
- 1 -

A Tool for the Maintenance of C++ Programs

Johannes Sametinger

Institut für Wirtschaftsinformatik
University of Linz

A-4040 Linz, Austria

- 2 -

Abstract

This paper describes a tool that helps programmers understand
object-oriented software systems written in C++, a language that
is expected to gain widespread use in industry. This task is ac-
complished by providing information about the set of classes
and files comprising the system and the relationships among
them. The tool described enables its users to easily browse
through the system based on the relations among its classes,
files and even identifiers. In addition, the flexible use of global
text styles enhances the readability of the source code.

The second part of the paper describes some details about the
implementation of the tool. In particular, problems are men-
tioned that arise when performing static analysis of C++ pro-
grams. This analysis is necessary for obtaining information
needed about the program system.

The primary goal of developing the tool has been to support
software maintenance, but its use is in no way limited to that
process.

Introduction

Many facts emphasize the importance of maintenance in the
software life-cycle. For example:

• Programmers spend more than half of their time on mainte-
nance [6].

• Most programmers spend 50% of their time on maintenance,
and some spend up to 80% of their time on the task [13].

The most difficult problem in changing a software system is un-
derstanding the original programmer's intent (see [11], [12]):

• The comprehension process takes more than 50% of the time
spent on the maintenance task.

The most obvious way to support program comprehension is to
produce and maintain adequate documentation. A tool that sup-
ports program comprehension on source code level is of great
help (e.g., [2], [3], [15]), especially if documentation is not
available or is incomplete and/or inconsistent, or if a tool for its
automatic production (e.g., [5], [10]) is not available.

Most software systems are beyond a single person’s comprehen-
sion capacity. A tool that supports program understanding can
prevent (maintenance) programmers from getting lost in a large
system and it can help him/her to attain desired and needed in-
formation about it in an easy manner.

- 3 -

Our research group has been working with object-oriented lan-
guages and systems for three years. We have had good experi-
ences, but also found that object-oriented systems tend to be
more complex than conventional ones. What we needed were
tools that help us master the increasing complexity both in the
development and in the maintenance process.

Because the search for suitable tools had not been fruitful, we
decided to realize a tool for this purpose. We did not consider
the implementation to be too difficult when utilizing the concepts
of object-oriented programming and, in particular, when using a
powerful application framework [18]. As in our research group
we mostly deal with software development tools, this would
greatly enrich the work we had done so far (e.g., [1], [14]).

The Structure of Software
Systems written in C++

Before we describe the tool, some words should be said about
the architectural structure of software systems written in the ob-
ject-oriented programming language C++ [17].

A C++ program system consists of a set of files that contain
class definitions, method implementations and global declara-
tions. The global declarations can be used in more than one class
and their corresponding methods. There is no restriction on what
has to be written in a single file. A file can contain more than one
class definition and a class definition together with its method
implementations can be spread over several files. We use the
extension ‘.h’ for files containing class definitions and the ex-
tension ‘.C’ for files containing the implementation of a class,
i.e., the implementation of their methods; they are called the h-
files and C-files, respectively.

In order to use a specific class, its h-file has to be included.
(This is done with a special preprocessor statement.) So there
exists a relation among the files of a program system written in
C++, the include relation. There exists another relation among
the classes of an object-oriented software system, the inheritance
relation. A class inherits the properties, i.e., the instance vari-
ables (these are variables local to a class) and the methods of its
superclass. This means that one has to inspect different files in
order to find out the whole story about a class.

The Maintenance Tool

Our maintenance tool eases the process of navigating through the
files and classes and helps the user to get any needed informa-
tion in a fast and easy way. To accomplish this, the files of a

- 4 -

C++ program are divided into little pieces of information, i.e.,
class definitions, method implementations and global declara-
tions. (By global declaration we mean anything that does not
belong to a class definition or to a method implementation, e.g.,
preprocessor statements like the include statement mentioned
above or global type declarations.)

These little chunks of information are managed together with
their relations among them. The following relations are used:

• A class is contained in a file.

• A class inherits from another class.

• A method is contained in a file.

• A method belongs to a specific class.

• A method is overwritten in a subclass.

• A file is included by other files.

Still other relations exist based on identifiers used in a software
system:

• An identifier is defined in a class, method, or global to a file.

• The use of an identifier is related to a specific definition of
this identifier and to other uses of the same identifier.

• A comment possibly contains a short description of an iden-
tifier, e.g., the description of a class, a method, or an in-
stance variable.

