statements together, e.g., to declare a global vari-
able where it is actually needed. Thus the code sequence presented to the user is dif-
ferent from the code sequence supplied to the compiler. This feature can be found in
all systems except the Smalltalk system, where a program fragment must always be
a compilable Smalltalk code (a class definition or a method definition).

• Source view
WEB documents contain both documentation and source code. It is not possible to
inspect the source code alone (except the generated output of the TANGLE tool,
which is not very helpful). However, the pure source code is very important for the
maintenance process if the programming staff is familiar with the software system
already and does not want to be annoyed by the documentation all the time.
DOgMA is the only tool that keeps source code and documentation text separate
and therefore allows inspection of the source code alone. Please remember that con-
sistency problems are solved in spite of this fact (see also the next entry).

• Automatic documentation update
The reason why all WEB systems physically integrate source code and documenta-
tion is motivated in the consistency problem. So if any changes are made in the
source code, the user immediately sees the corresponding documentation and is en-
couraged to change it accordingly. DOgMA does not support this physical integra-
tion, but guarantees that source code in the documentation is up-to-date and that
any inconsistencies (unresolved code links) can easily be found by the user.

• Subsequent documentation
Adapting existing source code to a literate program is rather cumbersome with
WEB-based systems because the source code has to be modified extensively in
order to integrate it with the documentation text. With DOgMA this task is handled
easily. The source code remains unchanged (perhaps some text parts are collapsed,
which increases source code readability, too), whereas the documentation emerges
separately. It is also possible to describe the system only partially, e.g., the changes
that are made during the maintenance process.

• What you see is what you get (wysiwyg)
One of the drawbacks of WEB systems is the use of a text formatting language and
the WEB specification language. Nowadays users want to make modifications di-
rectly on the screen, rather than inserting batch commands and waiting for the re-
sults. Another disadvantage of these languages is that users have to learn them.

5. Comparison with Similar Tools 109

• Hypertext
As the structure of source code is inherently nonsequential, the concept of hypertext
is essential for literate programming systems, too. Brown proposes a hypertext in-
terface, but uses only the relations found in the WEB system. DOgMA was de-
signed as a hypertext tool and therefore heavily supports this concept.

• Integrated compiler
WEB-based systems extend the edit/compile/run cycle to a edit/tangle/compile/run
cycle. Only the Smalltalk system offers an integrated compiler, which shortens de-
velopment time considerably. In DOgMA a compiler is not available directly, but
the edit/compile/run cycle remains unchanged because source files are stored
separately from the documentation, which makes the tangle-step superfluous.

• Graphic support
Graphic presentations are very helpful for documentation. Unfortunately, they are
hardly supported by literate programming systems. Obviously the only right step
will be to use existing, powerful word processing systems that allow the integration
of graphics, but so far only simple text editors have been used. This holds for
DOgMA as well, but graphic support is planned for future versions.

Figure 5.16 summarizes our comparison of the literate programming features.
DOgMA’s advantages are the possibility to view and process the plain source code
and— what is especially important in that case— to automatically update the
documentation when changes were made in the source code. Additionally, the
hypertext features greatly enrich the usefulness of the literate programming aspect.

Fig. 5.16 Comparison of literate programming features

WEB HSD Smalltalk Interactive DOgMA

hierarchical
structure

no yes yes yes yes

delayed code yes yes no yes yes

source view no no no no yes

automatic doc.
update

no no no no yes

subsequent
documentation

no no yes no yes

wysiwyg no no yes yes yes

hypertext no no no yes yes

integrated
compiler

no no yes no no

graphics support no no yes no no

110 5.5 Summary of the Comparison

5.5 Summary of the Comparison
The previous sections provided a detailed comparison of DOgMA with browsing, hy-
pertext and literate programming tools. One might claim that DOgMA exceeds the
functionalities of the other tools only to a small extent: The provided browsing features
are powerful but not unique. The same holds for the hypertext capabilities, which even
lack the support of contexts, and attributes are provided only to a minor extent. In liter-
ate programming the advantages of DOgMA are somewhat clearer.

However, it was not intended to outdo any existing tools in their very domain, but
rather to combine various concepts in order to provide new possibilities in the support
of documentation and maintenance. In fact, DOgMA’s strength emerges from the amal-
gamation of the ideas of nonsequential reading and writing and literate programming.

Another characteristic and advantage of DOgMA is its special focus on the process of
software maintenance, which resulted in additional features like enhancing the readabil-
ity through global text styles, finding the occurrences of identifiers through highlighting,
automatic renaming of identifiers both in the source code and in the documentation, and
providing information about identifiers. These features are not encountered in the tools
presented above.

- 111 -

6. Conclusion and Prospects

Chapter 6 draws its conclusion by answering the question whether the goals defined in
Section 5.1 have been achieved. Furthermore, experience gained with DOgMA is pre-
sented and a discussion of its possible integration with software development environ-
ments adds a future dimension.