Our maintenance tool offers the possibility to easily browse
through the system by means of the above relations. Addi-

- 5 -

tionally, useful information is displayed to protect the user from
getting lost in the complex information web.

User Interface

The user interface concept is based on modern application
frameworks and the supported concepts thereof (see [16], [19]).
It provides two selection lists, an editor window, an icon bar
containing several browsing tools, a menu bar, and two infor-
mation bars (see Fig. 1). The first list displays either the classes
or the files of a software system (¿). The second one displays
the methods, the subclasses, or the superclass(es) of a class, or
those files included by a file selected in the first list (¡). The
editor window (¬) displays the code part depending on the se-
lections made in the two lists on the left side. Seven icons (√)
are used to browse through the system (see below). The menu
bar (ƒ) is used for the activation of more specific commands, and
two information bars display the filename of the code currently
shown (≈) and the inheritance path (i.e., all the superclasses) of
the class or the method currently shown (∆).

Browsing Facilities

The tool offers several possibilities to browse from one piece of
code to another. This can be done by selecting an item from the
two displayed lists. In this case the appropriate class definition,
method implementation or file description is displayed.

Another and even more useful way to reach other parts of the
system is to follow one of the relations associated with the dis-
played code. This enables the user to browse with a single

- 6 -

mouse click

• from a class to its superclass or any of its subclasses

• from a method implementation to the same method implemen-
tation in its superclass

• from a class or method description to the file in which the de-
scription is contained

• from a file to any of its included files

It is also possible to select an identifier of the displayed code and
to browse

• to the identifier declaration

• to the next or previous use of this identifier

This again can be accomplished by a single mouse click.

The system remembers the browsing paths of the user and thus
enables him/her to undo any browsing activities and get back to
where he/she came from.

Global Text Styles

In order to enhance the readability of the source code, the user
can define global styles for different syntactic constructs, e.g.,
comments, keywords (see Fig. 2). Additionally, it is possible to
highlight single identifiers or identifiers defined in a certain
scope. This helps the user to easily answer questions like Which
global variables does this method use, and where are they used?

We support three different highlights to allow the user to distin-
guish even among global identifiers of a class and local identi-
fiers.

Identifier Remarks

If a short description exists for an identifier (usually a short
comment after its declaration) then this description together with
some other useful information (e.g., point of declaration) can be

- 7 -

shown at any place this identifier is used (see next section). We
assume that a comment after the definition of an identifier con-
tains a description of this identifier. Assuming this style for ex-
isting programs might — at worst — lead to the display of an
identifier and a comment that does not contain a description of
this identifier. But on the other hand, the system can provide the
user with information that is very useful for program compre-
hension and can do so with little effort on the part of the user
(i.e., by writing a short comment for all or many identifier def-
initions).

Sample Scenario

This sample scenario illustrates how we might try to understand
the function of a method.

For this purpose we first select the method’s class (see again ¿
in Fig. 1) and the method itself (¡) in the class and method list on
the left side, respectively. We now see the source code of the
method (¬), the name of the corresponding file it is contained in
(√), and the inheritance path (ƒ) of its class. If we know some
of the superclasses already, the inheritance path might give us a
feeling of the properties of a class. For example, we might know
that subclasses of class EventHandler usually handle certain
events.

We can now highlight all local identifiers, i.e., identifiers that
are defined in this method, including parameters. Furthermore,
we might want to know the instance variables of its class that
this method uses. For this purpose we browse to the class,
highlight its local identifiers and browse back to the method.
Identifiers are highlighted wherever they are used, so we can
easily locate all global identifiers in our method, too. In order to
distinguish local and global identifiers, we can use different text
styles (see Fig. 2), e.g., outline for global identifiers of the
class, bold for local ones of the method, and additional underlin-
ing for identifier definitions (see Fig. 3).

- 8 -

Any identifiers that are not highlighted in our method so far are
declared in one of the superclasses or even somewhere else in
the software system — except keywords. We can select any
identifier and browse to its definition with a single mouse click.
By using a third text style, e.g., another text font or even an-
other style or size, we can highlight the identifiers of another
class or even of a certain file to see the occurrences of it in our
method at a glance.

Concise information about an identifier can be of great help
when trying to understand a piece of code. On demand our tool
tells the user the name, location, corresponding file, inheritance
path and the declaration of a certain identifier. A short descrip-
tion is also displayed if available, i.e., if a comment is written
right after the definition of this identifier in the source code (see
Fig. 4). This, again, is accomplished with a single mouse click.