We repeat the definition of the goals presented in Section 5.1 and comment on the re-
sults.

• Concentration on the essentials
The intention in developing DOgMA was to achieve a reduction in maintenance
costs. This was accomplished by concentrating on the support of program compre-
hension which requires most of the time in the process of software maintenance.

• Synthesis of new concepts
In fact the synthesis of the concepts of hypertext and literate programming turned
out to decisively contribute to the usefulness of DOgMA.

• Compatibility
DOgMA is not fully integrated with other tools that support other aspects of the
software life cycle. However, the plain text was chosen for the external representa-
tion of both the source code and the documentation. This ensures unrestricted use
of any other tools available as long as their external representation of data is textual,
too.

• Modern user interface
DOgMA is highly interactive and its user interface is comprised of simple and easy
to use elements like menus and lists. It turned out that users were able to use it with
only a short introduction and demonstration without the need for any user
documentation.

• Modern implementation techniques
The development of DOgMA would not have been possible without object-oriented
programming and the reuse of a powerful application framework. Using the object-
oriented paradigm with an application framework saves much time in creating a
modern user interface and hence helps in concentrating on application-specific prob-
lems.

112 6. Conclusion and Prospects

• Motivation to write documentation
If a tool can ever motivate someone to write documentation, then it must do so by
providing an easy possibility to write down thoughts at the time these thoughts
occur or by offering a comfortable way of subsequently doing it. We regard the
integration of source code with the documentation and the opportunity to simply
work on both of them simultaneously and with the same tool as a major step
towards improving the willingness of programmers to write (system)
documentation.
Walkthroughs, even though sometimes regarded as too costly, have the advantage
of reducing the number of compilations and tests and help in maintaining quality and
adherence to standards (see [Par86b]). If walkthroughs are not applied to the pure
source code but rather to the documentation which contains the source code, then
the quality of the documentation would benefit from these advantages as well. The
educational aspect of such documentation walkthroughs would increase the quality
of the documentation considerably.

• Documentation access
DOgMA integrates source code and documentation and tells the user whether any
documentation exists for a specific part of the source code (see menu entry Show
Documentation, Section 5.3).

• Documentation consistency
The consistency of the documentation is partially ensured automatically because
source code parts in the documentation text are kept up-to-date. Even when parts
of the source code have been removed, this can easily be seen in the documentation
by means of unresolved links (see Section 5.4.5). As the source code is always up-
to-date, checking the text of the documentation can easily be done by simply
reading it. This is at least by far simpler than finding inconsistencies in the
documentation where no or old source code is integrated.

• Documentation completeness
It is hard to determine when documentation is really complete. However, with
DOgMA it is easy to find out whether or not a part of the source code is docu-
mented. If we define completeness as the fact that there exists documentation for
every part of the source code, then DOgMA can help to determine whether this is
fulfilled and for which parts documentation is still missing.

• Existing code support
DOgMA operates on pure source code files, which makes it better suited for pro-
cessing existing source code than other tools. We believe that DOgMA provides a
comfortable way to (re)document an existing system, or at least to document
changes on it. If documentation also exists, then with DOgMA it is easy to establish
links between documentation and source code and hence take advantage of this
integration.

6. Conclusion and Prospects 113

• Development support
DOgMA can be used as development tool as well. By the way, initial versions of it
were used to develop DOgMA itself. Many features that were primarily thought to
support the maintenance of software systems have been proved themselves very
useful during the development process. As it becomes increasingly important for
software development to reuse existing code (e.g., application frameworks, tool
boxes), the ‘maintenance aspect’ increases for development.

• Information access
DOgMA offers various powerful browsing features, provides information about
identifiers, supports global text styles for better readability, and highlights identifiers
to help to answer a lot of important questions. Any information available through
static analysis is provided to the user as clearly as possible.

• Preventing side effects
DOgMA promotes the understanding of a software system and answers many ques-
tions about the source code. This helps to prevent side effects in the source code.
Additionally, documentation side effects (like deleting and renaming identifiers in
the source code) either can easily be checked (unresolved code links) or are even
prevented (renaming identifiers) (see also [Fre82]).

• Dealing with high complexity
In order to deal with complex systems, it is important to allow nonsequential read-
ing, provide information about the logical structure of the software system, and to
enable the simultaneous inspection of various parts of the system. DOgMA has been
conceived to work on complex software systems.

Through DOgMA’s powerful browsing, hypertext and literate programming capabilities
it helps in dealing with the complexity of software systems, in providing better docu-
mentation (documentation access, documentation consistency, documentation
completeness, motivation to write documentation), and offers nonsequential reading
and writing for source code and documentation. Visual programming aspects are
regarded to further improve program comprehension to a large extent. Thus visual
programming features are to be considered as one of the next steps in DOgMA’s
development.

Experience with DOgMA

Early versions of DOgMA were used primarily to develop DOgMA itself. This early
experience was most helpful for improvements. DOgMA’s use proved to be very
beneficial in the following points:

• Using existing code
Mastering the complexity of an existing application framework is essential for effec-
tive software development. DOgMA provides easy access to the existing class hier-

114 6. Conclusion and Prospects

archy, provides inheritance information, easy access to overridden methods, etc.
Besides, the highlighting mechanism is of great help in studying the use of methods
and in finding out the proper meaning of instance variables. This was especially nec-
essary due to the lack of any documentation of the application framework ET++.
Before early versions of DOgMA were ready for use, the familiarization process
with ET++ had to be accomplished with simple file browsers. For example, finding
the overridden counterparts of a method in the superclasses required several
cumbersome steps. First, the class definition had to be inspected to find out the
name of the superclass. Usually, the file name could be deducted from the class
name. When several classes were combined in one file, the use of the UNIX grep
command was required which searches for a string in various files. If the ap-
propriate file was found and opened in a new file browser, then the method could be
found with a string search unless it did not exist for this class. If the method could
not be found, then the previous steps had to be repeated for the next superclass.
Remember, with DOgMA the existence of overridden methods can easily be seen in
the information box and they are at hand with a single mouse click.

• Finding dead code or variables
Continued development and maintenance of large software systems and even the
evolutionary approach in software development occasionally produces dead code.
Usually such code is left untouched because it is hard to determine whether the
code is really ‘dead’. With DOgMA it is no problem to answer this question. For
example, the question Is this instance variable or method really needed any
longer? can easily be answered by simply highlighting the variable or method.
Finding a dead variable without adequate tool support again requires a cumbersome
string search in various file. In the development of DOgMA finding dead code and
variables was sometimes necessary due to the evolutionary process taken. Especially
when classes were split or merged, a cleanup was needed to remove superfluous
variables and methods.

Actually, the experience gained with DOgMA by the author was mainly made during a
software development process, but an essential part of this process was the reuse of an
already existing class hierarchy. Besides, we would like to recall at this point that the
line between software development and software maintenance is drawn rather
arbitrarily (see Chapter 2). Without using (early versions) of DOgMA the (continued)
development of DOgMA itself would have been a mess! It is impossible to measure the
profit in using DOgMA, but comparing various maintenance activities performed with
and without DOgMA (see above) gives an idea of its usefulness.

DOgMA is currently being used by other members of our research group and by stu-
dents as well. They also have to reuse the application framework ET++ and some of
them even have to get acquainted with the source code of DOgMA itself in order to
make some enhancements and additions. They rate the main advantage of the tool as its
support of understanding foreign source code, of getting an overview of the existing

6. Conclusion and Prospects 115

class hierarchy and of easily getting all the information that is needed to understand a
piece of code. The time needed by our students to take advantage of ET++ was
reduced from months to weeks.

We have little experience so far in the literate programming part of DOgMA. Only
minor parts of DOgMA itself were documented subsequently. However, students are
now using DOgMA as a literate programming tool by developing source code and the
corresponding documentation in parallel. The benefits of literate programming are
undisputed and we are optimistic about DOgMA’s ability to effectively support this
paradigm.

Integration with Software Engineering Environments

DOgMA has proved to be a powerful tool, but it covers only parts of the software
engineering range of activities. DOgMA was designed to allow its use together with
other software tools on the Unix platform. In order to increase programmer
productivity and to make it better suitable for larger projects with multiple
programmers, its extension and tighter integration with other tools would be desirable.

Other tools could profit from the symbiosis of hypertext and literate programming
resulting from integration with DOgMA. It should be possible to start the compiler
within DOgMA and compiler errors should be displayed along with the corresponding
source code within the documentation. The debugger should also work with the docu-
mentation so that the user hardly ever sees the pure source code and gets used to work-
ing with the documentation. Naturally, DOgMA’s hypertext capabilities are also most
appreciated during the debugging process.

These are the most immediate steps for attaining a powerful software engineering envi-
ronment. The support of change management and configuration management becomes
important for large projects. Again, integration with the concepts of hypertext and liter-
ate programming can improve productivity of programmers and the quality of the prod-
uct considerably. For example, every change made (e.g., bug fix) could be described in
a documentation chapter. Hypertext links could easily be established among error re-
ports and corresponding changes in documentation and source code. Connections
among different versions of a software system would help to solve the multiple mainte-
nance problem.

- 116 -

7. References

[Abi88] Abi R.: Software Maintenance: Tools and Techniques— How to reduce the
maintenance blues, System Development, pp. 3-6, August 1988.

[ANS83] IEEE Standard Glossary of Software Engineering Terminology,
ANSI/IEEE Std 729-1983, The Institute of Electrical and Electronics Engi-
neers, Inc., 1983.