Experiences and Planned Enhancements

We have been using object-oriented programming and applica-
tion frameworks for about three years. The presented tool is of
great help in mastering the complexity of both our own devel-

- 9 -

opments, including the presented tool itself, and software writ-
ten by others, like the application framework ET++ ([18], [19]).
As there is no documentation available for ET++ so far, we are
forced to obtain any needed information out of the source code
on our own. This is not an uncommon situation in practice but is
tough work when done without tool support.

Another big benefit of our tool is its use by students of object-
oriented programming. Its simple mechanism for browsing al-
lows them to obtain useful information about the system und
thus understand faster what is happening.

A tool cannot replace good documentation. At most it can pro-
duce more documentation automatically, but this will never be a
real substitute for documentation written by hand (e.g., the de-
scription of concepts). To support the availability of documenta-
tion we plan to extend our system to a Literate Programming
Environment [8]. This will be another important step toward a
system for better program comprehension.

Activities of software maintenance and software development are
very similar. Thus a real maintenance tool must also support

- 10 -

software development. Usually program comprehension alone
plays a somewhat minor role in the development process.
Therefore, it seems useful to extend our tool in a way that it can
be used for software development, too. For example, one
should be able to start compilation within the tool, and the pre-
sented hypertext features should also be integrated in the debug-
ger.

Some enhancements are needed in providing information about a
software system and in browsing through it. The use of cate-
gories for classes and methods is being considered. Besides,
questions like Which methods send a particular message? or
Which classes implement a particular message? have to be an-
swered by the system (see [7]).

The support of other programming languages, especially a non-
object-oriented one, would be of interest to prove the portability
of the language-independent part of the system.

Current Implementation Restrictions

The described tool has been implemented, but certain details
have not yet been completed and are scheduled for inclusion in
future improvements.

• Incremental static analysis is not supported.

• Some features for editing of programs are still missing (e.g.,
comfortable insertion of new classes and methods).

• All information about a software system is kept in main
memory. The use of a database is being considered.

• Multiple inheritance is not supported.

Implementation

It is impossible to describe the implementation in detail in this
paper. Only a rough description of the basic structure of the im-
plementation is given.

The presented tool was implemented with C++ under UNIX on
SUN workstations, using the application framework ET++ [18]
[19]. The tool is clearly separated in two parts: a language inde-
pendent hypertext browser (see [4]) and a language (C++) de-
pendent static analyzer, in order to get needed information about
the inspected program.

- 11 -

Language Independent Hypertext Browser

The language independent hypertext browser controls the user
interface and manages the following information about a soft-
ware system:

• text pieces (e.g., class descriptions, method implementations)

• any relations among these text pieces for browsing (e.g., in-
heritance, include relations, methods of a class)

• classification of text parts (e.g., keywords, comments, iden-
tifiers)

• relations among identifiers (the definition of an identifier and
its uses)

• additional information (e.g., inheritance path, file location)

Based on this (language independent) information, the tool man-
ages easy browsing through a software system.

Language Dependent Parser

The language dependent parser analyzes the source code, cuts it
into small pieces of text (classes and methods), and passes infor-
mation to the hypertext browser, e.g.:

• the definition of an identifier

• the use of an identifier

• any keyword

• any comment

• any inheritance relation

• the location of files (directory path)

Static Analysis of C++ Programs

C++ is an object-oriented superset of the programming language
C [17]. We will present some details about the static analysis of
C++ programs because the structure and the history of the lan-
guage burden the development of tools for it.

The compilation of C++ usually consists of three parts: the C
preprocessing (cpp), the transformation to C (cfront), and finally
the compilation of the C program (cc, see Fig. 5). This 3-part
compilation makes C++ programs upward compatible to C.

- 12 -

The C Preprocessor (cpp) first reads the source code and pro-
cesses the preprocessor statements (lines beginning with a ‘#’).
It includes other files, handles the definition of identifiers and
replaces these identifiers in the subsequent text with their defined
strings (with parameters), and skips parts of the text according
to if-then-else-statements, which requires the evaluation of
constant expressions.

The C++ Front End (cfront) parses the output of the preproces-
sor and generates a C program. To do this, a full syntactic and
semantic analysis is necessary.

Finally the C Compiler (cc) reads the output of the C++ front
end and generates object code. In some implementations object
code is generated directly, i.e., the transformation to C code is
left out.

In order to get the information needed for our hypertext
browser, the syntactic and semantic analysis of cfront has to be
carried out. This analysis cannot be done with the output of the
preprocessor because the preprocessor generates a new inter-
mediate source file and it would be impossible to determine ex-
actly the definition and use of identifiers of the original source
file. Therefore, these two steps have to be integrated; i.e., the
functions of cpp and cfront have to be carried out simultane-
ously.