[Art88] Arthur L.J.: Software Evolution: The Software Maintenance Challenge,
John Wiley & Sons, 1988.

[Ave90] Avenarius A., Oppermann S.: FWEB: A Literate Programming System for
Fortran8x, ACM Sigplan Notices, Vol. 25, No. 1, pp. 52-58, Jan. 1990.

[Bab86] Babich W.A.: Software Configuration Management: Coordination for Team
Productivity, Addison-Wesley, Reading, MA, 1986.

[Bar88] Barret E. (Ed.): Text, ConText, and HyperText: Writing with and for the
Computer, MIT Press Series in Information Series, 1988.

[Ben86a] Bentley J.: Programming Pearls: Literate Programming, Communications of
the ACM, Vol. 29, No. 5, pp. 364-369, May 1986.

[Ben86b] Bentley J.: Programming Pearls: A Literate Program, Communications of
the ACM, Vol. 29, No. 6, pp. 471-489, June 1986.

[Ben87] Bentley J.: Programming Pearls: Abstract Data Types, Communications of
the ACM, Vol. 30, No. 5, pp. 284-290, April 1987.

[Big87] Bigelow J., Riley V.: Manipulating Source Code in Dynamic Design, Con-
ference on Hypertext, pp. 397-408, November 1987.

[Big88] Bigelow J.: Hypertext and CASE, IEEE Software, Vol. 5, No. 3, pp. 23-27,
March 1988.

[Bla89] Blaschek G., Sametinger J.: User-adaptable Prettyprinting, Software—
Practice and Experience, Vol. 19, No. 7, pp. 687-702, July 1989.

[Bla91] Blaschek G.: Type-Safe OOP with Prototypes: The Concepts of Omega, to
be published.

[Bri87] Brill A.E.: Prevented Maintenance, Computerworld, Vol. 20/21, pp. 83-84,
Dec. 29, 1986/Jan. 5, 1987, contained in [Par88], pp. 339-340.

[Bro86] Brown P.J.: Interactive Documentation, Software— Practice and Experi-
ence, Vol. 16, No. 3, pp. 291-299, March 1986.

[Bro90a] Brown M., Childs B.: An Interactive Environment for Literate Program-
ming, Structured Programming, Vol. 11, No. 1, pp. 11-25, 1990.

7. References 117

[Bro90b] Brown M., Cordes D.: Literate Programming Applied to Conventional
Software Design, Structured Programming, Vol. 11, No. 2, pp. 85-98,
1990.

[Bud84] Budde R., et al.: Approaches to Prototyping, Springer; 1984

[Bus45] Bush V: As We May Think, Atlantic Monthly, pp. 101-108, July 1945.

[Cha86a] Chapin N.: Software Maintenance: A Different View, Data Management,
Vol. 24, pp. 30-35, February 1986, contained in [Par88], pp. 302-304.

[Cha86b] Chapin N.: Veil of Obscurity Masks Need for Maintenance Training, Com-
puterworld, Vol. 20, p. 59, April 28, 1986, contained in [Par88], pp. 317-
318.

[Chi90] Chikofsky E.J., Cross II J.H.: Reverse Engineering and Design Recovery: A
Taxonomy, IEEE Software, Vol. 7, No. 1, pp. 13-17, January 1990.

[Clu81] McClure C.L.: Managing Software Development and Maintenance, Van
Nostrand Reinhold Publishing, 1981.

[Col88] Colner D.: Literate Programming: Expanding generalized Regular Expres-
sions, Communications of the ACM, Vol. 31, No. 12, pp. 1376-1385, De-
cember 1988.

[Con87] Conklin J.: Hypertext: An Introduction and Survey, Computer, Vol. 20, No.
9, pp. 17-41, September 1987.

[Cou85] Couger J.D.: Motivating Maintenance Personnel, Computerworld: in depth,
Vol. 19, pp. ID/5-ID/14, August 2, 1985, contained in [Par88], pp. 278-
280.

[Dij65] Dijkstra E.: Programming Considered as a Human Activity, Proceedings of
the 1965 IFIP Congress, Amsterdam, North-Holland Publishing Co., 1965,
contained in [You79], pp. 3-9.

[Dig89] Smalltalk/V PM: Tutorial and Programming Handbook, Digitalk Inc., 1989.

[Eng63] Engelbart D.C.: A Conceptual Framework for the Augmentation of Man’s
Intellect, in Vistas in Information Handling, Vol. 1, Spartan Books, Lon-
don, 1963.

[Fai85] Fairley R.E.: Software Engineering Concepts, McGraw-Hill, 1985.

[Fel79] Feldman S.I.: Make— A Program for Maintaining Computer Programs,
Software— Practice and Experience, Vol. 9, No.4, pp. 255-266, April 1979.

[Fid88] Fiderio J.: Hypertext: A Grand Vision, BYTE, Vol. 13, No. 10, pp. 237-
244, October 1988.

[Fre82] Freedman D.P., Weinberg G.M.: A Checklist for Potential Side Effects of a
Maintenance Change, Handbook of Walkthroughs, Inspections, and Techni-
cal Reviews; Little, Brown and Company, 1982, contained in [Par88],
pp. 93-100.

[Gam86] Gamble S.L.: What Tangled Webs We Weave: The Threat of Unstructured
Cobol, Business Software Review, Vol. 5, pp. 28-32, November 1986,
contained in [Par88], pp. 335-336.

118 7. References

[Gar87] Garg P.K., Scacchi W.: Maintaining Software Life Cycle Documents as
Hypertext: Issues, Analysis, and Directions, Technical Report, University of
Southern California, Los Angeles, Computer Science Dept., 1987.

[Gar88a] Garg P.K., Scacchi W.: A Software Hypertext Environment for Configured
Software Descriptions, Proceedings of the International Workshop on Soft-
ware Version and Configuration Control, in [Win88], 1988.

[Gar88b] Garg P.K., Scacchi W.: A Hypertext System to Manage Software Life Cy-
cle Documents, Proceedings of the 21st Annual Hawaii International Con-
ference on System Sciences, Vol. 2: Software, 1988.

[Gib89] Gibson V.R., Senn J.A.: System Structure and Software Maintenance Per-
formance, Communications of the ACM, Vol. 32, No. 3, pp. 347-358,
1989.

[Gil87] Gilbert J.: Literate Programming: Printing Common Words, Communica-
tions of the ACM, Vol. 30, No. 7, pp. 594-599, July 1987.

[Gla81] Glass R.L., Noiseux R.A.: Software Maintenance Guidebook, Prentice-
Hall, 1981.

[Gli90a] Glinert E.P. (Ed.): Visual Programming Environments: Applications and Is-
sues, IEEE Computer Society Press, Los Alamitos, CA, 1990.

[Gli90b] Glinert E.P. (Ed.): Visual Programming Environments: Paradigms and
Systems, IEEE Computer Society Press, Los Alamitos, CA, 1990.

[Gol84] Goldberg A.: Smalltalk-80: The Interactive Programming Environment,
Addison-Wesley, Reading, MA, 1984.

[Gol85] Goldberg A.: Smalltalk-80: The Language and its Implementation, Addison-
Wesley, Reading, MA, 1984.

[Gre88] Greene L.H.: Self-Identifying Software, Proceedings of the Conference on
Software Maintenance, Phoenix, AZ, pp. 126-131, 1988.

[Hal87] Hall R.P.: Seven Ways to Cut Software Maintenance Costs, Datamation,
Vol. 33, July 15, pp. 81-84, 1987, contained in [Par88], pp. 358-360.

[Her87] Hershey W.: GUIDE— Review, BYTE, Vol. 12., No. 11, pp. 244-246,
October 1987.

[Hod85] Hodil E.D., Richardson G.L.: New Faces for Old Systems, Computer De-
cisions, Vol. 17, July 15, pp. 52-61, 1985, contained in [Par88], pp. 281-
282.

[Hol84] Hollinde I., Wagner K.H.: Experience of Prototyping in Command and
Control Information Systems, in Approaches to Prototyping, Springer 1984.

[Ker76] Kernighan B.W., Plauger P.J.: Software Tools, Addison-Wesley, Reading,
MA, 1976.

[Knu84] Knuth D.E.: Literate Programming, The Computer Journal, Vol. 27 No. 2,
pp. 97-111, 1984.

[Knu86a] Knuth D.E.: Computers and Typesetting, Volume B, TEX: The Program,
Addison-Wesley, Reading, MA, 1986.

7. References 119

[Knu86b] Knuth D.E.: Computers and Typesetting, Volume D, METAFONT: The
Program, Addison-Wesley, Reading, MA, 1986.

[LaL90] LaLonde W.R., Pugh J.R.: Inside Smalltalk, Volume 1, Prentice Hall, Inc.,
1990.

[Leb84] Leblang D.B., Chase R.P.: Computer-Aided Software Engineering in a
Distributed Workstation Environment, ACM Sigplan/Sigsoft Symposium on
Practical Software Development Environments, April 1984.

[Lef87] Lefkon R.: Maintenance Manager: How To Be a Drill Sergeant and a Good
Guy, Too; Computerworld: In Depth, Vol. 21, February 9, pp. 61-75, 1987,
contained in [Par88], pp. 340-345.

[Lev87] Levy S.: WEB adapted to C, another approach, TUGboat, Vol. 8, No. 1,
pp. 12-14, April 1987.

[Lin88] Lin I., Gustafson D.A.: Classifying Software Maintenance, Proceedings of
the Conference on Software Maintenance, Phoenix, AZ, pp. 241-247, 1988.