Our language-dependent parser has to recognize and perform
any preprocessor statements (include files, manage a symbol
table of preprocessor-defined symbols, evaluate constant ex-
pressions in if-then-else statements and possibly skip lines).
Whenever an identifier is read from the regular C++ code it has
to be checked whether it is a preprocessor-defined identifier. In
this case this identifier, and possibly an argument list have to be
replaced with the appropriate string and passed on for further
analysis. Otherwise the hypertext browser has to be informed
about an identifier definition or use. The same holds for key-
words and comments.

- 13 -

Conclusion

A tool was presented that supports the maintenance of C++ pro-
gram systems by providing a modern user interface, comfortable
browsing facilities, global text styles, and the possibility to ob-
tain useful information about identifiers.

The tool is divided into a language-independent hypertext
browser and a language-dependent static analyzer. Thus, with
little effort it should be possible to support other programming
languages, both object-oriented and procedural.

With the help of better maintenance tools we can decrease the
time required for the comprehension process and thus reduce the
costs of the software maintenance task.

Many things currently done by tools that automatically produce
documentation can be done better by interactive tools. Interactive
supply of information about software systems shortens the time
needed for their understanding because one does not have to
pick up desired information from the (possibly, even probably,
very extensive) generated documentation.

- 14 -

References

[1] Bischofberger W., Pomberger G.: SCT: A Tool for
Hybrid Execution of Hybrid Software Systems, First
International Modula-2 Conference, Bled, Yugoslavia,
Oct. 1989.

[2] Cleveland L.: An Environment for Understanding
Programs, Proc. of the 21st Annual Hawaii Int. Conf. on
System Sciences, Vol. 2, 1988.

[3] Cleveland L.: A User Interface for an Environment to
Support Program Understanding, Proceedings of the
Conference on Software Maintenance, pp. 86-91, 1988.

[4] Conklin J.: Hypertext: An Introduction and Survey,
Computer Vol. 20, No. 9, pp 17-41, Sept.87.

[5] Fletton N. T., Munro M.: Redocumenting Software
Systems Using Hypertext Technology, Proceedings of the
Conference on Software Maintenance, pp. 54-59, 1988.

[6] Gibson V. R., Senn J. A.: System Structure and Software
Maintenance Performance, CACM, Vol. 32, No. 3, pp.
347-358, 1989.

[7] Goldberg A.: Smalltalk-80: The Interactive Programming
Environment, Addison-Wesley, 1984.

[8] Knuth D. E.: Literate Programming, The Computer
Journal, Vol. 27 No. 2, pp 97-111, 1984.

[9] Kuhn D. R.: A Source Code Analyzer for Maintenance,
Proceedings of the Conference on Software Maintenance,
pp. 176-180, 1987.

[10] Landis L. D., et al.: Documentation in a Software Mainte-
nance Environment, Proceedings of the Conference on
Software Maintenance, pp. 66-73, 1988.

[11] Letovsky S., Soloway E.: Delocalized Plans and Program
Comprehension, IEEE Software, pp. 41-49, May 1986.

[12] Parikh G., Zvegintzov N.: Tutorial on Software
Maintenance, IEEE Computer Society, pp. 61-62, 1983.

[13] Parikh G.: Techniques of Program and System
Maintenance, Second Edition, QED Information Sciences,
Inc. 1988.

[14] Pomberger G., et al.: TOPOS — A Toolset for
Prototyping-oriented Software Development, Actes de la
4ème Conférence-Exposition de Génie Logiciel, AFCET,
Paris, Oct. 1988.

[15] Rajlich V., et al.: VIFOR: A Tool for Software
Maintenance, Software—Practice and Experience, Vol.
20, No. 1, pp. 67-77, January 1990.

[16] Shneiderman B., et al.: Display Strategies for Program
Browsing: Concepts and Experiment, IEEE Software, pp.
7-15, May 1986.

- 15 -

[17] Stroustrup B.: The C++ Programming Language,
Addison-Wesley, 1886.

[18] Weinand A., Gamma E., Marty R.: ET++ — An Object
Oriented Application Framework in C++, OOPSLA ‘88,
SIGPLAN Notices, Vol. 23, No. 11, pp. 46-57, 1988.

[19] Weinand A., Gamma E., Marty R.: Design and
Implementation of ET++, a Seamless Object-Oriented Ap-
plication Framework, Structured Programming, Vol. 10,
No.2, Springer International 1989.