[Lind89] Lindsay D.: Literate Programming: A File Difference Program, Communi-
cations of the ACM, Vol. 32, No. 5, pp. 740-755, June 1989.

[Lin89a] Lins C.: A First Look at Literate Programming, Structured Programming,
Vol. 10, No. 1, pp. 60-62, 1989.

[Lin89b] Lins C.: An Introduction to Literate Programming, Structured Program-
ming, Vol. 10, No. 1, pp. 107-112, 1989.

[Liu78] Liu C.C.: A Look at Software Maintenance, contained in [Par88], pp. 61-
71.

[Mar83] Martin J., McClure C.: Software Maintenance: The Problem and its Solu-
tion, Prentice Hall, 1983.

[Mey87] Meyer B.: Object-Oriented Software Construction, Prentice Hall, 1988.

[Mil79] Miller J.C.: Structured Retrofit, in [Par88], pp. 179-180.

[Mös90] Mössenböck H.: She: A Simple Hypertext Editor for Programs, Technical
Report, Nr. 145, Eidgenössische Technische Hochschule Zürich, December
1990.

[Mye86] Myers B.A.: Visual Programming, Programming by Example, and Program
Visualization: A Taxonomy, ACM Conference Proceedings, CHI ‘86: Hu-
man Factors in Computing Systems, pp. 59-66, 1986, contained in [Gli90b],
pp. 33-40.

[Nie90] Nielsen J.: The Art of Navigating through Hypertext, Communications of
the ACM, Vol. 33, No. 3, pp. 296-310, March 1990.

[Osb87] Osborne W.: Software Maintenance: Thriving On Respect, Computerworld:
In Depth, Vol. 21, July 13, pp. 77-82, 1987, contained in [Par88], pp. 363-
365.

[Par83] Parikh G., Zvegintzov N.: Tutorial on Software Maintenance, IEEE Com-
puter Society, 1983.

[Par85] Parikh G.: The Fourth Generation Maintenance Gap, Information Center,
Vol. 9, pp. 44-47, 1985, contained in [Par88], pp. 259-263.

120 7. References

[Par86a] Parikh G.: What is Software Maintenance, ACM Software Engineering
Notes, Vol. 11, No. 4, pp. 49-52, 1986, contained in [Par88], pp. 29-32.

[Par86b] Parikh G.: Maintenance Walkthroughs Boost Morale, Ensure Quality; Com-
puter World, Vol. 20, April 28, p. 57, 1986, contained in [Par88], p. 320.

[Par86c] Parikh G.: The Third Head of the “Information Age Trinity”, Data Process-
ing Digest, 1/1986, contained in [Par88], pp. 11-12.

[Par87a] Parikh G.: The Several Worlds of Software Maintenance— A Proposed
Software Maintenance Taxonomy, ACM Software Engineering Notes,
Vol. 12, No. 4, pp. 51-53, 1987, contained in [Par88], pp. 45-50.

[Par87b] Parikh G.: Making the Immortal Language Work (Right), Business Soft-
ware Review, Vol. 6, April 1987, contained in [Par88], pp. 350-352.

[Par88] Parikh G.: Techniques of Program and System Maintenance, Second Edi-
tion, QED Information Sciences, Inc., 1988.

[Par88a] Parikh G.: Improved Maintenance Techniques: The Application of Im-
proved Programming Technologies to Existing Systems, contained in
[Par88], pp. 181-186.

[Per86] Perry W.E.: Are Maintenance Careers Dead Ends?, Government Computer
News, Vol. 5, pp. 25, 28, January 17, 1986, contained in [Par88] pp. 300-
302.

[Pom86] Pomberger G.: Software Engineering and Modula-2, Prentice Hall, 1986.

[Pom91] Pomberger G., et al.: Prototyping-Oriented Software Development— Con-
cepts and Tools; Structured Programming, Vol. 12, No. 1, 1991.

[Pre87] Pressman R.S.: Software Engineering: A Practitioner’s Approach, 2nd edi-
tion, McGraw-Hill, 1987.

[Raj90] Rajlich V., et al.: VIFOR: A Tool for Software Maintenance, Software—
Practice and Experience, Vol. 20, No. 1, pp. 67-77, January 1990.

[Ram88] Ramsdell J.D.: SchemeTEX— Simple Support for Literate Programming in
Lisp. TEX hax Digest, Vol. 88, No. 39, April 23, 1988.

[Ram89] Ramsey N.: Literate Programming: Weaving a Language-Independent
WEB, Communications of the ACM, Vol. 32, No. 9, pp. 1051-1055,
September 1989.

[Ree89] Reenskaug T., Skaar A.L.: An Environment for Literate Smalltalk Pro-
gramming, OOPSLA '89 Proceedings, pp. 337-345, October 1-6, 1989.

[Reu81] Reutter J.: Maintenance Is a Management Problem and Programmer’s Op-
portunity, AFIPS Conference Proceedings on 1981 National Computer
Conference (Chicago), Vol. 50, May 4-7, pp. 3443-347, 1981.

[Roc75] Rochkind M.J.: The Source Code Control System, IEEE Transactions on
Software Engineering, Vol. SE-1, No. 4, pp. 364-370, December 1975.

[Rom86] Roman D.: Classifying Maintenance Tools, Computer Decisions, Vol. 18,
June 30, pp. 36, 40-41, 68-71, 1986; digest in [Par88], pp. 331-332.

7. References 121

[Sam90] Sametinger J.: A Tool for the Maintenance of C++ Programs, Proceedings
of the Conference on Software Maintenance, San Diego, CA, pp. 54-59,
1990.

[Sam92] Sametinger J., Pomberger G.: A Hypertext System for Literate C++ Pro-
gramming, Journal of Object-Oriented Programming, Vol. 4, No. 8, pp. 24-
29, January 1992.

[Sch86] Schmucker K.J.: Object-Oriented Programming for the Macintosh, Hayden
Book Company, 1986.

[Sch87] Schneidewind N.F.: The State of Software Maintenance, IEEE Transactions
on Software Engineering, Vol. SE-13, No. 3, pp. 303-310, March 1987.

[Sew87] Sewel E.W.: How to MANGLE your Software: The WEB-System for
Modula-2, TUGboat, Vol. 8, No. 2, pp. 118-122, July 1987.

[Shn86] Shneiderman B., et al.: Display Strategies for Program Browsing: Concepts
and Experiment, IEEE Software, Vol. 2, No. 5, pp. 7-15, May 1986.

[Shn89] Shneiderman B., Kearsley G.: Hypertext Hands-on: An Introduction to a
New Way of Organizing and Accessing Information, Addison-Wesley,
Reading, MA, 1989.

[Smi88] Smith J.B., Weiss S.F.: Hypertext, Communications of the ACM, Vol. 31,
No. 7, pp. 816-819, July 1988.

[Smi91] Smith L.M.C, Samadzadeh M.H.: An Annotated Bibliography of Literate
Programming, ACM Sigplan Notices, Vol. 26, No. 1, pp. 14-20, January
1991.

[Smn85] High Noon: True Test of a Software Maintenance Tool, Software Mainte-
nance News, Vol. 3, pp. 1-2, August 1985, contained in [Par88], pp. 280-
281.

[Smn86] High Noon Part II: The Quest for a True Test of a Software Maintenance
Tools, Software Maintenance News, Vol. 4, pp. 1-2, August 1986, con-
tained in [Par88], pp. 333-335.

[Sne90] Sneed H.M., Kaposi A.: A Study on the Effect of Reengineering upon
Software Maintainability, Proceedings of the Conference on Software
Maintenance, San Diego, CA, pp. 91-99, 1990.

[Str86] Stroustrup B.: The C++ Programming Language, Addison-Wesley, Read-
ing, MA, 1886.

[Swa76] Swanson E.B.: The Dimensions of Maintenance, Proc. 2nd Int. Conference
on Software Engineering, San Francisco, pp. 492-497, October 1976.

[Tah90] Tahvanainen V., Smolander K.: An Annotated CASE Bibliography, ACM
Software Engineering Notes, Vol. 15, No. 1, pp. 79-92, January 1990.

[Thi86] Thimbleby H.: Experience of ‘Literate Programming’ Using CWEB (a vari-
ant of Knuth’s WEB), The Computer Journal, Vol. 29, No. 3, pp. 201-211,
1986.

[Tic82] Tichy W.F.: Design, Implementation, and Evaluation of a Revision Control
System, Proceedings of the 6th International Conference on Software Engi-
neering, September 1982.

122 7. References

[Tic85] Tichy W.F.: RCS - A System for Version Control, Software— Practice and
Experience, Vol. 15, No. 7, pp. 637-654, July 1985.

[Tic88] Tichy W.F.: Tools for Software Configuration Management, Proceedings of
the International Workshop on Software Version and Configuration
Control, in [Win88], 1988.

[Tin85] Tinnirello P.C.: Software Maintenance In Fourth Generation Language En-
vironments, digest in [Par88], pp. 275-278.

[Tun89] Tung Sho-Huan: A Structured Method for Literate Programming, Struc-
tured Programming, Vol. 10, No. 2, pp. 113-120, 1989.

[Wal87] Wall D.W.: Literate Programming: Processing Transactions, Communica-
tions of the ACM, Vol. 30, No. 12, pp. 1000-1010, December 1987.

[Web83] Webster’s new universal unabridged Dictionary, New World Dictionaries/
Simon and Schuster, 2nd edition, 1983.

[Wei88] Weinand A., Gamma E., Marty R.: ET++— An Object Oriented Application
Framework in C++, OOPSLA ‘88, ACM Sigplan Notices, Vol. 23, No. 11,
pp. 46-57, 1988.

[Wei89] Weinand A., Gamma E., Marty R.: Design and Implementation of ET++, a
Seamless Object-Oriented Application Framework, Structured Program-
ming, Vol. 10, No.2, 1989.

[Win88] Winkler J.F. (Ed.): Proceedings of the International Workshop on Software
Version and Configuration Control (Grassau), B.G. Teubner, Stuttgart,
January 27-29, 1988.

[Wir85] Wirth N.: Programming in Modula-2, 3rd corrected edition, Springer-Ver-
lag, New York, NY, 1985.

[Wyk90] Van Wyk C.J.: Literate Programming: An Assessment, Communications of
the ACM, Vol. 33, No. 2, pp. 361-365, March 1990.

[You79] Yourdon E.N. (Ed.): Classics in Software Engineering, Yourdon Press
Computing Series, 1979.

[Zve89] Zvegintzov N. (Technical Ed.): Software Maintenance Tools, Release 2.0,
Software Maintenance News, March 1, 1989.

8. Figures 123

8. Figures

Fig. 1.1 Relative costs in the phases of the software life cycle [Art88].....................1
Fig. 1.2 Percentage of software budget spent for maintenance [Pre87]2
Fig. 1.3 Maintenance personnel activities [Par83]..4
Fig. 3.1 Evaluation of the state of the art ..28
Fig. 4.1 Relations of classes in an object-oriented system35
Fig. 4.2 Collapsed text parts ...37
Fig. 4.3 Verbal descriptions of identifiers in comments..38
Fig. 4.4 Outline of a file ..39
Fig. 4.5 Relations among chapters ..39
Fig. 4.6 Code identifiers in the documentation text..40
Fig. 4.7 Source code within documentation text..40
Fig. 4.8 Links from documentation text to the source code41
Fig. 4.9 Global styles in C++ source code ...43
Fig. 4.10 Global styles in the documentation ...44
Fig. 4.11 Highlighted identifiers in a C++ method ...45
Fig. 4.12 Example of a project description file ..46
Fig. 4.13 Application window...47
Fig. 4.14 Hypertext window ...48
Fig. 4.15 Popup menu for lower selection list..50
Fig. 4.16 Enhanced browsing..51
Fig. 4.17 Method definition in a superclass ...52
Fig. 4.18 The file menu...53
Fig. 4.19 The edit menu..54
Fig. 4.20 Dialog for line positioning..54
Fig. 4.21 Find/change text ..55
Fig. 4.22 The project menu...56
Fig. 4.23 Global text styles ...57
Fig. 4.24 History dialog ..58
Fig. 4.25 The text menu..58
Fig. 4.26 Highlighted identifiers..59
Fig. 4.27 The identifier menu..60
Fig. 4.28 Renaming an identifier ...61
Fig. 4.29 Information about an identifier ...62
Fig. 4.30 The goodies menu..62
Fig. 4.31 Hidden comments ..63
Fig. 4.32 File window...64
Fig. 4.33 Menus of the file window...64
Fig. 4.34 Sample documentation...67
Fig. 4.35 Unresolved links to the source code ...70
Fig. 4.36 Directory paths ..71
Fig. 4.37 Size of the history ..71

- 124 -

Fig. 4.38 Width of the selection lists ...71
Fig. 4.39 Text templates ...72
Fig. 4.40 Class hierarchy...74
Fig. 4.41 C++ compilation ..75
Fig. 4.42 An expanded application framework ..76
Fig. 4.43 Class hierarchy for hypertext nodes..78
Fig. 4.44 Hypertext and style information as mark lists ...78
Fig. 4.45 Integration of source code and documentation ...79
Fig. 4.46 External storage of collapsed text parts in C++ ..80
Fig. 4.47 External storage of documentation...81
Fig. 4.48 Measurements and statistics ...83
Fig. 5.1 Structure of the Smalltalk-80 system browser ..88
Fig. 5.2 Structure of the Smalltalk/V class hierarchy browser................................89
Fig. 5.3 Structure of the ET++ source browser ...90
Fig. 5.4 Structure of the ET++ inspector...91
Fig. 5.5 Structure of Omega’s browsing facilities ..92
Fig. 5.6 Structure of DOgMA’s browsing facility..92
Fig. 5.7 Comparison of browsing features ...94
Fig. 5.8 Comparison of hypertext features...100
Fig. 5.9 The WEB system [Knu84] ...101
Fig. 5.10 Example of a WEB section [Ben86a] ...101
Fig. 5.11 Use of program text in another section [Ben86a]....................................102
Fig. 5.12 Extension of program text [Ben86a] ..102
Fig. 5.13 WEB code for generating a section [Knu84] ..103
Fig. 5.14 Structure of the Galley editor...104
Fig. 5.15 The document structures of WEB and DOgMA105
Fig. 5.16 Comparison of literate programming features ...109

